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MiniZinc is a free and open-source constraint modeling language. You can useMiniZinc to model
constraint satisfaction and optimization problems in a high-level, solver-independent way, taking
advantage of a large library of pre-defined constraints.
This handbook consists of four parts: Section 1 covers installation and basic steps; Section 2 is
a tutorial-style introduction into modelling with MiniZinc; Section 3 is a user manual for the
individual tools in the MiniZinc tool chain; and Section 4 is a reference to the language.
This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License5. This means that you are free to copy and redistribute the material in any
medium or format for any purpose, even commercially. However, you must give appropriate
credit, provide a link to the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor endorses you or your use. If
you remix, transform, or build upon the material, you may not distribute the modified material.

5 http://creativecommons.org/licenses/by-nd/4.0/
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CHAPTER1.1

Introduc on

MiniZinc is a language for specifying constrained optimization and decision problems over in-
tegers and real numbers. A MiniZinc model does not dictate how to solve the problem - the
MiniZinc compiler can translate it into different forms suitable for a wide range of solvers, such
as Constraint Programming (CP), Mixed Integer Linear Programming (MIP) or Boolean Satisfi-
ability (SAT) solvers.
The MiniZinc language lets users write models in a way that is close to a mathematical formula-
tion of the problem, using familiar notation such as existential and universal quantifiers, sums
over index sets, or logical connectives like implications and if-then-else statements. Further-
more, MiniZinc supports defining predicates and functions that let users structure their models
(similar to procedures and functions in regular programming languages).
MiniZinc models are usually parametric, i.e., they describe a whole class of problems rather than
an individual problem instance. That way, a model of, say, a vehicle routing problem could be
reused to generate weekly plans, by instantiating it with the updated customer demands for the
upcoming week.
MiniZinc is designed to interface easily to different backend solvers. It does this by transforming
an input MiniZinc model and data file into a FlatZinc model. FlatZinc models consist of variable
declarations and constraint definitions as well as a definition of the objective function if the
problem is an optimization problem. The translation from MiniZinc to FlatZinc makes use of
a library of function and predicate definitions for the particular target solver, which allows the
MiniZinc compiler to produce specialised FlatZinc that only contains the types of variables and
constraints that are supported by the target. In particular, MiniZinc allows the specification of
global constraints by decomposition. Furthermore, annotations of the model let the user fine tune
the behaviour of the solver, independent of the declarative meaning of the model.

1.1.1 Structure

This documentation consists of four parts. The first part (page 5) includes this introduction
and then describes how to download and install MiniZinc and how to make your first steps
using the MiniZinc IDE and the command line tools. The second part (page 21) is a tutorial
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introduction to modelling with MiniZinc, from basic syntax and simple modelling techniques
to more advanced topics. It also explains how MiniZinc is compiled to FlatZinc. The third part
(page 137) is a user manual for the tools that make up theMiniZinc tool chain. Finally, The fourth
part (page 211) contains the reference documentation for MiniZinc, including a definition of the
MiniZinc language, documentation on how to interface a solver to FlatZinc, and an annotated
list of all predicates and functions in the MiniZinc standard library.

1.1.2 How to Read This

If you are new to MiniZinc, follow the installation instructions and the introduction to the IDE
and then work your way through the tutorial. Most example code can be downloaded, but it is
sometimes more useful to type it in yourself to get the language into your muscle memory! If you
need help, visit the MiniZinc web site at http://www.minizinc.org where you find a disucssion
forum.
Some of the code examples are shown in boxes like the one below. If a code box has a heading,
it usually lists the name of a file that can be downloaded from http://minizinc.org/doc-latest/
en/downloads/index.html.

Listing 1.1.1: A code example (dummy.mzn)

% Just an example
var int: x;
solve satisfy;

Throughout the documentation, some concepts are defined slightly more formally in special
sections like this one.

More details
These sections can be skipped over if you just want to work through the tutorial for the
first time, but they contain important information for any serious MiniZinc user!

Finally, if you find a mistake in this documentation, please report it through our GitHub issue
tracker at https://github.com/minizinc/minizinc-doc/issues.
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CHAPTER1.2

Installa on

A complete installation of the MiniZinc system comprises the MiniZinc compiler tool chain, one
or more solvers, and (optionally) the MiniZinc IDE.
The easiest way to get a full, working MiniZinc system is to use the bundled binary packages,
available from http://www.minizinc.org/software.html.
The bundled binary packages contain the compiler and IDE, as well as the following solvers:
Gecode, Chuffed, COIN-OR CBC, and a interfaces to the Gurobi and CPLEX solvers (the Gurobi
and CPLEX libraries are not included).
Alternatively, it is possible to compile all components from source code, as described in Installa-
tion from Source Code (page 199).

1.2.1 Microso Windows

To install the bundled binary packages, simply download the installer, double-click to execute
it, and follow the prompts. Note: 32 bit Windows installations are no longer supported in the
bundled binary packages.
After installation is complete, you can find the MiniZinc IDE installed as a Windows application.
The file extensions .mzn, .dzn and .fzn are linked to the IDE, so double-clicking any MiniZinc
file should open it in the IDE.
If you want to use MiniZinc from a command prompt, you need to add the installation directory
to the PATH environment variable. In a Windows command prompt you could use the following
command:
C:\>setx PATH "%PATH%;C:\Program Files\MiniZinc 2.4.3 (bundled)\"

7
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1.2.2 Linux

The MiniZinc bundled binary distribution for Linux is provided using three different distribution
methods: Snap, AppImage, and an archive containing all necessary files. The capabilities of each
package is the same, but it depends on your linux distribution which method is the easiest to
use. Note: linux bundles are compiled to be compatible with many linux distributions using a
x86_64 architecture, but some dependencies on low level libraries cannot be avoided. Make use
of the MiniZinc issue trackers if you encounter any problems.

1.2.2.1 Snap

The MiniZinc Snap is the easiest way to install the MiniZinc bundle if Snap (https://snapcraft.
io/) is available on you system. The installation will provide the minizinc command within
terminal environments and will add an application entry for the MiniZincIDE. The IDE can be
started from the command line using minizinc.ide. The following command will commence
the installation the MiniZinc snap:

$ snap install minizinc --classic

Note: the MiniZinc snap requires the classic permission model to access solvers that are installed
somewhere else on your system.
An advantage of using the MiniZinc snap is that it will be automatically updated whenever a
new version of the snap is available. Using snap channels it is also possible to automatically
follow the developmental versions of MiniZinc. More information about the MiniZinc snap can
be found in the Snap Store.

1.2.2.2 AppImage

The MiniZinc AppImage provides a way of installing the MiniZinc bundles without any added
requirements. AppImages (https://appimage.org/) provide self-contained versions of applica-
tions with all their required dependencies. To use the MiniZinc AppImage you simply download
the AppImage, make it executable, and run:
$ chmod +x MiniZincIDE-2.4.3-x86_64.AppImage
$ ./MiniZincIDE-2.4.3-x86_64.AppImage

AppImages have no standard integration with the desktop environment. A script has been added
to the MiniZinc AppImage to integrate the application into both the terminal and the desktop
environment. The one requirement for this script is that the AppImage CANNOT be moved after
the install script has been run. A suggestionwould be to store the AppImages in ~/Applications/
or /opt/Applications/. The following commands move the AppImage to the second location
and install minizinc and MiniZincIDE to /usr/local/bin and will add a desktop entry and its
corresponding icon to $HOME/.local/share/{applications,icons}:
$ mv ./MiniZincIDE-2.4.3-x86_64.AppImage /opt/Applications/
$ /opt/Applications/MiniZincIDE-2.4.3-x86_64.AppImage install

Note: to change the installation locations can be changed using the environmental variables
$BIN_LOCATION and $DESKTOP_LOCATION. The default behaviour can be achieved using the fol-
lowing command:
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$ BIN_LOCATION=/usr/local/bin DESKTOP_LOCATION=$HOME/.local/share ./MiniZincIDE-2.
↪→4.3-x86_64.AppImage install

1.2.2.3 Archive

The MiniZinc archive bundle is straightforward, but doesn’t offer any automatic integrations
with the desktop environment. After downloading, uncompress the archive, for example in
your home directory or any other location where you want to install it:
$ tar xf MiniZincIDE-2.4.3-bundle-linux-x86_64.tgz

This will unpack MiniZinc into a directory that is called the same as the archive file (without
the .tgz). You can start the MiniZinc IDE using the MiniZincIDE.sh shell script, which sets up
a number of paths and environment variables.
In order to use the command line tools, after unpacking, make the following changes to some
environment variables (assuming a bash-like shell):
$ export PATH=MiniZincIDE-2.4.3-bundle-linux-x86_64/bin:$PATH
$ export LD_LIBRARY_PATH=MiniZincIDE-2.4.3-bundle-linux-x86_64/lib:$LD_LIBRARY_
↪→PATH
$ export QT_PLUGIN_PATH=MiniZincIDE-2.4.3-bundle-linux-x86_64/plugins:$QT_PLUGIN_
↪→PATH

1.2.3 Apple macOS

The macOS bundled binary distribution works with any version of OS X starting from 10.9. After
downloading the disk image (.dmg) file, double click it if it doesn’t open automatically. You will
see an icon for the MiniZinc IDE that you can drag into your Applications folder (or anywhere
else you want to install MiniZinc).
In order to use the MiniZinc tools from a terminal, you need to add the path to the MiniZinc
installation to the PATH environment variable. If you installed the MiniZinc IDE in the standard
Applications folder, the following command will add the correct path:

$ export PATH=/Applications/MiniZincIDE.app/Contents/Resources:$PATH

1.2.4 Adding Third-party Solvers

Third party solvers for MiniZinc typically consist of two parts: a solver executable, and a solver-
specific MiniZinc library. MiniZinc must be aware of the location of both the executable and
the library in order to compile and run a model with that solver. Each solver therefore needs to
provide a configuration file in a location where the MiniZinc toolchain can find it.
The easiest way to add a solver to the MiniZinc system is via the MiniZinc IDE. This is explained
in Section 3.2.5.2. You can also add configuration files manually, as explained in Section 4.3.5.

1.2.3. Apple macOS 9
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First steps with MiniZinc

We recommend using the bundled binary distribution of MiniZinc introduced in Section 1.2. It
contains the MiniZinc IDE, the MiniZinc compiler, and several pre-configured solvers so you can
get started straight away.
This section introduces the MiniZinc IDE and the command line tool minizinc using some very
basic examples. This should be enough to get you started with the MiniZinc tutorial in Section
2 (in fact, you only need to be able to use one of the two, for instance just stick to the IDE if you
are not comfortable with command line tools, or just use the minizinc command if you suffer
from fear of mice).

1.3.1 The MiniZinc IDE

The MiniZinc IDE provides a simple interface to most of MiniZinc’s functionality. It lets you
edit model and data files, solve them with any of the solvers supported by MiniZinc, run debug-
ging and profiling tools, and submit solutions to online courses (such as the MiniZinc Coursera
courses).
When you open the MiniZinc IDE for the first time, it will ask you whether you want to be
notified when an update is available. If you installed the IDE from sources, it may next ask you
to locate your installation of the MiniZinc compiler. Please refer to Section 3.2.5 for more details
on this.
The IDE will then greet you with the MiniZinc Playground, a window that will look like this:

11
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You can start writing your first MiniZinc model! Let’s try something very simple:

In order to solve the model, you click on the Run button in the toolbar, or use the keyboard
shortcut Ctrl+R (or command+R on macOS):
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As you can see, an output window pops up that displays a solution to the problem you entered.
Let us now try a model that requires some additional data.

When you run this model, the IDE will ask you to enter a value for the parameter n:

1.3.1. The MiniZinc IDE 13
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After entering, for example, the value 4 and clicking Ok, the solver will execute the model for
n=4:

Alternatively, data can also come from a file. Let’s create a new file with the data and save it as
data.dzn:
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When you now go back to the Playground tab and click Run, the IDE will give you the option to
select a data file:

Click on the data.dzn entry, then on Ok, and the model will be run with the given data file:

1.3.1. The MiniZinc IDE 15



MiniZinc Handbook, Release 2.4.3

Of course you can save your model to a file, and load it from a file, and the editor supports the
usual functionality.
If you want to know more about the MiniZinc IDE, continue reading from Section 3.2.

1.3.2 The MiniZinc command line tool

TheMiniZinc command line tool, minizinc, combines the functionality of the MiniZinc compiler,
different solver interfaces, and the MiniZinc output processor. After installing MiniZinc from the
bundled binary distribution, you may have to set up your PATH in order to use the command line
tool (see Section 1.2).
Let’s assume we have a file model.mzn with the following contents:

var 1..3: x;
var 1..3: y;
constraint x+y > 3;
solve satisfy;

You can simply invoke minizinc on that file to solve the model and produce some output:

$ minizinc model.mzn
x = 3;
y = 1;
----------
$
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If you have a model that requires a data file (like the one we used in the IDE example above),
you pass both files to minizinc:

$ minizinc model.mzn data.dzn
x = 5;
y = 1;
----------
$

The minizinc tool supports numerous command line options. One of the most useful options is
-a, which switches between one solution mode and all solutions mode. For example, for the first
model above, it would result in the following output:

$ minizinc -a model.mzn
x = 3;
y = 1;
----------
x = 2;
y = 2;
----------
x = 3;
y = 2;
----------
x = 1;
y = 3;
----------
x = 2;
y = 3;
----------
x = 3;
y = 3;
----------
==========
$

To learn more about the minizinc command, explore the output of minizinc --help or continue
reading in Section 3.1.

1.3.2. The MiniZinc command line tool 17
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A MiniZinc Tutorial
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CHAPTER2.1

Basic Modelling in MiniZinc

In this section we introduce the basic structure of a MiniZinc model using two simple examples.

2.1.1 Our First Example

T

WA

NT

SA
NSW

Q

V

Fig. 2.1.1: Australian states

As our first example, imagine that we wish to colour a map of Australia as shown in Fig. 2.1.1.
It is made up of seven different states and territories each of which must be given a colour so
that adjacent regions have different colours.
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Listing 2.1.1: A MiniZinc model aust.mzn for colouring the states and territories in
Australia

% Colouring Australia using nc colours
int: nc = 3;

var 1..nc: wa; var 1..nc: nt; var 1..nc: sa; var 1..nc: q;
var 1..nc: nsw; var 1..nc: v; var 1..nc: t;

constraint wa != nt;
constraint wa != sa;
constraint nt != sa;
constraint nt != q;
constraint sa != q;
constraint sa != nsw;
constraint sa != v;
constraint q != nsw;
constraint nsw != v;
solve satisfy;

output ["wa=\(wa)\t nt=\(nt)\t sa=\(sa)\n",
"q=\(q)\t nsw=\(nsw)\t v=\(v)\n",
"t=", show(t), "\n"];

We can model this problem very easily in MiniZinc. The model is shown in Listing 2.1.1. The
first line in the model is a comment. A comment starts with a % which indicates that the rest of
the line is a comment. MiniZinc also has C-style block comments, which start with /* and end
with */.
The next part of the model declares the variables in the model. The line

int: nc = 3;

specifies a parameter in the problem which is the number of colours to be used. Parameters
are similar to (constant) variables in most programming languages. They must be declared and
given a type. In this case the type is int. They are given a value by an assignment. MiniZinc
allows the assignment to be included as part of the declaration (as in the line above) or to be a
separate assignment statement. Thus the following is equivalent to the single line above

int: nc;
nc = 3;

Unlike variables in many programming languages a parameter can only be given a single value,
in that sense they are named constants. It is an error for a parameter to occur in more than one
assignment.
The basic parameter types are integers (int), floating point numbers (float), Booleans (bool)
and strings (string). Arrays and sets are also supported.
MiniZinc models can also contain another kind of variable called a decision variable. Decision
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variables are variables in the sense of mathematical or logical variables. Unlike parameters and
variables in a standard programming language, the modeller does not need to give them a value.
Rather the value of a decision variable is unknown and it is only when the MiniZinc model is
executed that the solving system determines if the decision variable can be assigned a value that
satisfies the constraints in the model and if so what this is.
In our example model we associate a decision variable with each region, wa, nt, sa, q, nsw, v and
t, which stands for the (unknown) colour to be used to fill the region.
For each decision variable we need to give the set of possible values the variable can take. This
is called the variable’s domain. This can be given as part of the variable declaration and the type
of the decision variable is inferred from the type of the values in the domain.
In MiniZinc decision variables can be Booleans, integers, floating point numbers, or sets. Also
supported are arrays whose elements are decision variables. In our MiniZinc model we use
integers to model the different colours. Thus each of our decision variables is declared to have
the domain 1..nc which is an integer range expression indicating the set {1, 2, . . . , nc} using the
var declaration. The type of the values is integer so all of the variables in the model are integer
decision variables.

Identifiers
Identifiers, which are used to name parameters and variables, are sequences of lower and
uppercase alphabetic characters, digits and the underscore _ character. They must start
with an alphabetic character. Thus myName_2 is a valid identifier. MiniZinc keywords are
not allowed to be used as identifier names, they are listed in Identifiers (page 215). Neither
are MiniZinc operators allowed to be used as identifier names; they are listed in Operators
(page 228).

MiniZinc carefully distinguishes between the two kinds of model variables: parameters and
decision variables. The kinds of expressions that can be constructed using decision variables
are more restricted than those that can be built from parameters. However, in any place that a
decision variable can be used, so can a parameter of the same type.

Integer Variable Declarations
An integer parameter variable is declared as either:

int : <var-name>
<l> .. <u> : <var-name>

where <l> and <u> are fixed integer expressions.
An integer decision variable is declared as either:

var int : <var-name>
var <l>..<u> : <var-name>

where <l> and <u> are fixed integer expressions.

Formally the distinction between parameters and decision variables is called the instantiation
of the variable. The combination of variable instantiation and type is called a type-inst. As you
start to use MiniZinc you will undoubtedly see examples of type-inst errors.
The next component of the model are the constraints. These specify the Boolean expressions
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that the decision variables must satisfy to be a valid solution to the model. In this case we have
a number of not equal constraints between the decision variables enforcing that if two states are
adjacent then they must have different colours.

Relational Operators
MiniZinc provides the relational operators:
equal (= or ==), not equal (!=), strictly less than (<), strictly greater than (>), less than or
equal to (<=), and greater than or equal to (>=).

The next line in the model:

solve satisfy;

indicates the kind of problem it is. In this case it is a satisfaction problem: we wish to find a
value for the decision variables that satisfies the constraints but we do not care which one.
The final part of the model is the output statement. This tells MiniZinc what to print when the
model has been run and a solution is found.

Output and Strings
An output statement is followed by a list of strings. These are typically either string literals
which are written between double quotes and use a C like notation for special characters,
or an expression of the form show(e) where e is a MiniZinc expression. In the example \n
represents the newline character and \t a tab.
There are also formatted varieties of show for numbers: show_int(n,X) outputs the value
of integer X in at least |n| characters, right justified if n > 0 and left justified otherwise;
show_float(n,d,X) outputs the value of float X in at least |n| characters, right justified if
n > 0 and left justified otherwise, with d characters after the decimal point.
String literals must fit on a single line. Longer string literals can be split across multiple
lines using the string concatenation operator ++. For example, the string literal

"Invalid datafile: Amount of flour is non-negative"

is equivalent to the string literal expression

"Invalid datafile: " ++
"Amount of flour is non-negative"

MiniZinc supports interpolated strings. Expressions can be embedded directly in string
literals, where a sub string of the form "\(e)" is replaced by the result of show(e). For
example "t=\(t)\n" produces the same string as "t=" ++ show(t) ++ "\n".
A model can contain multiple output statements. In that case, all outputs are concatenated
in the order they appear in the model.

We can evaluate our model by clicking the Run button in the MiniZinc IDE, or by typing

$ minizinc --solver gecode aust.mzn

where aust.mzn is the name of the file containing our MiniZinc model. We must use the file
extension .mzn to indicate a MiniZinc model. The command minizinc with the option --solver
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gecode uses the Gecode finite domain solver to evaluate our model. If you use the MiniZinc
binary distribution, this solver is in fact the default, so you can just run minizinc aust.mzn
instead.
When we run this we obtain the result:

wa=3 nt=2 sa=1
q=3 nsw=2 v=3
t=1
----------

The line of 10 dashes ---------- is automatically added by the MiniZinc output to indicate a
solution has been found.

2.1.2 An Arithme c Op misa on Example

Our second example is motivated by the need to bake some cakes for a fete at our local school.
We know how to make two sorts of cakes (WARNING: please don’t use these recipes at home).
A banana cake which takes 250g of self-raising flour, 2 mashed bananas, 75g sugar and 100g
of butter, and a chocolate cake which takes 200g of self-raising flour, 75g of cocoa, 150g sugar
and 150g of butter. We can sell a chocolate cake for $4.50 and a banana cake for $4.00. And
we have 4kg self-raising flour, 6 bananas, 2kg of sugar, 500g of butter and 500g of cocoa. The
question is how many of each sort of cake should we bake for the fete to maximise the profit. A
possible MiniZinc model is shown in Listing 2.1.2.

Listing 2.1.2: Model for determining how many banana and chocolate cakes to bake for
the school fete (cakes.mzn)

% Baking cakes for the school fete

var 0..100: b; % no. of banana cakes
var 0..100: c; % no. of chocolate cakes

% flour
constraint 250*b + 200*c <= 4000;
% bananas
constraint 2*b <= 6;
% sugar
constraint 75*b + 150*c <= 2000;
% butter
constraint 100*b + 150*c <= 500;
% cocoa
constraint 75*c <= 500;

% maximize our profit
solve maximize 400*b + 450*c;

output ["no. of banana cakes = \(b)\n",
"no. of chocolate cakes = \(c)\n"];
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The first new feature is the use of arithmetic expressions.
Integer Arithmetic Operators
MiniZinc provides the standard integer arithmetic operators. Addition (+), subtraction
(-), multiplication (*), integer division (div) and integer modulus (mod). It also provides
+ and - as unary operators.
Integer modulus is defined to give a result a mod b that has the same sign as the dividend
a. Integer division is defined so that a = b (a div b) + (a mod b).
MiniZinc provides standard integer functions for absolute value (abs) and power function
(pow). For example abs(-4) and pow(2,5) evaluate to 4 and 32 respectively.
The syntax for arithmetic literals is reasonably standard. Integer literals can be decimal,
hexadecimal or octal. For instance 0, 5, 123, 0x1b7, 0o777.

The second new feature shown in the example is optimisation. The line

solve maximize 400 * b + 450 * c;

specifies that we want to find a solution that maximises the expression in the solve statement
called the objective. The objective can be any kind of arithmetic expression. One can replace the
keyword maximize by minimize to specify a minimisation problem.
When we run this we obtain the result:

no. of banana cakes = 2
no. of chocolate cakes = 2
----------
==========

The line ========== is output automatically for optimisation problems when the system has
proved that a solution is optimal.

2.1.3 Datafiles and Asser ons

A drawback of this model is that if we wish to solve a similar problem the next time we need
to bake cakes for the school (which is often) we need to modify the constraints in the model to
reflect the ingredients that we have in the pantry. If we want to reuse the model then we would
be better off to make the amount of each ingredient a parameter of the model and then set their
values at the top of the model.
Even better would be to set the value of these parameters in a separate data file. MiniZinc
(like most other modelling languages) allows the use of data files to set the value of parameters
declared in the original model. This allows the same model to be easily used with different data
by running it with different data files.
Data files must have the file extension .dzn to indicate a MiniZinc data file and a model can be
run with any number of data files (though a variable/parameter can only be assigned a value in
one file).
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Listing 2.1.3: Data-independent model for determining how many banana and chocolate
cakes to bake for the school fete (cakes2.mzn)

% Baking cakes for the school fete (with data file)

int: flour; %no. grams of flour available
int: banana; %no. of bananas available
int: sugar; %no. grams of sugar available
int: butter; %no. grams of butter available
int: cocoa; %no. grams of cocoa available

constraint assert(flour >= 0,"Invalid datafile: " ++
"Amount of flour should be non-negative");

constraint assert(banana >= 0,"Invalid datafile: " ++
"Amount of banana should be non-negative");

constraint assert(sugar >= 0,"Invalid datafile: " ++
"Amount of sugar should be non-negative");

constraint assert(butter >= 0,"Invalid datafile: " ++
"Amount of butter should be non-negative");

constraint assert(cocoa >= 0,"Invalid datafile: " ++
"Amount of cocoa should be non-negative");

var 0..100: b; % no. of banana cakes
var 0..100: c; % no. of chocolate cakes

% flour
constraint 250*b + 200*c <= flour;
% bananas
constraint 2*b <= banana;
% sugar
constraint 75*b + 150*c <= sugar;
% butter
constraint 100*b + 150*c <= butter;
% cocoa
constraint 75*c <= cocoa;

% maximize our profit
solve maximize 400*b + 450*c;

output ["no. of banana cakes = \(b)\n",
"no. of chocolate cakes = \(c)\n"];

Our new model is shown in Listing 2.1.3. We can run it using the command
where the data file pantry.dzn is defined in Listing 2.1.4. This gives the same result as
cakes.mzn. The output from running the command

$ minizinc cakes2.mzn pantry2.dzn

with an alternate data set defined in Listing 2.1.5 is
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no. of banana cakes = 3
no. of chocolate cakes = 8
----------
==========

If we remove the output statement from cakes.mzn then MiniZinc will use a default output. In
this case the resulting output will be

b = 3;
c = 8;
----------
==========

Default Output
A MiniZinc model with no output will output a line for each decision variable with its
value, unless it is assigned an expression on its declaration. Note how the output is in the
form of a correct datafile.

Listing 2.1.4: Example data file for cakes2.mzn (pantry.dzn)

flour = 4000;
banana = 6;
sugar = 2000;
butter = 500;
cocoa = 500;

Listing 2.1.5: Example data file for cakes2.mzn (pantry2.dzn)

flour = 8000;
banana = 11;
sugar = 3000;
butter = 1500;
cocoa = 800;

Small data files can be entered without directly creating a .dzn file, using the command line flag
-D string, where string is the contents of the data file. For example the command

$ minizinc cakes2.mzn -D \
"flour=4000;banana=6;sugar=2000;butter=500;cocoa=500;"

will give identical results to

$ minizinc cakes2.mzn pantry.dzn

Data files can only contain assignment statements for decision variables and parameters in the
model(s) for which they are intended.
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Defensive programming suggests that we should check that the values in the data file are reason-
able. For our example it is sensible to check that the quantity of all ingredients is non-negative
and generate a run-time error if this is not true. MiniZinc provides a built-in Boolean operator
for checking parameter values. The form is assert(B,S). The Boolean expression B is evaluated
and if it is false execution aborts and the string expression S is evaluated and printed as an error
message. To check and generate an appropriate error message if the amount of flour is negative
we can simply add the line

constraint assert(flour >= 0,"Amount of flour is non-negative");

to our model. Notice that the assert expression is a Boolean expression and so is regarded as a
type of constraint. We can add similar lines to check that the quantity of the other ingredients
is non-negative.

2.1.4 Real Number Solving

MiniZinc also supports “real number” constraint solving using floating point variables and con-
straints. Consider a problem of taking out a short loan for one year to be repaid in 4 quarterly
instalments. A model for this is shown in Listing 2.1.6. It uses a simple interest calculation to
calculate the balance after each quarter.

Listing 2.1.6: Model for determining relationships between a 1 year loan repaying every
quarter (loan.mzn)

% variables
var float: R; % quarterly repayment
var float: P; % principal initially borrowed
var 0.0 .. 10.0: I; % interest rate

% intermediate variables
var float: B1; % balance after one quarter
var float: B2; % balance after two quarters
var float: B3; % balance after three quarters
var float: B4; % balance owing at end

constraint B1 = P * (1.0 + I) - R;
constraint B2 = B1 * (1.0 + I) - R;
constraint B3 = B2 * (1.0 + I) - R;
constraint B4 = B3 * (1.0 + I) - R;

solve satisfy;

output [
"Borrowing ", show_float(0, 2, P), " at ", show(I*100.0),
"% interest, and repaying ", show_float(0, 2, R),
"\nper quarter for 1 year leaves ", show_float(0, 2, B4), " owing\n"

];

Note that we declare a float variable f similar to an integer variable using the keyword float
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instead of int.
We can use the same model to answer a number of different questions. The first question is: if I
borrow $1000 at 4% and repay $260 per quarter, how much do I end up owing? This question
is encoded by the data file loan1.dzn.
Since we wish to use real number variables and constraint we need to use a solver that supports
this type of problem. While Gecode (the default solver in the MiniZinc bundled binary distri-
bution) does support floating point variables, a mixed integer linear programming (MIP) solver
may be better suited to this particular type of problem. The MiniZinc distribution contains such
a solver. We can invoke it by selecting COIN-BC from the solver menu in the IDE (the triangle
below the Run button), or on the command line using the command minizinc --solver cbc:

$ minizinc --solver cbc loan.mzn loan1.dzn

The output is

Borrowing 1000.00 at 4.0% interest, and repaying 260.00
per quarter for 1 year leaves 65.78 owing
----------

The second question is if I want to borrow $1000 at 4% and owe nothing at the end, how much
do I need to repay? This question is encoded by the data file loan2.dzn. The output from
running the command

$ minizinc --solver cbc loan.mzn loan2.dzn

is

Borrowing 1000.00 at 4.0% interest, and repaying 275.49
per quarter for 1 year leaves 0.00 owing
----------

The third question is if I can repay $250 a quarter, how much can I borrow at 4% to end up
owing nothing? This question is encoded by the data file loan3.dzn. The output from running
the command

$ minizinc --solver cbc loan.mzn loan3.dzn

is

Borrowing 907.47 at 4.0% interest, and repaying 250.00
per quarter for 1 year leaves 0.00 owing
----------
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Listing 2.1.7: Example data file for loan.mzn (loan1.dzn)

I = 0.04;
P = 1000.0;
R = 260.0;

Listing 2.1.8: Example data file for loan.mzn (loan2.dzn)

I = 0.04;
P = 1000.0;
B4 = 0.0;

Listing 2.1.9: Example data file for loan.mzn (loan3.dzn)

I = 0.04;
R = 250.0;
B4 = 0.0;

Float Arithmetic Operators
MiniZinc provides the standard floating point arithmetic operators: addition (+), subtrac-
tion (-), multiplication (*) and floating point division (/). It also provides + and - as
unary operators.
MiniZinc can automatically coerce integers to floating point numbers. But to make the
coercion explicit, the built-in function int2float can be used. Note that one consequence
of the automatic coercion is that an expression a / b is always considered a floating point
division. If you need an integer division, make sure to use the div operator!
MiniZinc provides in addition the following floating point functions: absolute value (abs),
square root (sqrt), natural logarithm (ln), logarithm base 2 (log2), logarithm base
10 (log10), exponentiation of $e$ (exp), sine (sin), cosine (cos), tangent (tan), arc-
sine (asin), arc-cosine (acos), arctangent (atan), hyperbolic sine (sinh), hyperbolic co-
sine (cosh), hyperbolic tangent (tanh), hyperbolic arcsine (asinh), hyperbolic arccosine
(acosh), hyperbolic arctangent (atanh), and power (pow) which is the only binary func-
tion, the rest are unary.
The syntax for arithmetic literals is reasonably standard. Example float literals are 1.05,
1.3e-5 and 1.3E+5.

2.1.5 Basic structure of a model

We are now in a position to summarise the basic structure of a MiniZinc model. It consists of
multiple items each of which has a semicolon ; at its end. Items can occur in any order. For
example, identifiers need not be declared before they are used.
There are 8 kinds of items.
• Include items allow the contents of another file to be inserted into the model. They have
the form:
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include <filename>;

where <filename> is a string literal. They allow large models to be split into smaller
sub-models and also the inclusion of constraints defined in library files. We shall see an
example in Listing 2.2.4.

• Variable declarations declare new variables. Such variables are global variables and can
be referred to from anywhere in the model. Variables come in two kinds. Parameters
which are assigned a fixed value in the model or in a data file and decision variables
whose value is found only when the model is solved. We say that parameters are fixed and
decision variables are unfixed. The variable can be optionally assigned a value as part of
the declaration. The form is:

<type inst expr>: <variable> [ = ] <expression>;

The <type-inst expr> gives the instantiation and type of the variable. These are one of the
more complex aspects of MiniZinc. Instantiations are declared using par for parameters
and var for decision variables. If there is no explicit instantiation declaration then the
variable is a parameter. The type can be a base type, an integer or float range or an array
or a set. The base types are float, int, string, bool, ann of which only float, int and
bool can be used for decision variables. The base type ann is an annotation – we shall
discuss annotations in Search (page 85). Integer range expressions can be used instead of
the type int. Similarly float range expressions can be used instead of type float. These
are typically used to give the domain of a decision variable but can also be used to restrict
the range of a parameter. Another use of variable declarations is to define enumerated
types, which we discuss in Enumerated Types (page 48).

• Assignment items assign a value to a variable. They have the form:

<variable> = <expression>;

Values can be assigned to decision variables in which case the assignment is equivalent to
writing constraint <variable> = <expression>.

• Constraint items form the heart of the model. They have the form:

constraint <Boolean expression>;

We have already seen examples of simple constraints using arithmetic comparison and
the built-in assert operator. In the next section we shall see examples of more complex
constraints.

• Solve items specify exactly what kind of solution is being looked for. As we have seen they
have one of three forms:

solve satisfy;
solve maximize <arithmetic expression>;
solve minimize <arithmetic expression>;
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A model is required to have at most one solve item. If it’s omitted, it is treated as
solve satisfy.

• Output items are for nicely presenting the results of the model execution. They have the
form:

output [ <string expression>, ..., <string expression> ];

If there is no output item, MiniZinc will by default print out the values of all the decision
variables which are not optionally assigned a value in the format of assignment items.

• Enumerated type declarations. We discuss these in Arrays and Sets (page 35) and Enumer-
ated Types (page 48).

• Predicate, function and test items are for defining new constraints, functions and Boolean
tests. We discuss these in Predicates and Functions (page 61).

• The annotation item is used to define a new annotation. We discuss these in Search
(page 85).
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CHAPTER2.2

More Complex Models

In the last section we introduced the basic structure of a MiniZinc model. In this section we
introduce the array and set data structures, enumerated types and more complex constraints.

2.2.1 Arrays and Sets

Almost always we are interested in building models where the number of constraints and vari-
ables is dependent on the input data. In order to do so we will usually use arrays.
Consider a simple finite element model for modelling temperatures on a rectangular sheet of
metal. We approximate the temperatures across the sheet by breaking the sheet into a finite
number of elements in a two-dimensional matrix. A model is shown in Listing 2.2.1. It declares
the width w and height h of the finite element model. The declaration

set of int: HEIGHT = 0..h;
set of int: CHEIGHT = 1..h-1;
set of int: WIDTH = 0..w;
set of int: CWIDTH = 1..w-1;
array[HEIGHT,WIDTH] of var float: t; % temperature at point (i,j)

declares four fixed sets of integers describing the dimensions of the finite element model: HEIGHT
is the whole height of the model, while CHEIGHT is the centre of the height omitting the top and
bottom, WIDTH is the whole width of the model, while CWIDTH is the centre of the width omitting
the left and right sides. Finally a two dimensional array of float variables t with rows numbered
0 to h (HEIGHT) and columns 0 to w (WIDTH), to represent the temperatures at each point in the
metal plate. We can access the element of the array in the ith row and jth column using an
expression t[i,j].
Laplace’s equation states that when the plate reaches a steady state the temperature at each
internal point is the average of its orthogonal neighbours. The constraint
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% Laplace equation: each internal temp. is average of its neighbours
constraint forall(i in CHEIGHT, j in CWIDTH)(

4.0*t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);

ensures that each internal point (i, j) is the average of its four orthogonal neighbours. The
constraints

% edge constraints
constraint forall(i in CHEIGHT)(t[i,0] = left);
constraint forall(i in CHEIGHT)(t[i,w] = right);
constraint forall(j in CWIDTH)(t[0,j] = top);
constraint forall(j in CWIDTH)(t[h,j] = bottom);

restrict the temperatures on each edge to be equal, and gives these temperatures names: left,
right, top and bottom. While the constraints

% corner constraints
constraint t[0,0]=0.0;
constraint t[0,w]=0.0;
constraint t[h,0]=0.0;
constraint t[h,w]=0.0;

ensure that the corners (which are irrelevant) are set to 0.0. We can determine the tempera-
tures in a plate broken into 5 × 5 elements with left, right and bottom temperature 0 and top
temperature 100 with the model shown in Listing 2.2.1.

Listing 2.2.1: Finite element plate model for determining steady state temperatures
(laplace.mzn).

int: w = 4;
int: h = 4;

% arraydec
set of int: HEIGHT = 0..h;
set of int: CHEIGHT = 1..h-1;
set of int: WIDTH = 0..w;
set of int: CWIDTH = 1..w-1;
array[HEIGHT,WIDTH] of var float: t; % temperature at point (i,j)
var float: left; % left edge temperature
var float: right; % right edge temperature
var float: top; % top edge temperature
var float: bottom; % bottom edge temperature

% equation
% Laplace equation: each internal temp. is average of its neighbours
constraint forall(i in CHEIGHT, j in CWIDTH)(

4.0*t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);
% sides
% edge constraints
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constraint forall(i in CHEIGHT)(t[i,0] = left);
constraint forall(i in CHEIGHT)(t[i,w] = right);
constraint forall(j in CWIDTH)(t[0,j] = top);
constraint forall(j in CWIDTH)(t[h,j] = bottom);
% corners
% corner constraints
constraint t[0,0]=0.0;
constraint t[0,w]=0.0;
constraint t[h,0]=0.0;
constraint t[h,w]=0.0;
left = 0.0;
right = 0.0;
top = 100.0;
bottom = 0.0;

solve satisfy;

output [ show_float(6, 2, t[i,j]) ++
if j == w then "\n" else " " endif |
i in HEIGHT, j in WIDTH

];

Running the command

$ minizinc --solver cbc laplace.mzn

gives the output

-0.00 100.00 100.00 100.00 -0.00
-0.00 42.86 52.68 42.86 -0.00
-0.00 18.75 25.00 18.75 -0.00
-0.00 7.14 9.82 7.14 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00
----------
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Sets
Set variables are declared with a declaration of the form

set of <type-inst> : <var-name> ;

where sets of integers, enums (see later), floats or Booleans are allowed. The only type
allowed for decision variable sets are variable sets of integers or enums. Set literals are of
the form

{ <expr-1>, ..., <expr-n> }

or are range expressions over either integers, enums or floats of the form

<expr-1> .. <expr-2>

The standard set operations are provided: element membership (in), (non-strict) subset
relationship (subset), (non-strict) superset relationship (superset), union (union), inter-
section (intersect), set difference (diff), symmetric set difference (symdiff) and the
number of elements in the set (card).
As we have seen set variables and set literals (including ranges) can be used as an implicit
type in variable declarations in which case the variable has the type of the elements in the
set and the variable is implicitly constrained to be a member of the set.

Our cake baking problem is an example of a very simple kind of production planning problem.
In this kind of problem we wish to determine how much of each kind of product to make to
maximise the profit where manufacturing a product consumes varying amounts of some fixed
resources. We can generalise the MiniZinc model in Listing 2.1.3 to handle this kind of problem
with a model that is generic in the kinds of resources and products. The model is shown in
Listing 2.2.2 and a sample data file (for the cake baking example) is shown in Listing 2.2.3.

Listing 2.2.2: Model for simple production planning (prod-planning.mzn).

% Products to be produced
enum Products;
% profit per unit for each product
array[Products] of int: profit;
% Resources to be used
enum Resources;
% amount of each resource available
array[Resources] of int: capacity;

% units of each resource required to produce 1 unit of product
array[Products, Resources] of int: consumption;
constraint assert(forall (r in Resources, p in Products)

(consumption[p,r] >= 0), "Error: negative consumption");

% bound on number of Products
int: mproducts = max (p in Products)

(min (r in Resources where consumption[p,r] > 0)
(capacity[r] div consumption[p,r]));
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% Variables: how much should we make of each product
array[Products] of var 0..mproducts: produce;
array[Resources] of var 0..max(capacity): used;

% Production cannot use more than the available Resources:
constraint forall (r in Resources) (

used[r] = sum (p in Products)(consumption[p, r] * produce[p])
);
constraint forall (r in Resources) (

used[r] <= capacity[r]
);

% Maximize profit
solve maximize sum (p in Products) (profit[p]*produce[p]);

output [ "\(p) = \(produce[p]);\n" | p in Products ] ++
[ "\(r) = \(used[r]);\n" | r in Resources ];

Listing 2.2.3: Example data file for the simple production planning problem
(prod-planning-data.dzn).

% Data file for simple production planning model
Products = { BananaCake, ChocolateCake };
profit = [400, 450]; % in cents

Resources = { Flour, Banana, Sugar, Butter, Cocoa };
capacity = [4000, 6, 2000, 500, 500];

consumption= [| 250, 2, 75, 100, 0,
| 200, 0, 150, 150, 75 |];

The new feature in this model is the use of enumerated types. These allow us to treat the choice
of resources and products as parameters to the model. The first item in the model

enum Products;

declares Products as an unknown set of products.
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Enumerated Types
Enumerated types, which we shall refer to as enums, are declared with a declaration of the
form

enum <var-name> ;

An enumerated type is defined by an assignment of the form

enum <var-name> = { <var-name-1>, ..., <var-name-n> } ;

where <var-name-1>, …, <var-name-n> are the elements of the enumerated type, with
name <var-name>. Each of the elements of the enumerated type is also effectively declared
by this definition as a new constant of that type. The declaration and definition can be
combined into one line as usual.

The second item declares an array of integers:

array[Products] of int: profit;

The index set of the array profit is Products. This means that only elements of the set Products
can be used to index the array.
The elements of an enumerated type of n elements act very similar to the integers 1 . . . n. They
can be compared, they are ordered, by the order they appear in the enumerated type definition,
they can be iterated over, they can appear as indices of arrays, in fact they can appear anywhere
an integer can appear.
In the example data file we have initialized the array using a list of integers

Products = { BananaCake, ChocolateCake };
profit = [400,450];

meaning the profit for a banana cake is 400, while for a chocolate cake it is 450. Internally
BananaCakewill be treated like the integer 1, while ChocolateCakewill be treated like the integer
2. The expression [400,500] represents a literal one-dimensional array. In MiniZinc, the index
set of literal arrays always starts at 1 (this is similar to other mathematically inspired languages
such as MATLAB, Julia or Mathematica). While MiniZinc does not provide an explicit list type,
one-dimensional arrays with an index set 1..n behave like lists, and we will sometimes refer to
them as lists.
In a similar fashion, in the next two items we declare a set of resources Resources, and an array
capacity which gives the amount of each resource that is available.
More interestingly, the item

array[Products, Resources] of int: consumption;

declares a 2-D array consumption. The value of consumption[p,r] is the amount of resource r
required to produce one unit of product p. Note that the first index is the row and the second is
the column.
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The data file contains an example initialization of a 2-D array:

consumption= [| 250, 2, 75, 100, 0,
| 200, 0, 150, 150, 75 |];

Notice how the delimiter | is used to separate rows. As for one-dimensional array literals, in-
dexing of two-dimensional array literals also starts at 1.

Arrays
Thus, MiniZinc provides one- and multi-dimensional arrays which are declared using the
type:

array [ <index-set-1>, ..., <index-set-n> ] of <type-inst>

MiniZinc requires that the array declaration contains the index set of each dimension
and that the index set is either an integer range, a set variable initialised to an integer
range, or an enumeration type. Arrays can contain any of the base types: integers, enums,
Booleans, floats or strings. These can be fixed or unfixed except for strings which can only
be parameters. Arrays can also contain sets but they cannot contain arrays.
One-dimensional array literals are of form

[ <expr-1>, ..., <expr-n> ]

and their index sets are 1..n, while two-dimensional array literals are of form

[| <expr-1-1>, ..., <expr-1-n> |
... |
<expr-m-1>, ..., <expr-m-n> |]

where the array has m rows and n columns, with index sets 1..m for the first and 1..n for
the second dimension.
The family of built-in functions array1d, array2d, etc, can be used to initialise an array of
any dimension from a list (or more exactly a one-dimensional array). The call:

array<n>d(<index-set-1>, ..., <index-set-n>, <list>)

returns an n dimensional array with index sets given by the first n argu-
ments and the last argument contains the elements of the array. For instance,
array2d(1..3, 1..2, [1, 2, 3, 4, 5, 6]) is equivalent to [|1, 2 |3, 4 |5, 6|].
Array elements are accessed using bracket syntax: a[i,j] gives the element at row index
ith and column index jth.
The concatenation operator ++ can be used to concatenate two one-dimensional
arrays together. The result is a list, i.e. a one-dimensional array whose ele-
ments are indexed from 1. For instance [4000, 6] ++ [2000, 500, 500] evaluates to
[4000, 6, 2000, 500, 500]. The built-in function length returns the length of a one-
dimensional array.

The next item in the model defines the parameter mproducts. This is set to an upper-bound on
the number of products of any type that can be produced. This is quite a complex example of
nested array comprehensions and aggregation operators. We shall introduce these before we try
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to understand this item and the rest of the model.
First, MiniZinc provides list comprehensions similar to those provided in many func-
tional programming languages, or Python. For example, the list comprehension
[i + j | i, j in 1..3 where j < i] evaluates to [2 + 1, 3 + 1, 3 + 2] which is
[3, 4, 5]. Of course [3, 4, 5] is simply an array with index set 1..3.
MiniZinc also provides set comprehensions which have a similar syntax: for instance,
{i + j | i, j in 1..3 where j < i} evaluates to the set {3, 4, 5}.

List and Set Comprehensions
The generic form of a list comprehension is

[ <expr> | <generator-exp> ]

The expression <expr> specifies how to construct elements in the output list from the
elements generated by <generator-exp>. The generator <generator-exp> consists of a
comma separated sequence of generator expressions optionally followed by a Boolean
expression. The two forms are

<generator>
<generator> where <bool-exp>

The optional <bool-exp> in the second form acts as a filter on the generator expression:
only elements satisfying the Boolean expression are used to construct elements in the
output list. A generator <generator> has the form

<identifier>, ..., <identifier> in <array-exp>

Each identifier is an iterator which takes the values of the array expression in turn, with
the last identifier varying most rapidly.
The generators of a list comprehension and <bool-exp> usually do not involve deci-
sion variables. If they do involve decision variables then the list produced is a list of
var opt <T> where <T> is the type of the <expr>. See the discussion of option types in
Option Types (page 81) for more details.
Set comprehensions are almost identical to list comprehensions: the only difference is the
use of { and } to enclose the expression rather than [ and ]. The elements generated by a
set comprehension must be fixed, i.e. free of decision variables. Similarly the generators
and optional <bool-exp> for set comprehensions must be fixed.

Second, MiniZinc provides a number of built-in functions that take a one-dimensional array and
aggregate the elements. Probably the most useful of these is forall. This takes an array of
Boolean expressions (that is, constraints) and returns a single Boolean expression which is the
logical conjunction of the Boolean expressions in the array.
For example, consider the expression

forall( [a[i] != a[j] | i,j in 1..3 where i < j])

where a is an arithmetic array with index set 1..3. This constrains the el-
ements in a to be pairwise different. The list comprehension evaluates to
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[ a[1] != a[2], a[1] != a[3], a[2] != a[3] ] and so the forall function returns the
logical conjunction a[1] != a[2] /\ a[1] != a[3] /\ a[2] != a[3].

Aggregation functions
The aggregation functions for arithmetic arrays are: sum which adds the elements, product
which multiplies them together, and min and max which respectively return the least and
greatest element in the array. When applied to an empty array, min and max give a run-time
error, sum returns 0 and product returns 1.
MiniZinc provides four aggregation functions for arrays containing Boolean expressions.
As we have seen, the first of these, forall, returns a single constraint which is the logical
conjunction of the constraints. The second function, exists, returns the logical disjunction
of the constraints. Thus, forall enforces that all constraints in the array hold, while
exists ensures that at least one of the constraints holds. The third function, xorall,
ensures that an odd number of constraints hold. The fourth function, iffall, ensures
that an even number of constraints holds.

The third, and final, piece in the puzzle is that MiniZinc allows a special syntax for aggregation
functions when used with an array comprehension. Instead of writing

forall( [a[i] != a[j] | i,j in 1..3 where i < j])

the modeller can instead write the more mathematical looking

forall (i,j in 1..3 where i < j) (a[i] != a[j])

The two expressions are completely equivalent: the modeller is free to use whichever they feel
looks most natural.

Generator call expressions
A generator call expression has form

<agg-func> ( <generator-exp> ) ( <exp> )

The round brackets around the generator expression <generator-exp> and the constructor
expression <exp> are not optional: they must be there. This is equivalent to writing

<agg-func> ( [ <exp> | <generator-exp> ] )

The aggregation function <agg-func> is any MiniZinc function expecting a single array as
argument.

We are now in a position to understand the rest of the simple production planning model shown
in Listing 2.2.2. For the moment ignore the item defining mproducts. The item afterwards:

array[Products] of var 0..mproducts: produce;

defines a one-dimensional array produce of decision variables. The value of produce[p] will be
set to the amount of product p in the optimal solution. The next item

2.2.1. Arrays and Sets 43



MiniZinc Handbook, Release 2.4.3

array[Resources] of var 0..max(capacity): used;

defines a set of auxiliary variables that record how much of each resource is used. The next two
constraints

constraint forall (r in Resources)
(used[r] = sum (p in Products) (consumption[p, r] * produce[p]));

constraint forall (r in Resources)(used[r] <= capacity[r] );

compute in used[r] the total consumption of the resource r and ensure it is less than the avail-
able amount. Finally, the item

solve maximize sum (p in Products) (profit[p]*produce[p]);

indicates that this is a maximisation problem and that the objective to be maximised is the total
profit.
We now return to the definition of mproducts. For each product p the expression

(min (r in Resources where consumption[p,r] > 0)
(capacity[r] div consumption[p,r]))

determines the maximum amount of p that can be produced taking into account the amount of
each resource r and how much of r is required to produce the product. Notice the use of the
filter where consumption[p,r] > 0 to ensure that only resources required to make the product
are considered so as to avoid a division by zero error. Thus, the complete expression

int: mproducts = max (p in Products)
(min (r in Resources where consumption[p,r] > 0)

(capacity[r] div consumption[p,r]));

computes the maximum amount of any product that can be produced, and so this can be used
as an upper bound on the domain of the decision variables in produce.
Finally notice the output item is more complex, and uses list comprehensions to create an un-
derstandable output. Running

$ minizinc --solver gecode prod-planning.mzn prod-planning-data.dzn

results in the output

BananaCake = 2;
ChocolateCake = 2;
Flour = 900;
Banana = 4;
Sugar = 450;
Butter = 500;
Cocoa = 150;
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----------
==========

2.2.2 Global Constraints

MiniZinc includes a library of global constraints which can also be used to define models. An ex-
ample is the alldifferent constraint which requires all the variables appearing in its argument
to be pairwise different.

Listing 2.2.4: Model for the cryptarithmetic problem SEND+MORE=MONEY
(send-more-money.mzn)

include "alldifferent.mzn";

var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: R;
var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint alldifferent([S,E,N,D,M,O,R,Y]);

solve satisfy;

output [" \(S)\(E)\(N)\(D)\n",
"+ \(M)\(O)\(R)\(E)\n",
"= \(M)\(O)\(N)\(E)\(Y)\n"];

The SEND+MORE=MONEY problem requires assigning a different digit to each letter so that
the arithmetic constraint holds. The model shown in Listing 2.2.4 uses the constraint expression
alldifferent([S,E,N,D,M,O,R,Y]) to ensure that each letter takes a different digit value. The
global constraint is made available in the model using include item

include "alldifferent.mzn";

which makes the global constraint alldifferent usable by the model. One could replace this
line by

include "globals.mzn";
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which includes all globals.
A list of all the global constraints defined for MiniZinc is included in the release documentation.
See Global Constraints (page 61) for a description of some important global constraints.

2.2.3 Condi onal Expressions

MiniZinc provides a conditional if-then-else-endif expression. An example of its use is

int: r = if y != 0 then x div y else 0 endif;

which sets r to x divided by y unless y is zero in which case it sets it to zero.
Conditional expressions
The form of a conditional expression is

if <bool-exp> then <exp-1> else <exp-2> endif

It is a true expression rather than a control flow statement and so can be used in other
expressions. It evaluates to <exp-1> if the Boolean expression <bool-exp> is true and
<exp-2> otherwise. The type of the conditional expression is that of <exp-1> and <exp-2>
which must have the same type.
If the <bool-exp> contains decision variables, then the type-inst of the expression is
var <T> where <T> is the type of <exp-1> and <exp-2> even if both expressions are fixed.

Listing 2.2.5: Model for generalized Sudoku problem (sudoku.mzn)

include "alldifferent.mzn";

int: S;
int: N = S * S;
int: digs = ceil(log(10.0,int2float(N))); % digits for output

set of int: PuzzleRange = 1..N;
set of int: SubSquareRange = 1..S;

array[1..N,1..N] of 0..N: start; %% initial board 0 = empty
array[1..N,1..N] of var PuzzleRange: puzzle;

% fill initial board
constraint forall(i,j in PuzzleRange)(

if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif );

% All different in rows
constraint forall (i in PuzzleRange) (

alldifferent( [ puzzle[i,j] | j in PuzzleRange ]) );

% All different in columns.
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constraint forall (j in PuzzleRange) (
alldifferent( [ puzzle[i,j] | i in PuzzleRange ]) );

% All different in sub-squares:
constraint

forall (a, o in SubSquareRange)(
alldifferent( [ puzzle[(a-1) *S + a1, (o-1)*S + o1] |

a1, o1 in SubSquareRange ] ) );

solve satisfy;

output [ show_int(digs,puzzle[i,j]) ++ " " ++
if j mod S == 0 then " " else "" endif ++
if j == N then

if i != N then
if i mod S == 0 then "\n\n" else "\n" endif

else "" endif else "" endif
| i,j in PuzzleRange ] ++ ["\n"];

Listing 2.2.6: Example data file for generalised Sudoku problem (sudoku.dzn)

S=3;
start=[|
0, 0, 0, 0, 0, 0, 0, 0, 0|
0, 6, 8, 4, 0, 1, 0, 7, 0|
0, 0, 0, 0, 8, 5, 0, 3, 0|
0, 2, 6, 8, 0, 9, 0, 4, 0|
0, 0, 7, 0, 0, 0, 9, 0, 0|
0, 5, 0, 1, 0, 6, 3, 2, 0|
0, 4, 0, 6, 1, 0, 0, 0, 0|
0, 3, 0, 2, 0, 7, 6, 9, 0|
0, 0, 0, 0, 0, 0, 0, 0, 0|];

        
 6 8 4  1  7  
   8 5  3  
 2 6 8  9  4  
  7    9   
 5 1  6 3 2  
 4 6 1     
 3 2  7 6 9  
        

Fig. 2.2.1: The problem represented by data file sudoku.dzn
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Conditional expressions are very useful in building complex models, or complex output. Con-
sider the model of Sudoku problems shown in Listing 2.2.5. The initial board positions are
given by the start parameter where 0 represents an empty board position. This is converted to
constraints on the decision variables puzzle using the conditional expression

constraint forall(i,j in PuzzleRange)(
if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif );

Conditional expressions are also very useful for defining complex output. In the Sudoku model
of Listing 2.2.5 the expression

if j mod S == 0 then " " else "" endif

inserts an extra space between groups of size S. The output expression also uses conditional
expressions to add blank lines after each S lines. The resulting output is highly readable.
The remaining constraints ensure that the numbers appearing in each row and column and S×S
subsquare are all different.
One can use MiniZinc to search for all solutions to a satisfaction problem (solve satisfy). In
the MiniZinc IDE, this can be achieved by setting the number of solutions to zero in the “User-
defined behavior” part of the solver configuration pane (see Section 3.2.2.2). On the command
line, one can use the flag -a or --all-solutions. Running

$ minizinc --solver gecode --all-solutions sudoku.mzn sudoku.dzn

results in

5 9 3 7 6 2 8 1 4
2 6 8 4 3 1 5 7 9
7 1 4 9 8 5 2 3 6

3 2 6 8 5 9 1 4 7
1 8 7 3 2 4 9 6 5
4 5 9 1 7 6 3 2 8

9 4 2 6 1 8 7 5 3
8 3 5 2 4 7 6 9 1
6 7 1 5 9 3 4 8 2
----------
==========

The line ========== is output when the system has output all possible solutions, here verifying
that there is exactly one.

2.2.4 Enumerated Types

Enumerated types allows us to build models that depend on a set of objects which are part of the
data, or are named in the model, and hence make models easier to understand and debug. We
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have introduce enumerated types or enums briefly, in this subsection we will explore how we
can use them more fully, and show some of the built in functions for dealing with enumerated
types.
Let’s revisit the problem of coloring the graph of Australia from Basic Modelling in MiniZinc
(page 21).

Listing 2.2.7: Model for coloring Australia using enumerated types (aust-enum.mzn).

enum Color;
var Color: wa;
var Color: nt;
var Color: sa;
var Color: q;
var Color: nsw;
var Color: v;
var Color: t;
constraint wa != nt /\ wa != sa /\ nt != sa /\ nt != q /\ sa != q;
constraint sa != nsw /\ sa != v /\ q != nsw /\ nsw != v;
solve satisfy;

The model shown in Listing 2.2.7 declares an enumerated type Color which must be defined in
the data file. Each of the state variables is declared to take a value from this enumerated type.
Running this program using

$ minizinc --solver gecode -D"Color = { red, yellow, blue };" aust-enum.mzn

might result in output

wa = blue;
nt = yellow;
sa = red;
q = blue;
nsw = yellow;
v = blue;
t = red;
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Enumerated Type Variable Declarations
An enumerated type parameter is declared as either:

<enum-name> : <var-name>
<l>..<u> : <var-name>

where <enum-name> is the name of an enumerated type, and <l> and <u> are fixed enu-
merated type expressions of the same enumerated type.
An enumerated type decision variable is declared as either:

var <enum-name> : <var-name>
var <l>..<u> : <var-name>

where <enum-name> is the name of an enumerated type, and <l> and <u> are fixed enu-
merated type expressions of the same enumerated type.

A key behaviour of enumerated types is that they are automatically coerced to integers when they
are used in a position expecting an integer. For example, this allows us to use global constraints
defined on integers, such as

global_cardinality_low_up([wa,nt,sa,q,nsw,v,t],
[red,yellow,blue],[2,2,2],[2,2,3]);

This requires at least two states to be colored each color and three to be colored blue.
Enumerated Type Operations
There are a number of built in operations on enumerated types:
• enum_next(X,x): returns the next value in after x in the enumerated type X. This is
a partial function, if x is the last value in the enumerated type X then the function
returns ⊥ causing the Boolean expression containing the expression to evaluate to
false.

• enum_prev(X,x): returns the previous value before x in the enumerated type X. Sim-
ilarly enum_prev is a partial function.

• to_enum(X,i): maps an integer expression i to an enumerated type value in type X
or evaluates to⊥ if i is less than or equal to 0 or greater than the number of elements
in X.

Note also that a number of standard functions are applicable to enumerated types:
• card(X): returns the cardinality of an enumerated type X.
• min(X): returns the minimum element of of an enumerated type X.
• max(X): returns the maximum element of of an enumerated type X.

2.2.5 Complex Constraints

Constraints are the core of the MiniZinc model. We have seen simple relational expressions
but constraints can be considerably more powerful than this. A constraint is allowed to be any
Boolean expression. Imagine a scheduling problem in which we have two tasks that cannot over-
lap in time. If s1 and s2 are the corresponding start times and d1 and d2 are the corresponding
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durations we can express this as:

constraint s1 + d1 <= s2 \/ s2 + d2 <= s1;

which ensures that the tasks do not overlap.
Booleans
Boolean expressions inMiniZinc can bewritten using a standardmathematical syntax. The
Boolean literals are true and false and the Boolean operators are conjunction, i.e. and
(/\), disjunction, i.e. or (\/), only-if (<-), implies (->), if-and-only-if (<->) and negation
(not). Booleans can be automatically coerced to integers, but tomake this coercion explicit
the built-in function bool2int can be used: it returns 1 if its argument is true and 0
otherwise.

Listing 2.2.8: Model for job-shop scheduling problems (jobshop.mzn).

enum JOB;
enum TASK;
TASK: last = max(TASK);
array [JOB,TASK] of int: d; % task durations
int: total = sum(i in JOB, j in TASK)(d[i,j]);% total duration
int: digs = ceil(log(10.0,int2float(total))); % digits for output
array [JOB,TASK] of var 0..total: s; % start times
var 0..total: end; % total end time

constraint %% ensure the tasks occur in sequence
forall(i in JOB) (

forall(j in TASK where j < last)
(s[i,j] + d[i,j] <= s[i,enum_next(TASK,j)]) /\

s[i,last] + d[i,last] <= end
);

constraint %% ensure no overlap of tasks
forall(j in TASK) (

forall(i,k in JOB where i < k) (
s[i,j] + d[i,j] <= s[k,j] \/
s[k,j] + d[k,j] <= s[i,j]

)
);

solve minimize end;

output ["end = \(end)\n"] ++
[ show_int(digs,s[i,j]) ++ " " ++

if j == last then "\n" else "" endif |
i in JOB, j in TASK ];
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Listing 2.2.9: Data for job-shop scheduling problems (jdata.dzn).

JOB = anon_enum(5);
TASK = anon_enum(5);
d = [| 1, 4, 5, 3, 6

| 3, 2, 7, 1, 2
| 4, 4, 4, 4, 4
| 1, 1, 1, 6, 8
| 7, 3, 2, 2, 1 |];

The job shop scheduling model given in Listing 2.2.8 gives a realistic example of the use of this
disjunctive modelling capability. In job shop scheduling we have a set of jobs, each consisting
of a sequence of tasks on separate machines: so task [i,j] is the task in the ith job performed
on the jth machine. Each sequence of tasks must be completed in order, and no two tasks on
the same machine can overlap in time. Even for small instances of this problem it can be quite
challenging to find optimal solutions.
The command

$ minizinc --solver gecode --all-solutions jobshop.mzn jdata.dzn

solves a small job shop scheduling problem, and illustrates the behaviour of --all-solutions
for optimisation problems (note that when running this in the MiniZinc IDE, --all-solutions
is the default behaviour for optimisation problems). Here the solver outputs increasingly bet-
ter solutions as it finds them, rather than all possible optimal solutions. The output from this
command is:

end = 39
5 9 13 22 30
6 13 18 25 36
0 4 8 12 16
4 8 12 16 22
9 16 25 27 38
----------
end = 37
4 8 12 17 20
5 13 18 26 34
0 4 8 12 16
8 12 17 20 26
9 16 25 27 36
----------
end = 34
0 1 5 10 13
6 10 15 23 31
2 6 11 19 27
1 5 10 13 19
9 16 22 24 33
----------
end = 30
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5 9 13 18 21
6 13 18 25 27
1 5 9 13 17
0 1 2 3 9
9 16 25 27 29
----------
==========

indicating an optimal solution with end time 30 is finally found, and proved optimal. We can
generate all optimal solutions by adding a constraint that end = 30 and changing the solve item
to solve satisfy and then executing

$ minizinc --solver gecode --all-solutions jobshop.mzn jobshop.dzn

For this problem there are 3,444,375 optimal solutions. In the MiniZinc IDE, you would have
to select “User-defined behavior” in the configuration pane and set the number of solutions to
zero in order to display all solutions of this satisfaction problem.

Listing 2.2.10: Model for the stable marriage problem (stable-marriage.mzn).

int: n;

enum Men = anon_enum(n);
enum Women = anon_enum(n);

array[Women, Men] of int: rankWomen;
array[Men, Women] of int: rankMen;

array[Men] of var Women: wife;
array[Women] of var Men: husband;

% assignment
constraint forall (m in Men) (husband[wife[m]]=m);
constraint forall (w in Women) (wife[husband[w]]=w);
% ranking
constraint forall (m in Men, o in Women) (

rankMen[m,o] < rankMen[m,wife[m]] ->
rankWomen[o,husband[o]] < rankWomen[o,m] );

constraint forall (w in Women, o in Men) (
rankWomen[w,o] < rankWomen[w,husband[w]] ->

rankMen[o,wife[o]] < rankMen[o,w] );
solve satisfy;

output ["wives= \(wife)\nhusbands= \(husband)\n"];
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Listing 2.2.11: Example data for the stable marriage problem (stable-marriage.dzn).

n = 5;
rankWomen =
[| 1, 2, 4, 3, 5,
| 3, 5, 1, 2, 4,
| 5, 4, 2, 1, 3,
| 1, 3, 5, 4, 2,
| 4, 2, 3, 5, 1 |];

rankMen =
[| 5, 1, 2, 4, 3,
| 4, 1, 3, 2, 5,
| 5, 3, 2, 4, 1,
| 1, 5, 4, 3, 2,
| 4, 3, 2, 1, 5 |];

Another powerful modelling feature in MiniZinc is that decision variables can be used for ar-
ray access. As an example, consider the (old-fashioned) stable marriage problem. We have n
(straight) women and n (straight) men. Each man has a ranked list of women and vice versa.
We want to find a husband/wife for each women/man so that all marriages are stable in the
sense that:
• whenever m prefers another women o to his wife w, o prefers her husband to m, and
• whenever w prefers another man o to her husband m, o prefers his wife to w.

This can be elegantly modelled in MiniZinc. The model and sample data is shown in Listing
2.2.10 and Listing 2.2.11.
The first three items in the model declare the number of men/women and the set of men and
women. Here we introduce the use of anonymous enumerated types. Both Men and Women are sets
of size n, but we do not wish to mix them up so we use an anonymous enumerated type. This
allows MiniZinc to detect modelling errors where we use Men for Women or vice versa.
The matrices rankWomen and rankMen, respectively, give the women’s ranking of the men and the
men’s ranking of the women. Thus, the entry rankWomen[w,m] gives the ranking by woman w of
man m. The lower the number in the ranking, the more the man or women is preferred.
There are two arrays of decision variables: wife and husband. These, respectively, contain the
wife of each man and the husband of each women.
The first two constraints

constraint forall (m in Men) (husband[wife[m]]=m);
constraint forall (w in Women) (wife[husband[w]]=w);

ensure that the assignment of husbands and wives is consistent: w is the wife of m implies m is
the husband of w and vice versa. Notice how in husband[wife[m]] the index expression wife[m]
is a decision variable, not a parameter.
The next two constraints are a direct encoding of the stability condition:
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constraint forall (m in Men, o in Women) (
rankMen[m,o] < rankMen[m,wife[m]] ->

rankWomen[o,husband[o]] < rankWomen[o,m] );

constraint forall (w in Women, o in Men) (
rankWomen[w,o] < rankWomen[w,husband[w]] ->

rankMen[o,wife[o]] < rankMen[o,w] );

This natural modelling of the stable marriage problem is made possible by the ability to use
decision variables as array indices and to construct constraints using the standard Boolean con-
nectives. The alert reader may be wondering at this stage, what happens if the array index
variable takes a value that is outside the index set of the array. MiniZinc treats this as failure:
an array access a[e] implicitly adds the constraint e in index_set(a) to the closest surrounding
Boolean context where index_set(a) gives the index set of a.

Anonymous Enumerated Types
An anonymous enumerated type is of the form anon_enum(<n>) where <n> is a fixed integer
expression defining the size of the enumerated type.
An anonymous enumerated type is just like any other enumerated type except that we
have no names for its elements. When printed out, they are given unique names based on
the enumerated type name.

Thus for example, consider the variable declarations

array[1..2] of int: a= [2,3];
var 0..2: x;
var 2..3: y;

The constraint a[x] = y will succeed with x = 1 ∧ y = 2 and x = 2 ∧ y = 3. And the constraint
not a[x] = y will succeed with x = 0 ∧ y = 2, x = 0 ∧ y = 3, x = 1 ∧ y = 3 and x = 2 ∧ y = 2.
In the case of invalid array accesses by a parameter, the formal semantics of MiniZinc treats this
as failure so as to ensure that the treatment of parameters and decision variables is consistent,
but a warning is issued since it is almost always an error.

Listing 2.2.12: Model solving the magic series problem (magic-series.mzn).

int: n;
array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (
s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));

solve satisfy;

output [ "s = \(s);\n" ] ;

The coercion function bool2int can be called with any Boolean expression. This allows the
MiniZinc modeller to use so called higher order constraints. As a simple example consider the
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magic series problem: find a list of numbers s = [s0, . . . , sn−1] such that si is the number of
occurrences of i in s. An example is s = [1, 2, 1, 0].
A MiniZinc model for this problem is shown in Listing 2.2.12. The use of bool2int allows us to
sum up the number of times the constraint s[j]=i is satisfied. Executing the command

$ minizinc --solver gecode --all-solutions magic-series.mzn -D "n=4;"

leads to the output

s = [1, 2, 1, 0];
----------
s = [2, 0, 2, 0];
----------
==========

indicating exactly two solutions to the problem (the effect of --all-solutions can be achieved
in the MiniZinc IDE using the “User-defined behavior” option in the solver configuration pane).
Note that MiniZinc will automatically coerce Booleans to integers and integers to floats when
required. We could replace the the constraint item in Listing 2.2.12 with

constraint forall(i in 0..n-1) (
s[i] = (sum(j in 0..n-1)(s[j]=i)));

and get identical results, since the Boolean expression s[j] = i will be automatically coerced
to an integer, effectively by the MiniZinc system automatically adding the missing bool2int.

Coercion
In MiniZinc one can coerce a Boolean value to an integer value using the bool2int func-
tion. Similarly one can coerce an integer value to a float value using int2float. The
instantiation of the coerced value is the same as the argument, e.g. par bool is coerced
to par int, while var bool is coerced to var int.
MiniZinc automatically coerces Boolean expressions to integer expressions and integer
expressions to float expressions, by inserting bool2int and int2float in the model ap-
propriately. Note that it will also coerce Booleans to floats using two steps.

2.2.6 Set Constraints

Another powerful modelling feature of MiniZinc is that it allows sets containing integers to
be decision variables: this means that when the model is evaluated the solver will find which
elements are in the set.
As a simple example, consider the 0/1 knapsack problem. This is a restricted form of the knapsack
problem in which we can either choose to place the item in the knapsack or not. Each item has
a weight and a profit and we want to find which choice of items leads to the maximum profit
subject to the knapsack not being too full.
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It is natural to model this in MiniZinc with a single decision variable:
var set of ITEM: knapsack where ITEM is the set of possible items. If the arrays weight[i]
and profit[i] respectively give the weight and profit of item i, and the maximum weight the
knapsack can carry is given by capacity then a natural model is given in Listing 2.2.13.

Listing 2.2.13: Model for the 0/1 knapsack problem (knapsack.mzn).

enum ITEM;
int: capacity;

array[ITEM] of int: profits;
array[ITEM] of int: weights;

var set of ITEM: knapsack;

constraint sum (i in knapsack) (weights[i]) <= capacity;

solve maximize sum (i in knapsack) (profits[i]) ;

output ["knapsack = \(knapsack)\n"];

Notice that the var keyword comes before the set declaration indicating that the set itself is the
decision variable. This contrasts with an array in which the var keyword qualifies the elements
in the array rather than the array itself since the basic structure of the array is fixed, i.e. its index
set.

Listing 2.2.14: Model for the social golfers problems (social-golfers.mzn).

include "partition_set.mzn";
int: weeks; set of int: WEEK = 1..weeks;
int: groups; set of int: GROUP = 1..groups;
int: size; set of int: SIZE = 1..size;
int: ngolfers = groups*size;
set of int: GOLFER = 1..ngolfers;

array[WEEK,GROUP] of var set of GOLFER: Sched;

% constraints
constraint

forall (i in WEEK, j in GROUP) (
card(Sched[i,j]) = size

/\ forall (k in j+1..groups) (
Sched[i,j] intersect Sched[i,k] = {}

)
) /\
forall (i in WEEK) (

partition_set([Sched[i,j] | j in GROUP], GOLFER)
) /\
forall (i in 1..weeks-1, j in i+1..weeks) (

forall (x,y in GROUP) (
card(Sched[i,x] intersect Sched[j,y]) <= 1
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)
);

% symmetry
constraint

% Fix the first week %
forall (i in GROUP, j in SIZE) (

((i-1)*size + j) in Sched[1,i]
) /\
% Fix first group of second week %
forall (i in SIZE) (

((i-1)*size + 1) in Sched[2,1]
) /\
% Fix first 'size' players
forall (w in 2..weeks, p in SIZE) (

p in Sched[w,p]
);

solve satisfy;

output [ show(Sched[i,j]) ++ " " ++
if j == groups then "\n" else "" endif |
i in WEEK, j in GROUP ];

As a more complex example of set constraint consider the social golfers problem shown in Listing
2.2.14. The aim is to schedule a golf tournament over weeks using groups × size golfers. Each
week we have to schedule groups different groups each of size size. No two pairs of golfers
should ever play in two groups.
The variables in the model are sets of golfers Sched[i,j] for the ith week and j^{th} group.
The constraints shown in lines 11-32 first enforces an ordering on the first set in each week to
remove symmetry in swapping weeks. Next they enforce an ordering on the sets in each week,
and make each set have a cardinality of size. They then ensure that each week is a partition of
the set of golfers using the global constraint partition_set. Finally the last constraint ensures
that no two players play in two groups together (since the cardinality of the intersection of any
two groups is at most 1).
There are also symmetry breaking initialisation constraints shown in lines 34-46: the first week
is fixed to have all players in order; the second week is made up of the first players of each of
the first groups in the first week; finally the model forces the first size players to appear in their
corresponding group number for the remaining weeks.
Executing the command

$ minizinc --solver gecode social-golfers.mzn social-golfers.dzn

where the data file defines a problem with 4 weeks, with 4 groups of size 3 leads to the output

1..3 4..6 7..9 10..12
{1,4,7} {2,9,12} {3,5,10} {6,8,11}
{1,6,9} {2,8,10} {3,4,11} {5,7,12}
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{1,5,8} {2,7,11} {3,6,12} {4,9,10}
----------

Notice hows sets which are ranges may be output in range format.

2.2.7 Pu ng it all together

We finish this section with a complex example illustrating most of the features introduced in
this chapter including enumerated types, complex constraints, global constraints, and complex
output.

Listing 2.2.15: Planning wedding seating using enumerated types (wedding.mzn).

enum Guests = { bride, groom, bestman, bridesmaid, bob, carol,
ted, alice, ron, rona, ed, clara};

set of int: Seats = 1..12;
set of int: Hatreds = 1..5;
array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];
array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];
set of Guests: Males = {groom, bestman, bob, ted, ron,ed};
set of Guests: Females = {bride,bridesmaid,carol,alice,rona,clara};

array[Guests] of var Seats: pos; % seat of guest
array[Hatreds] of var Seats: p1; % seat of guest 1 in hatred
array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred
array[Hatreds] of var 0..1: sameside; % seats of hatred on same side
array[Hatreds] of var Seats: cost; % penalty of hatred

include "alldifferent.mzn";
constraint alldifferent(pos);
constraint forall(g in Males)( pos[g] mod 2 == 1 );
constraint forall(g in Females)( pos[g] mod 2 == 0 );
constraint not (pos[ed] in {1,6,7,12});
constraint abs(pos[bride] - pos[groom]) <= 1 /\

(pos[bride] <= 6 <-> pos[groom] <= 6);
constraint forall(h in Hatreds)(

p1[h] = pos[h1[h]] /\
p2[h] = pos[h2[h]] /\
sameside[h] = bool2int(p1[h] <= 6 <-> p2[h] <= 6) /\
cost[h] = sameside[h] * abs(p1[h] - p2[h]) +

(1 - sameside[h]) * (abs(13 - p1[h] - p2[h]) + 1) );

solve maximize sum(h in Hatreds)(cost[h]);

output [ show(g)++" " | s in Seats,g in Guests where fix(pos[g]) == s]
++ ["\n"];

The model of Listing 2.2.15 arranges seats at the wedding table. The table has 12 numbered
seats in order around the table, 6 on each side. Males must sit in odd numbered seats, and
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females in even. Ed cannot sit at the end of the table because of a phobia, and the bride and
groom must sit next to each other. The aim is to maximize the distance between known hatreds.
The distance between seats is the difference in seat number if on the same side, otherwise its
the distance to the opposite seat + 1.
Note that in the output statement we consider each seat s and search for a guest gwho is assigned
to that seat. We make use of the built in function fix which checks if a decision variable is fixed
and returns its fixed value, and otherwise aborts. This is always safe to use in output statements,
since by the time the output statement is run all decision variables should be fixed.
Running

$ minizinc --solver gecode wedding.mzn

Results in the output

ted bride groom rona ed carol ron alice bob bridesmaid bestman clara
----------
==========

The resulting table placement is illustrated in Fig. 2.2.2 where the lines indicate hatreds. The
total distance is 22.

The wedding table
1 2 3 4 5 6

789101112

ted bride groom rona bob carol

ronaliceedbridesmaidbestmanclara

Fig. 2.2.2: Seating arrangement at the wedding table

Fix
In output items the built-in function fix checks that the value of a decision variable is
fixed and coerces the instantiation from decision variable to parameter.
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Predicates and Func ons

Predicates in MiniZinc allow us to capture complex constraints of our model in a succinct way.
Predicates in MiniZinc are used to model with both predefined global constraints, and to capture
and define new complex constraints by the modeller. Functions are used in MiniZinc to capture
common structures of models. Indeed a predicate is just a function with output type var bool.

2.3.1 Global Constraints

There are many global constraints defined in MiniZinc for use in modelling. The definitive list is
to be found in the documentation for the release, as the list is slowly growing. Below we discuss
some of the most important global constraints.

2.3.1.1 Alldifferent

The alldifferent constraint takes an array of variables and constrains them to take different
values. A use of the alldifferent has the form

alldifferent(array[int] of var int: x)

The argument is an array of integer variables.
The alldifferent constraint is one of the most studied and used global constraints in constraint
programming. It is used to define assignment subproblems, and efficient global propagators for
alldifferent exist. The models send-more-money.mzn (Listing 2.2.4) and sudoku.mzn (Listing
2.2.5) are examples of models using alldifferent.

2.3.1.2 Cumula ve

The cumulative constraint is used for describing cumulative resource usage.
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cumulative(array[int] of var int: s, array[int] of var int: d,
array[int] of var int: r, var int: b)

It requires that a set of tasks given by start times s, durations d, and resource requirements r,
never require more than a global resource bound b at any one time.

Listing 2.3.1: Model for moving furniture using cumulative (moving.mzn).

include "cumulative.mzn";

enum OBJECTS;
array[OBJECTS] of int: duration; % duration to move
array[OBJECTS] of int: handlers; % number of handlers required
array[OBJECTS] of int: trolleys; % number of trolleys required

int: available_handlers;
int: available_trolleys;
int: available_time;

array[OBJECTS] of var 0..available_time: start;
var 0..available_time: end;

constraint cumulative(start, duration, handlers, available_handlers);
constraint cumulative(start, duration, trolleys, available_trolleys);

constraint forall(o in OBJECTS)(start[o] +duration[o] <= end);

solve minimize end;

output [ "start = \(start)\nend = \(end)\n"];

Listing 2.3.2: Data for moving furniture using cumulative (moving.dzn).

OBJECTS = { piano, fridge, doublebed, singlebed,
wardrobe, chair1, chair2, table };

duration = [60, 45, 30, 30, 20, 15, 15, 15];
handlers = [3, 2, 2, 1, 2, 1, 1, 2];
trolleys = [2, 1, 2, 2, 2, 0, 0, 1];

available_time = 180;
available_handlers = 4;
available_trolleys = 3;

The model in Listing 2.3.1 finds a schedule for moving furniture so that each piece of furniture
has enough handlers (people) and enough trolleys available during the move. The available
time, handlers and trolleys are given, and the data gives for each object the move duration, the
number of handlers and the number of trolleys required. Using the data shown in ex-movingd,
the command
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$ minizinc moving.mzn moving.dzn

may result in the output

start = [0, 60, 60, 90, 120, 0, 15, 105]
end = 140
----------
==========

Fig. 2.3.1 and Fig. 2.3.2 show the requirements for handlers and trolleys at each time in the
move for this solution.

0 60 12030 90

piano
single bed

chair chair

0
1
2
3
4

fridge

double bed

ward
robetable

150

Fig. 2.3.1: Histogram of usage of handlers in the move.
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piano
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0
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3
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double bed
ward
robetable

150

Fig. 2.3.2: Histogram of usage of trolleys in the move.

2.3.1.3 Table

The table constraint enforces that a tuple of variables takes a value from a set of tuples. Since
there are no tuples in MiniZinc this is encoded using arrays. The usage of table has one of the
forms

table(array[int] of var bool: x, array[int, int] of bool: t)
table(array[int] of var int: x, array[int, int] of int: t)

depending on whether the tuples are Boolean or integer. The constraint enforces x ∈ t where
we consider x and each row in t to be a tuple, and t to be a set of tuples.
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Listing 2.3.3: Model for meal planning using table constraint (meal.mzn).

% Planning a balanced meal
include "table.mzn";
int: min_energy;
int: min_protein;
int: max_salt;
int: max_fat;
set of FOOD: desserts;
set of FOOD: mains;
set of FOOD: sides;
enum FEATURE = { name, energy, protein, salt, fat, cost};
enum FOOD;
array[FOOD,FEATURE] of int: dd; % food database

array[FEATURE] of var int: main;
array[FEATURE] of var int: side;
array[FEATURE] of var int: dessert;
var int: budget;

constraint main[name] in mains;
constraint side[name] in sides;
constraint dessert[name] in desserts;
constraint table(main, dd);
constraint table(side, dd);
constraint table(dessert, dd);
constraint main[energy] + side[energy] + dessert[energy] >=min_energy;
constraint main[protein]+side[protein]+dessert[protein] >=min_protein;
constraint main[salt] + side[salt] + dessert[salt] <= max_salt;
constraint main[fat] + side[fat] + dessert[fat] <= max_fat;
constraint budget = main[cost] + side[cost] + dessert[cost];

solve minimize budget;

output ["main = ",show(to_enum(FOOD,main[name])),",
", side = ",show(to_enum(FOOD,side[name])),
", dessert = ",show(to_enum(FOOD,dessert[name]))],
", cost = ",show(budget), "\n"];

Listing 2.3.4: Data for meal planning defining the table used (meal.dzn).

FOODS = { icecream, banana, chocolatecake, lasagna,
steak, rice, chips, brocolli, beans} ;

dd = [| icecream, 1200, 50, 10, 120, 400 % icecream
| banana, 800, 120, 5, 20, 120 % banana
| chocolatecake, 2500, 400, 20, 100, 600 % chocolate cake
| lasagna, 3000, 200, 100, 250, 450 % lasagna
| steak, 1800, 800, 50, 100, 1200 % steak
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| rice, 1200, 50, 5, 20, 100 % rice
| chips, 2000, 50, 200, 200, 250 % chips
| brocolli, 700, 100, 10, 10, 125 % brocolli
| beans, 1900, 250, 60, 90, 150 |]; % beans

min_energy = 3300;
min_protein = 500;
max_salt = 180;
max_fat = 320;
desserts = { icecream, banana, chocolotecake };
mains = { lasagna, steak, rice };
sides = { chips, brocolli, beans };

The model in Listing 2.3.3 searches for balanced meals. Each meal item has a name (encoded
as an integer), a kilojoule count, protein in grams, salt in milligrams, and fat in grams, as well
as cost in cents. The relationship between these items is encoded using a table constraint. The
model searches for a minimal cost meal which has a minimum kilojoule count min_energy, a
minimum amount of protein min_protein, maximum amount of salt max_salt and fat max_fat.

2.3.1.4 Regular

The regular constraint is used to enforce that a sequence of variables takes a value defined by
a finite automaton. The usage of regular has the form

regular(array[int] of var int: x, int: Q, int: S,
array[int,int] of int: d, int: q0, set of int: F)

It constrains that the sequence of values in array x (which must all be in the range 1..S)
is accepted by the DFA of Q states with input 1..S and transition function d (which maps
<1..Q, 1..S> to 0..Q) and initial state q0 (which must be in 1..Q) and accepting states F (which
all must be in 1..Q). State 0 is reserved to be an always failing state.
Consider a nurse rostering problem. Each nurse is scheduled for each day as either: (d) on day
shift, (n) on night shift, or (o) off. In each four day period a nurse must have at least one day
off, and no nurse can be scheduled for 3 night shifts in a row. This can be encoded using the
incomplete DFA shown in Fig. 2.3.3. We can encode this DFA as having start state 1, final states
1..6, and transition function

d n o
1 2 3 1
2 4 4 1
3 4 5 1
4 6 6 1
5 6 0 1
6 0 0 1

Note that state 0 in the table indicates an error state. The model shown in Listing 2.3.5 finds
a schedule for num_nurses nurses over num_days days, where we require req_day nurses on day
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Fig. 2.3.3: A DFA determining correct rosters.
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shift each day, and req_night nurses on night shift, and that each nurse takes at least min_night
night shifts.

Listing 2.3.5: Model for nurse rostering using regular constraint (nurse.mzn)

% Simple nurse rostering
include "regular.mzn";
enum NURSE;
enum DAY;
int: req_day;
int: req_night;
int: min_night;

enum SHIFT = { d, n, o };
int: S = card(SHIFT);

int: Q = 6; int: q0 = 1; set of int: STATE = 1..Q;
array[STATE,SHIFT] of int: t =

[| 2, 3, 1 % state 1
| 4, 4, 1 % state 2
| 4, 5, 1 % state 3
| 6, 6, 1 % state 4
| 6, 0, 1 % state 5
| 0, 0, 1|]; % state 6

array[NURSE,DAY] of var SHIFT: roster;

constraint forall(j in DAY)(
sum(i in NURSE)(roster[i,j] == d) == req_day /\
sum(i in NURSE)(roster[i,j] == n) == req_night

);
constraint forall(i in NURSE)(

regular([roster[i,j] | j in DAY], Q, S, t, q0, STATE) /\
sum(j in DAY)(roster[i,j] == n) >= min_night

);

solve satisfy;

output [ show(roster[i,j]) ++ if j==card(DAY) then "\n" else " " endif
| i in NURSE, j in DAY ];

Running the command

$ minizinc nurse.mzn nurse.dzn

finds a 10 day schedule for 7 nurses, requiring 3 on each day shift and 2 on each night shift,
with a minimum 2 night shifts per nurse. A possible output is
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d o n o n o d n o o
d o d n n o d d n o
o d d n o n d n o n
o d d d o n n o n n
d d n o d d n o d d
n n o d d d o d d d
n n o d d d o d d d
----------

There is an alternate form of the regular constraint regular_nfa which specifies the regular
expression using an NFA (without ϵ arcs). This constraint has the form

regular_nfa(array[int] of var int: x, int: Q, int: S,
array[int,int] of set of int: d, int: q0, set of int: F)

It constrains that the sequence of values in array x (which must all be in the range 1..S)
is accepted by the NFA of Q states with input 1..S and transition function d (which maps
<1..Q, 1..S> to subsets of 1..Q) and initial state q0 (which must be in 1..Q) and accepting
states F (which all must be in 1..Q). There is no need for a failing state 0, since the transition
function can map to an empty set of states.

2.3.2 Defining Predicates

One of the most powerful modelling features of MiniZinc is the ability for the modeller to define
their own high-level constraints. This allows them to abstract and modularise their model. It
also allows re-use of constraints in different models and allows the development of application
specific libraries defining the standard constraints and types.

Listing 2.3.6: Model for job shop scheduling using predicates (jobshop2.mzn)

int: jobs; % no of jobs
set of int: JOB = 1..jobs;
int: tasks; % no of tasks per job
set of int: TASK = 1..tasks;
array [JOB,TASK] of int: d; % task durations
int: total = sum(i in JOB, j in TASK)(d[i,j]);% total duration
int: digs = ceil(log(10.0,total)); % digits for output
array [JOB,TASK] of var 0..total: s; % start times
var 0..total: end; % total end time

% nooverlap
predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =

s1 + d1 <= s2 \/ s2 + d2 <= s1;

constraint %% ensure the tasks occur in sequence
forall(i in JOB) (

forall(j in 1..tasks-1)
(s[i,j] + d[i,j] <= s[i,j+1]) /\
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s[i,tasks] + d[i,tasks] <= end
);

constraint %% ensure no overlap of tasks
forall(j in TASK) (

forall(i,k in JOB where i < k) (
no_overlap(s[i,j], d[i,j], s[k,j], d[k,j])

)
);

solve minimize end;

output ["end = \(end)\n"] ++
[ show_int(digs,s[i,j]) ++ " " ++

if j == tasks then "\n" else "" endif |
i in JOB, j in TASK ];

We start with a simple example, revisiting the job shop scheduling problem from the previous
section. The model is shown in Listing 2.3.6. The item of interest is the predicate item:

predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =
s1 + d1 <= s2 \/ s2 + d2 <= s1;

This defines a new constraint that enforces that a task with start time s1 and duration d1 does
not overlap with a task with start time s2 and duration d2. This can now be used inside the
model anywhere any other Boolean expression (involving decision variables) can be used.
As well as predicates the modeller can define new constraints that only involve parameters.
These are useful to write fixed tests for a conditional expression. These are defined using the
keyword test. For example

test even(int:x) = x mod 2 = 0;
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Predicate definitions
Predicates are defined by a statement of the form

predicate <pred-name> ( <arg-def>, ..., <arg-def> ) = <bool-exp>

The <pred-name>must be a valid MiniZinc identifier, and each <arg-def> is a valid MiniZ-
inc type declaration.
One relaxation of argument definitions is that the index types for arrays can be unbounded,
written int.

test <pred-name> ( <arg-def>, ..., <arg-def> ) = <bool-exp>

The <bool-exp> of the body must be fixed.
We also introduce a new form of the assert command for use in predicates.

assert ( <bool-exp>, <string-exp>, <exp> )

The type of the assert expression is the same as the type of the last argument. The assert
expression checks whether the first argument is false, and if so prints the second argument
string. If the first argument is true it returns the third argument.

Note that assert expressions are lazy in the third argument, that is if the first argument is false
they will not be evaluated. Hence, they can be used for checking:

predicate lookup(array[int] of var int:x, int: i, var int: y) =
assert(i in index_set(x), "index out of range in lookup",

y = x[i]
);

This code will not evaluate x[i] if i is out of the range of the array x.

2.3.3 Defining Func ons

Functions are defined in MiniZinc similarly to predicates, but with a more general return type.
The function below defines the index in a Sudoku matrix of the a1th row (or column) of the ath
subsquare.

function int: posn(int: a, int: a1) = (a-1) * S + a1;

With this definition we can replace the last constraint in the Sudoku problem shown in Listing
2.2.5 by

constraint forall(a, o in SubSquareRange)(
alldifferent([ puzzle [ posn(a,a1), posn(o,o1) ] |

a1, o1 in SubSquareRange ] ) );
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Functions are useful for encoding complex expressions that are used frequently in the model.
For example, imagine placing the numbers 1 to n in different positions in an n×n grid such that
the Manhattan distance between any two numbers i and j is greater than the maximum of the
two numbers minus 1. The aim is to minimize the total of the Manhattan distances between the
pairs. The Manhattan distance function can be expressed as:

function var int: manhattan(var int: x1, var int: y1,
var int: x2, var int: y2) =

abs(x1 - x2) + abs(y1 - y2);

The complete model is shown in Listing 2.3.7.

Listing 2.3.7: Model for a number placement problem illustrating the use of functions
(manhattan.mzn).

int: n;
set of int: NUM = 1..n;

array[NUM] of var NUM: x;
array[NUM] of var NUM: y;
array[NUM,NUM] of var 0..2*n-2: dist =

array2d(NUM,NUM,[
if i < j then manhattan(x[i],y[i],x[j],y[j]) else 0 endif

| i,j in NUM ]);

% manf
function var int: manhattan(var int: x1, var int: y1,

var int: x2, var int: y2) =
abs(x1 - x2) + abs(y1 - y2);

constraint forall(i,j in NUM where i < j)
(dist[i,j] >= max(i,j)-1);

var int: obj = sum(i,j in NUM where i < j)(dist[i,j]);
solve minimize obj;

% simply to display result
include "alldifferent_except_0.mzn";
array[NUM,NUM] of var 0..n: grid;
constraint forall(i in NUM)(grid[x[i],y[i]] = i);
constraint alldifferent_except_0([grid[i,j] | i,j in NUM]);

output ["obj = \(obj);\n"] ++
[ if fix(grid[i,j]) > 0 then show(grid[i,j]) else "." endif

++ if j = n then "\n" else "" endif
| i,j in NUM ];
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Function definitions
Functions are defined by a statement of the form

function <ret-type> : <func-name> ( <arg-def>, ..., <arg-def> ) = <exp>

The <func-name>must be a valid MiniZinc identifier, and each <arg-def> is a valid MiniZ-
inc type declaration. The <ret-type> is the return type of the function which must be the
type of <exp>. Arguments have the same restrictions as in predicate definitions.

Functions in MiniZinc can have any return type, not just fixed return types. Functions are useful
for defining and documenting complex expressions that are used multiple times in a model.

2.3.4 Reflec on Func ons

To help write generic tests and predicates, various reflection functions return information about
array index sets, var set domains and decision variable ranges. Those for index sets are
index_set(<1-D array>), index_set_1of2(<2-D array>), index_set_2of2(<2-D array>), and
so on for higher dimensional arrays.
A better model of the job shop conjoins all the non-overlap constraints for a single machine into a
single disjunctive constraint. An advantage of this approach is that while we may initially model
this simply as a conjunction of non-overlap constraints, if the underlying solver has a better
approach to solving disjunctive constraints we can use that instead, with minimal changes to
our model. The model is shown in Listing 2.3.8.

Listing 2.3.8: Model for job shop scheduling using disjunctive predicate
(jobshop3.mzn).

include "disjunctive.mzn";

int: jobs; % no of jobs
set of int: JOB = 1..jobs;
int: tasks; % no of tasks per job
set of int: TASK = 1..tasks;
array [JOB,TASK] of int: d; % task durations
int: total = sum(i in JOB, j in TASK)(d[i,j]);% total duration
int: digs = ceil(log(10.0,total)); % digits for output
array [JOB,TASK] of var 0..total: s; % start times
var 0..total: end; % total end time

constraint %% ensure the tasks occur in sequence
forall(i in JOB) (

forall(j in 1..tasks-1)
(s[i,j] + d[i,j] <= s[i,j+1]) /\

s[i,tasks] + d[i,tasks] <= end
);

constraint %% ensure no overlap of tasks
forall(j in TASK) (
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disjunctive([s[i,j] | i in JOB], [d[i,j] | i in JOB])
);

solve minimize end;

output ["end = \(end)\n"] ++
[ show_int(digs,s[i,j]) ++ " " ++

if j == tasks then "\n" else "" endif |
i in JOB, j in TASK ];

The disjunctive constraint takes an array of start times for each task and an array of their
durations and makes sure that only one task is active at any one time. We define the disjunctive
constraint as a predicate with signature

predicate disjunctive(array[int] of var int:s, array[int] of int:d);

We can use the disjunctive constraint to define the non-overlap of tasks as shown in Listing
2.3.8. We assume a definition for the disjunctive predicate is given by the file disjunctive.mzn
which is included in the model. If the underlying system supports disjunctive directly, it will
include a file disjunctive.mzn in its globals directory (with contents just the signature definition
above). If the system we are using does not support disjunctive directly we can give our own
definition by creating the file disjunctive.mzn. The simplest implementation simply makes use
of the no_overlap predicate defined above. A better implementation is to make use of a global
cumulative constraint assuming it is supported by the underlying solver. Listing 2.3.9 shows
an implementation of disjunctive. Note how we use the index_set reflection function to (a)
check that the arguments to disjunctive make sense, and (b) construct the array of resource
utilisations of the appropriate size for cumulative. Note also that we use a ternary version of
assert here.

Listing 2.3.9: Defining a disjunctive predicate using cumulative (disjunctive.mzn).

include "cumulative.mzn";

predicate disjunctive(array[int] of var int:s, array[int] of int:d) =
assert(index_set(s) == index_set(d), "disjunctive: " ++
"first and second arguments must have the same index set",
cumulative(s, d, [ 1 | i in index_set(s) ], 1)

);

2.3.5 Local Variables

It is often useful to introduce local variables in a predicate, function or test. The let expression
allows you to do so. It can be used to introduce both decision variables and parameters, but
parameters must be initialised. For example:

var s..e: x;
let {int: l = s div 2; int: u = e div 2; var l .. u: y;} in x = 2*y
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introduces parameters l and u and variable y. While most useful in predicate, function and test
definitions, let expressions can also be used in other expressions, for example for eliminating
common subexpressions:

constraint let { var int: s = x1 + x2 + x3 + x4 } in
l <= s /\ s <= u;

Local variables can be used anywhere and can be quite useful for simplifying complex expres-
sions. Listing 2.3.10 gives a revised version of the wedding model, using local variables to define
the objective function, rather than adding lots of variables to the model explicitly.

Listing 2.3.10: Using local variables to define a complex objective function
(wedding2.mzn).

enum Guests = { bride, groom, bestman, bridesmaid, bob, carol,
ted, alice, ron, rona, ed, clara};

set of int: Seats = 1..12;
set of int: Hatreds = 1..5;
array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];
array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];
set of Guests: Males = {groom, bestman, bob, ted, ron,ed};
set of Guests: Females = {bride,bridesmaid,carol,alice,rona,clara};

array[Guests] of var Seats: pos; % seat of guest

include "alldifferent.mzn";
constraint alldifferent(pos);

constraint forall(g in Males)( pos[g] mod 2 == 1 );
constraint forall(g in Females)( pos[g] mod 2 == 0 );

constraint not (pos[ed] in {1,6,7,12});
constraint abs(pos[bride] - pos[groom]) <= 1 /\

(pos[bride] <= 6 <-> pos[groom] <= 6);

solve maximize sum(h in Hatreds)(
let { var Seats: p1 = pos[h1[h]];

var Seats: p2 = pos[h2[h]];
var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6); } in

same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1));

output [ show(g)++" " | s in Seats,g in Guests where fix(pos[g]) == s]
++ ["\n"];

Using let expressions, it is possible to define a function whose result is not well-defined. For
example, we could write the following:

function var int: x_or_x_plus_1(var int: x) = let {
var 0..1: y;

} in x+y; % result is not well-defined!
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The result, x+y, is indeed not functionally defined by the argument of the function, x. The
MiniZinc compiler does not detect this, and the behaviour of the resultingmodel is undefined.
In particular, calling this function twice with the same argument may or may not return the same
result. It is therefore important to make sure that any function you define is indeed a function!
If you need non-deterministic behaviour, use a predicate:

predicate x_or_x_plus_1(var int: x, var int: z) = let {
var 0..1: y;

} in z=x+y;

2.3.6 Context

One limitation is that predicates and functions containing decision variables that are not ini-
tialised in the declaration cannot be used inside a negative context. The following is illegal:

predicate even(var int:x) =
let { var int: y } in x = 2 * y;

constraint not even(z);

The reason for this is that solvers only solve existentially constrained problems, and if we intro-
duce a local variable in a negative context, then the variable is universally quantified and hence
out of scope of the underlying solvers. For example the ¬even(z) is equivalent to ¬∃y.z = 2y
which is equivalent to ∀y.z ̸= 2y.
If local variables are given values, then they can be used in negative contexts. The following is
legal

predicate even(var int:x) =
let { var int: y = x div 2; } in x = 2 * y;

constraint not even(z);

Note that the meaning of even is correct, since if x is even then x = 2 ∗ (x div 2). Note that
for this definition ¬even(z) is equivalent to ¬∃y.y = z div 2 ∧ z = 2y which is equivalent to
∃y.y = z div 2 ∧ ¬z ̸= 2y, because y is functionally defined by z.
Every expression in MiniZinc appears in one of the four contexts: root, positive, negative, or
mixed. The context of a non-Boolean expression is simply the context of its nearest enclosing
Boolean expression. The one exception is that the objective expression appears in a root context
(since it has no enclosing Boolean expression).
For the purposes of defining contexts we assume implication expressions e1 -> e2 are rewritten
equivalently as not e1 \/ e2, and similarly e1 <- e2 is rewritten as e1 \/ not e2.
The context for a Boolean expression is given by:
root root context is the context for any expression e appearing as the argument of constraint or

as an assignment item, or appearing as a sub expression e1 or e2 in an expression e1 /\ e2
occurring in a root context.
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Root context Boolean expressions must hold in any model of the problem.
positive positive context is the context for any expression appearing as a sub expression e1 or

e2 in an expression e1 \/ e2 occurring in a root or positive context, appearing as a sub
expression e1 or e2 in an expression e1 /\ e2 occurring in a positive context, or appearing
as a sub expression e in an expression not e appearing in a negative context.
Positive context Boolean expressions need not hold in a model, but making them hold
will only increase the possibility that the enclosing constraint holds. A positive context
expression has an even number of negations in the path from the enclosing root context
to the expression.

negative negative context is the context for any expression appearing as a sub expression e1 or
e2 in an expression e1 \/ e2 or e1 /\ e2 occurring in a negative context, or appearing as
a sub expression e in an expression not e appearing in a positive context.
Negative context Boolean expressions need not hold in a model, but making them false
will increase the possibility that the enclosing constraint holds. A negative context expres-
sion has an odd number of negations in the path from the enclosing root context to the
expression.

mixed mixed context is the context for any Boolean expression appearing as a subexpression
e1 or e2 in e1 <-> e2, e1 = e2, or bool2int(e).
Mixed context expression are effectively both positive and negative. This can be seen
from the fact that e1 <-> e2 is equivalent to (e1 /\ e2) \/ (not e1 /\ not e2) and
x = bool2int(e) is equivalent to (e /\ x=1) \/ (not e /\ x=0).

Consider the code fragment

constraint x > 0 /\ (i <= 4 -> x + bool2int(x > i) = 5);

then x > 0 is in the root context, i <= 4} is in a negative context, x + bool2int(x > i) = 5 is
in a positive context, and x > i is in a mixed context.

2.3.7 Local Constraints

Let expressions can also be used to include local constraints, usually to constrain the behaviour
of local variables. For example, consider defining an integer square root function making use of
only multiplication:

function var int: mysqrt(var int:x) =
let { var 0..infinity: y;

constraint x = y * y; } in y;

The local constraints ensure y takes the correct value; which is then returned by the function.
Local constraints can be used in any let expression, though the most common usage is in defining
functions. A function with local constraints is often partial, which means that it is not defined
for all possible inputs. For example, the mysqrt function above constrains its argument x to
take a value that is in fact the square of an integer. The MiniZinc compiler handles these cases
according to the relational semantics, which means that the result of applying a partial function
may become false in its enclosing Boolean context. For example, consider the following model:
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var 1..9: x;
var 0..9: y;
constraint (x=3 /\ y=0) \/ y = mysqrt(x);

Clearly, the intention of the modeller is that x=3, y=0 should be a solution. This requires the
compiler to take care not to “lift” the constraint x=y*y out of the context of the function, because
that would prevent it from finding any solution with x=3. You can verify that the set of solutions
contains x=3, y=0 as well as the expected x=1, y=1, x=4, y=2 and x=9, y=3.
If you define a total function using local constraints, you can give the compiler a hint that allows
it to produce more efficient code. For example, you could write the square function (not square
root, note the subtle difference) as follows:

function var int: mysqr(var int:x) ::promise_total =
let { var 0..infinity: y;

constraint y = x * x; } in y;

This function is indeed defined for any input value x. The ::promise_total annotation tells the
compiler that it can safely lift all local constraints out of the context of the function call.

Let expressions
Local variables can be introduced in any expression with a let expression of the form:

let { <dec>; ... <dec> ; } in <exp>

The declarations <dec> can be declarations of decision variables and parameters (which
must be initialised) or constraint items. No declaration can make use of a newly declared
variable before it is introduced.
Note that local variables and constraints cannot occur in tests. Local variables cannot
occur in predicates or functions that appear in a negative or mixed context, unless the
variable is defined by an expression.

2.3.8 Domain Reflec on Func ons

Other important reflection functions are those that allow us to access the domains of variables.
The expression lb(x) returns a value that is lower than or equal to any value that x may take in
a solution of the problem. Usually it will just be the declared lower bound of x. If x is declared
as a non-finite type, e.g. simply var int then it is an error. Similarly the expression dom(x)
returns a (non-strict) superset of the possible values of x in any solution of the problem. Again
it is usually the declared values, and again if it is not declared as finite then there is an error.

Listing 2.3.11: Using reflection predicates (reflection.mzn).

var -10..10: x;
constraint x in 0..4;
int: y = lb(x);
set of int: D = dom(x);
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solve satisfy;
output ["y = ", show(y), "\nD = ", show(D), "\n"];

For example, the model show in Listing 2.3.11 may output

y = -10
D = -10..10
----------

or

y = 0
D = {0, 1, 2, 3, 4}
----------

or any answer with −10 ≤ y ≤ 0 and {0, . . . , 4} ⊆ D ⊆ {−10, . . . , 10}.
Variable domain reflection expressions should be used in a manner where they are correct for
any safe approximations, but note this is not checked! For example the additional code

var -10..10: z;
constraint z <= y;

is not a safe usage of the domain information. Since using the tighter (correct) approximation
leads to more solutions than the weaker initial approximation.

Domain reflection
There are reflection functions to interrogate the possible values of expressions containing
variables:
• dom(<exp>) returns a safe approximation to the possible values of the expression.
• lb(<exp>) returns a safe approximation to the lower bound value of the expression.
• ub(<exp>) returns a safe approximation to the upper bound value of the expression.

The expressions for lb and ub can only be of types int, bool, float or set of int. For
dom the type cannot be float. If one of the variables appearing in <exp> has a non-finite
declared type (e.g. var int or var float) then an error can occur.
There are also versions that work directly on arrays of expressions (with similar restric-
tions):
• dom_array(<array-exp>): returns a safe approximation to the union of all possible
values of the expressions appearing in the array.

• lb_array(<array-exp>) returns a safe approximation to the lower bound of all ex-
pressions appearing in the array.

• ub_array(<array-exp>) returns a safe approximation to the upper bound of all ex-
pressions appearing in the array.

The combinations of predicates, local variables and domain reflection allows the definition of
complex global constraints by decomposition. We can define the time based decomposition of
the cumulative constraint using the code shown in Listing 2.3.12.
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Listing 2.3.12: Defining a cumulative predicate by decomposition (cumulative.mzn).

%--------------------------------------------------------------------%
% Requires that a set of tasks given by start times 's',
% durations 'd', and resource requirements 'r',
% never require more than a global
% resource bound 'b' at any one time.
% Assumptions:
% - forall i, d[i] >= 0 and r[i] >= 0
%--------------------------------------------------------------------%
predicate cumulative(array[int] of var int: s,

array[int] of var int: d,
array[int] of var int: r, var int: b) =

assert(index_set(s) == index_set(d) /\
index_set(s) == index_set(r),

"cumulative: the array arguments must have identical index sets",
assert(lb_array(d) >= 0 /\ lb_array(r) >= 0,

"cumulative: durations and resource usages must be non-negative",
let {

set of int: times =
lb_array(s) ..
max([ ub(s[i]) + ub(d[i]) | i in index_set(s) ])

}
in

forall( t in times ) (
b >= sum( i in index_set(s) ) (

bool2int( s[i] <= t /\ t < s[i] + d[i] ) * r[i]
)

)
)

);

The decomposition uses lb and ub to determine the set of times times over which tasks could
range. It then asserts for each time t in times that the sum of resources for the active tasks at
time t is less than the bound b.

2.3.9 Scope

It is worth briefly mentioning the scope of declarations in MiniZinc. MiniZinc has a single names-
pace, so all variables appearing in declarations are visible in every expression in the model.
MiniZinc introduces locally scoped variables in a number of ways:
• as iterator variables in comprehension expressions
• using let expressions
• as predicate and function arguments

Any local scoped variable overshadows the outer scoped variables of the same name.
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Listing 2.3.13: A model for illustrating scopes of variables (scope.mzn).

int: x = 3;
int: y = 4;
predicate smallx(var int:y) = -x <= y /\ y <= x;
predicate p(int: u, var bool: y) =

exists(x in 1..u)(y \/ smallx(x));
constraint p(x,false);
solve satisfy;

For example, in the model shown in Listing 2.3.13 the x in -x <= y is the global x, the x in
smallx(x) is the iterator x in 1..u, while the y in the disjunction is the second argument of the
predicate.
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Op on Types

Option types are a powerful abstraction that allows for concise modelling. An option type deci-
sion variable represents a decision that has another possibility ⊤, represented in MiniZinc as <>
indicating the variable is absent. Option type decisions are useful for modelling problems where
a decision is not meaningful unless other decisions are made first.

2.4.1 Declaring and Using Op on Types

Option type Variables
An option type variable is declared as:

var opt <type> : <var-name>:

where <type> is one of int, float or bool or a fixed range expression. Option type vari-
ables can be parameters but this is rarely useful.
An option type variable can take the additional value <> indicating absent.
Three builtin functions are provided for option type variables: absent(v) returns true iff
option type variable v takes the value <>, occurs(v) returns true iff option type variable
v does not take the value <>, and deopt(v) returns the normal value of v or fails if it takes
the value <>.

The most common use of option types is for optional tasks in scheduling. In the flexible job
shop scheduling problem we have n tasks to perform on k machines, and the time to complete
each task on each machine may be different. The aim is to minimize the completion time of all
tasks. A model using option types to encode the problem is given in Listing 2.4.1. We model the
problem using n×k optional tasks representing the possibility of each task run on each machine.
We require that start time of the task and its duration spans the optional tasks that make it up,
and require only one actually runs using the alternative global constraint. We require that at
most one task runs on any machine using the disjunctive global constraint extended to optional
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tasks. Finally we constrain that at most k tasks run at any time, a redundant constraint that holds
on the actual (not optional) tasks.

Listing 2.4.1: Model for flexible job shop scheduling using option types
(flexible-js.mzn).

int: horizon; % time horizon
set of int: Time = 0..horizon;
enum Task;
enum Machine;

array[Task,Machine] of int: d; % duration on each machine
int: maxd = max([ d[t,m] | t in Task, m in Machine ]);
int: mind = min([ d[t,m] | t in Task, m in Machine ]);

array[Task] of var Time: S; % start time
array[Task] of var mind..maxd: D; % duration
array[Task,Machine] of var opt Time: O; % optional task start

constraint forall(t in Task)(alternative(S[t],D[t],
[O[t,m]|m in Machine],[d[t,m]|m in Machine]));

constraint forall(m in Machine)
(disjunctive([O[t,m]|t in Task],[d[t,m]|t in Task]));

constraint cumulative(S,D,[1|i in Task],k);

solve minimize max(t in Task)(S[t] + D[t]);

2.4.2 Hidden Op on Types

Option type variable arise implicitly when list comprehensions are constructed with iteration
over variable sets, or where the expressions in where clauses are not fixed.
For example the model fragment

var set of 1..n: x;
constraint sum(i in x)(i) <= limit;

is syntactic sugar for

var set of 1..n: x;
constraint sum(i in 1..n)(if i in x then i else <> endif) <= limit;

The sum builtin function actually operates on a list of type-inst var opt int. Since the <> acts
as the identity 0 for + this gives the expected results.
Similarly the model fragment
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array[1..n] of var int: x;
constraint forall(i in 1..n where x[i] >= 0)(x[i] <= limit);

is syntactic sugar for

array[1..n] of var int: x;
constraint forall(i in 1..n)(if x[i] >= 0 then x[i] <= limit else <> endif);

Again the forall function actually operates on a list of type-inst var opt bool. Since <> acts as
identity true for /\ this gives the expected results.
The hidden uses can lead to unexpected behaviour though so care is warranted. Consider

var set of 1..9: x;
constraint card(x) <= 4;
constraint length([ i | i in x]) > 5;
solve satisfy;

which would appear to be unsatisfiable. It returns x = {1,2,3,4} as example answer. This is
correct since the second constraint is equivalent to

constraint length([ if i in x then i else <> endif | i in 1..9 ]) > 5;

and the length of the list of optional integers is always 9 so the constraint always holds!
One can avoid hidden option types by not constructing iteration over variables sets or using
unfixed where clauses. For example the above two examples could be rewritten without option
types as

var set of 1..n: x;
constraint sum(i in 1..n)(bool2int(i in x)*i) <= limit;

and

array[1..n] of var int: x;
constraint forall(i in 1..n)(x[i] >= 0 -> x[i] <= limit);
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Search

By default in MiniZinc there is no declaration of how we want to search for solutions. This leaves
the search completely up to the underlying solver. But sometimes, particularly for combinatorial
integer problems, we may want to specify how the search should be undertaken. This requires
us to communicate to the solver a search strategy. Note that the search strategy is not really part
of the model. Indeed it is not required that each solver implements all possible search strategies.
MiniZinc uses a consistent approach to communicating extra information to the constraint solver
using annotations.

2.5.1 Finite Domain Search

Search in a finite domain solver involves examining the remaining possible values of variables
and choosing to constrain some variables further. The search then adds a new constraint that
restricts the remaining values of the variable (in effect guessing where the solution might lie),
and then applies propagation to determine what other values are still possible in solutions. In
order to guarantee completeness, the search leaves another choice which is the negation of the
new constraint. The search ends either when the finite domain solver detects that all constraints
are satisfied, and hence a solution has been found, or that the constraints are unsatisfiable. When
unsatisfiability is detected the search must proceed down a different set of choices. Typically
finite domain solvers use depth first search where they undo the last choice made and then try
to make a new choice.

Listing 2.5.1: Model for n-queens (nqueens.mzn).

int: n;
array [1..n] of var 1..n: q; % queen in column i is in row q[i]

include "alldifferent.mzn";

constraint alldifferent(q); % distinct rows
constraint alldifferent([ q[i] + i | i in 1..n]); % distinct diagonals
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constraint alldifferent([ q[i] - i | i in 1..n]); % upwards+downwards

% search
solve :: int_search(q, first_fail, indomain_min)

satisfy;
output [ if fix(q[j]) == i then "Q" else "." endif ++

if j == n then "\n" else "" endif | i,j in 1..n]

A simple example of a finite domain problem is the n queens problem which requires that we
place n queens on an n×n chessboard so that none can attack another. The variable q[i] records
in which row the queen in column i is placed. The alldifferent constraints ensure that no two
queens are on the same row, or diagonal. A typical (partial) search tree for n = 9 is illustrated
in Fig. 2.5.1. We first set q[1] = 1, this removes values from the domains of other variables, so
that e.g. q[2] cannot take the values 1 or 2. We then set q[2] = 3, this further removes values
from the domains of other variables. We set q[3] = 5 (its earliest possible value). The state of
the chess board after these three decisions is shown in Fig. 2.5.2 where the queens indicate the
position of the queens fixed already and the stars indicate positions where we cannot place a
queen since it would be able to take an already placed queen.

q[6] != 4q[6]=4

q[3] != 5q[3] = 5

q[2] != 3q[2] = 3

q[1]=1 q[1] != 1

a

b c

Fig. 2.5.1: Partial search trees for 9 queens

A search strategy determines which choices to make. The decisions we have made so far follow
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q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]

1

2
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4

5

6

7

8

9

Fig. 2.5.2: The state after the addition of q[1] = 1, q[2] = 4, q[3] = 5
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q[1] q[2] q[3] q[4] q[5] q[6] q[7] q[8] q[9]
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Fig. 2.5.3: The initial propagation on adding further q[6] = 4
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the simple strategy of picking the first variable which is not fixed yet, and try to set it to its
least possible value. Following this strategy the next decision would be q[4] = 7. An alternate
strategy for variable selection is to choose the variable whose current set of possible values
(domain) is smallest. Under this so called first-fail variable selection strategy the next decision
would be q[6] = 4. If we make this decision, then initially propagation removes the additional
values shown in Fig. 2.5.3. But this leaves only one value for q[8], q[8] = 7, so this is forced,
but then this leaves only one possible value for q[7] and q[9], that is 2. Hence a constraint must
be violated. We have detected unsatisfiability, and the solver must backtrack undoing the last
decision q[6] = 4 and adding its negation q[6] != 4 (leading us to state (c) in the tree in Fig.
2.5.1) which forces q[6] = 8. This removes some values from the domain and then we again
reinvoke the search strategy to decide what to do.
Many finite domain searches are defined in this way: choose a variable to constrain further, and
then choose how to constrain it further.

2.5.2 Search Annota ons

Search annotations in MiniZinc specify how to search in order to find a solution to the problem.
The annotation is attached to the solve item, after the keyword solve. The search annotation

solve :: int_search(q, first_fail, indomain_min)
satisfy;

appears on the solve item. Annotations are attached to parts of the model using the connector
::. This search annotation means that we should search by selecting from the array of integer
variables q, the variable with the smallest current domain (this is the first_fail rule), and try
setting it to its smallest possible value (indomain_min value selection).
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Basic search annotations
There are three basic search annotations corresponding to different basic variable types:
• int_search( <variables>, <varchoice>, <constrainchoice> ) where

<variables> is a one dimensional array of var int, <varchoice> is a variable
choice annotation discussed below, <constrainchoice> is a choice of how to
constrain a variable, discussed below.

• bool_search( <variables>, <varchoice>, <constrainchoice> ) where
<variables> is a one dimensional array of var bool and the rest are as above.

• set_search( <variables>, <varchoice>, <constrainchoice> ) where
<variables> is a one dimensional array of var set of int and the rest are
as above.

• float_search( <variables>, <precision>, <varchoice>, <constrainchoice> )
where <variables> is a one dimensional array of var float, <precision> is a fixed
float specifying the ϵ below which two float values are considered equal, and the
rest are as above.

Example variable choice annotations are:
• input_order: choose in order from the array
• first_fail: choose the variable with the smallest domain size, and
• smallest: choose the variable with the smallest value in its domain.
• dom_w_deg: choose the variable with the smallest value of domain size divided by
weighted degree, which is the number of times it has been in a constraint that caused
failure earlier in the search.

Example ways to constrain a variable are:
• indomain_min: assign the variable its smallest domain value,
• indomain_median: assign the variable its median domain value,
• indomain_random: assign the variable a random value from its domain, and
• indomain_split bisect the variables domain excluding the upper half.

For backwards compatibility with older version of MiniZinc, the search annotations can
be called with an additional argument that represents the search strategy to use. The only
such strategy that is currently supported is complete, meaning an exhaustive exploration
of the search space. With the additional argument, an annotation might then look like
this: ::int_search(x, input_order, indomain_min, complete).
For a complete list of variable and constraint choice annotations see the FlatZinc specifi-
cation in the MiniZinc reference documentation.

We can construct more complex search strategies using search constructor annotations. There
is only one such annotation at present:

seq_search([ <search-ann>, ..., <search-ann> ])

The sequential search constructor first undertakes the search given by the first annotation in its
list, when all variables in this annotation are fixed it undertakes the second search annotation,
etc. until all search annotations are complete.
Consider the jobshop scheduling model shown in Listing 2.3.8. We could replace the solve item
with

solve :: seq_search([
int_search(s, smallest, indomain_min),
int_search([end], input_order, indomain_min)])
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minimize end

which tries to set start times s by choosing the job that can start earliest and setting it to that
time. When all start times are complete the end time end may not be fixed. Hence we set it to
its minimal possible value.

2.5.3 Annota ons

Annotations are a first class object in MiniZinc. We can declare new annotations in a model, and
declare and assign to annotation variables.

Annotations
Annotations have a type ann. You can declare an annotation parameter (with optional
assignment):

ann : <ident>;
ann : <ident> = <ann-expr> ;

and assign to an annotation variable just as any other parameter.
Expressions, variable declarations, and solve items can all be annotated using the ::
operator.
We can declare a new annotation using the annotation item:

annotation <annotation-name> ( <arg-def>, ..., <arg-def> ) ;

Listing 2.5.2: Annotated model for n-queens (nqueens-ann.mzn).

annotation bitdomain(int:nwords);

include "alldifferent.mzn";

int: n;
array [1..n] of var 1..n: q :: bitdomain(n div 32 + 1);

constraint alldifferent(q) :: domain;
constraint alldifferent([ q[i] + i | i in 1..n]) :: domain;
constraint alldifferent([ q[i] - i | i in 1..n]) :: domain;

ann: search_ann;

solve :: search_ann satisfy;

output [ if fix(q[j]) == i then "Q" else "." endif ++
if j == n then "\n" else "" endif | i,j in 1..n]

The program in Listing 2.5.2 illustrates the use of annotation declarations, annotations and
annotation variables. We declare a new annotation bitdomain which is meant to tell the solver
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that variables domains should be represented via bit arrays of size nwords. The annotation is
attached to the declarations of the variables q. Each of the alldifferent constraints is annotated
with the built in annotation domain which instructs the solver to use the domain propagating
version of alldifferent if it has one. An annotation variable search_ann is declared and used
to define the search strategy. We can give the value to the search strategy in a separate data file.
Example search annotations might be the following (where we imagine each line is in a separate
data file)

search_ann = int_search(q, input_order, indomain_min);
search_ann = int_search(q, input_order, indomain_median);
search_ann = int_search(q, first_fail, indomain_min);
search_ann = int_search(q, first_fail, indomain_median);
search_ann = int_search(q, input_order, indomain_random);

The first just tries the queens in order setting them to the minimum value, the second tries the
queens variables in order, but sets them to their median value, the third tries the queen variable
with smallest domain and sets it to the minimum value, and the final strategy tries the queens
variable with smallest domain setting it to its median value.
Different search strategies can make a significant difference in how easy it is to find solutions.
A small comparison of the number of failures made to find the first solution of the n-queens
problems using the 5 different search strategies is shown in the table below (where — means
more than 100,000 failures). Clearly the right search strategy can make a significant difference,
and variables selection is more important than value selection, except that for this problem
random value selection is very powerful.

n input-
min

input-median ff-
min

ff-median input-random

10 22 2 5 0 6
15 191 4 4 12 39
20 20511 32 27 16 2
25 2212 345 51 25 2
30 — 137 22 66 9
35 — 1722 52 12 12
40 — — 16 44 2
45 — — 41 18 6

2.5.4 Restart

Any kind of depth first search for solving optimization problems suffers from the problem that
wrong decisions made at the top of the search tree can take an exponential amount of search
to undo. One common way to ameliorate this problem is to restart the search from the top thus
having a chance to make different decisions.
MiniZinc includes annotations to control restart behaviour. These annotations, like other search
annotations, are attached to the solve item of the model.
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Restart search annotations
The different restart annotations control how frequently a restart occurs. Restarts occur
when a limit in nodes is reached, where search returns to the top of the search tree and
begins again. The possibilities are
• restart_constant(<scale>) where <scale> is an integer defining after how many
nodes to restart.

• restart_linear(<scale>) where <scale> is an integer defining the initial number
of nodes before the first restart. The second restart gets twice as many nodes, the
third gets three times, etc.

• restart_geometric(<base>,<scale>) where <base> is a float and <scale> is an in-
teger. The k th restart has a node limit of <scale> * <base>^k.

• restart_luby(<scale>) where <scale> is an integer. The k th restart gets
<scale>*L[k] where :mzn‘L[k]‘ is the k th number in the Luby sequence. The Luby
sequence looks like 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 …, that is it repeats two copies of
the sequence ending in 2^i before adding the number 2^{i+1}.

• restart_none don’t apply any restart (useful for setting a ann parameter that controls
restart).

Solvers behaviour where two or more restart annotations are used is undefined.

Restart search is much more robust in finding solutions, since it can avoid getting stuck in a
non-productive area of the search. Note that restart search does not make much sense if the
underlying search strategy does not do something different the next time it starts at the top. For
example the search annotation

solve :: int_search(q, input_order, indomain_min);
:: restart_linear(1000)
satisfy

does not very much sense since the underlying search is deterministic and each restart will just
redo the same search as the previous search. Some solvers record the parts of the search tree that
have already been searched and avoid them. This will mean deterministic restarts will simply
effectively continue the search from the previous position. This gives no benefit to restarts,
whose aim is to change decisions high in the search tree.
The simplest way to ensure that something is different in each restart is to use some randomiza-
tion, either in variable choice or value choice. Alternatively some variable selection strategies
make use of information gathered from earlier search and hence will give different behaviour,
for example dom_w_deg.
To see the effectiveness of restart lets examine the n-queens problem again with the underlying
search strategy

int_search(q, first_fail, indomain_random);

with one of four restart strategies

r1 = restart_constant(100);
r2 = restart_linear(100);
r3 = restart_geometric(1.5,100);
r4 = restart_luby(100);
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r5 = restart_none;

n constant linear geometric luby none
10 35 35 35 35 14
15 36 36 36 36 22
20 15 15 15 16
25 2212 345 51 25
30 — 137 22 66
35 — 1722 52 12
40 148 148 194 148 15
100 183 183 183 183 103
500 1480 1480 1480 1480 1434
1000 994 994 994 994 994

THE CURRENT EXPERIMENT IS USELESS!

2.5.5 Warm Starts

In many cases when solving an optimization or satisfaction problem we may have solved a
previous version of the problem which is very similar. In this case it can be advantageous to use
the previous solution found when searching for solution to the new problem. This is currently
supported by some MIP backends.
The warm start annotations are attached to the solve item, just like other search annotations.

Warm start search annotations
The different restart annotations control how frequently a restart occurs. Restarts occur
when a limit in nodes is reached, where search returns to the top of the search tree and
begins again. The possibilities are
• warm_start(<vars>,<vals>) where <vars> is a one dimensional array of integer
variables, and <vals> is a one dimensional array of integer of the same length giving
the warm start values for each integer variable in <vars>.

• warm_start(<vars>,<vals>) where <vars> is a one dimensional array of float vari-
ables, and <vals> is a one dimensional array of floats of the same length giving the
warm start values for each float variable in <vars>.

• warm_start(<vars>,<vals>) where <vars> is a one dimensional array of Boolean
variables, and <vals> is a one dimensional array of Booleans of the same length
giving the warm start values for each Boolean variable in <vars>.

• warm_start(<vars>,<vals>) where <vars> is a one dimensional array of set vari-
ables, and <vals> is a one dimensional array of sets of integers of the same length
giving the warm start values for each set variable in <vars>.

The warm start annotation can be used by the solver as part of value selection. For example, if
the selected variable v[i] has in its current domain the warm start value w[i] then this is the
value selected for the variable. If not the solver uses the existing value selection rule applicable
to that variable. The order of warm_starts, relative to other search annotations, can be important
(especially for CP), so they all might need to be put into a seq_search as below:
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array[1..3] of var 0..10: x;
array[1..3] of var 0.0..10.5: xf;
var bool: b;
array[1..3] of var set of 5..9: xs;
constraint b+sum(x)==1;
constraint b+sum(xf)==2.4;
constraint 5==sum( [ card(xs[i]) | i in index_set(xs) ] );
solve

:: warm_start_array( [ %%% Can be on the upper level
warm_start( x, [<>,8,4] ), %%% Use <> for missing values
warm_start( xf, array1d(-5..-3, [5.6,<>,4.7] ) ),
warm_start( xs, array1d( -3..-2, [ 6..8, 5..7 ] ) )

] )
:: seq_search( [

warm_start_array( [ %%% Now included in seq_search␣
↪→to keep order

warm_start( x, [<>,5,2] ), %%% Repeated warm_starts␣
↪→allowed but not specified

warm_start( xf, array1d(-5..-3, [5.6,<>,4.7] ) ),
warm_start( xs, array1d( -3..-2, [ 6..8, 5..7 ] ) )

] ),
warm_start( [b], [true] ),
int_search(x, first_fail, indomain_min)

] )
minimize x[1] + b + xf[2] + card( xs[1] intersect xs[3] );

If you’d like to provide a most complete warmstart information, please provide values for all
variables which are output when there is no output item or when compiled with --output-mode
dzn. .. Still, this excludes auxiliary variables introduced by let expressions. To capture them,
you can customize the output item, or try the FlatZinc level, see below.
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CHAPTER2.6

Effec ve Modelling Prac ces in MiniZinc

There are almost always multiple ways to model the same problem, some of which generate
models which are efficient to solve, and some of which are not. In general it is very hard to
tell a priori which models are the most efficient for solving a particular problem, and indeed
it may critically depend on the underlying solver used, and search strategy. In this chapter we
concentrate on modelling practices that avoid inefficiency in generating models and generated
models. For solver-specific recommendations see User Manual/Solver Backends.

2.6.1 Variable Bounds

Finite domain propagation engines, which are the principle type of solver targeted by MiniZ-
inc, are more effective the tighter the bounds on the variables involved. They can also behave
badly with problems which have subexpressions that take large integer values, since they may
implicitly limit the size of integer variables.

Listing 2.6.1: A model with unbounded variables (grocery.mzn).

var int: item1;
var int: item2;
var int: item3;
var int: item4;

constraint item1 + item2 + item3 + item4 == 711;
constraint item1 * item2 * item3 * item4 == 711 * 100 * 100 * 100;

constraint 0 < item1 /\ item1 <= item2
/\ item2 <= item3 /\ item3 <= item4;

solve satisfy;

output ["{", show(item1), ",", show(item2), ",", show(item3), ",",
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show(item4),"}\n"];

The grocery problem shown in Listing 2.6.1 finds 4 items whose prices in dollars add up to 7.11
and multiply up to 7.11. The variables are declared unbounded. Running

$ minizinc --solver chuffed grocery.mzn

yields

=====UNSATISFIABLE=====

This is because the intermediate expressions in the multiplication are also var int and are given
default bounds in the solver −1, 000, 000 . . . 1, 000, 000, and these ranges are too small to hold
the values that the intermediate expressions may need to take.
Modifying the model so that the items are declared with tight bounds

var 1..711: item1;
var 1..711: item2;
var 1..711: item3;
var 1..711: item4;

results in a better model, since now MiniZinc can infer bounds on the intermediate expressions
and use these rather than the default bounds. With this modification, executing the model gives

{120,125,150,316}
----------

Note however that even the improved model may be too difficult for some solvers. Running

$ minizinc --solver g12lazy grocery.mzn

does not return an answer, since the solver builds a huge representation for the intermediate
product variables.

Bounding variables
Always try to use bounded variables in models. When using let declarations to introduce
new variables, always try to define them with correct and tight bounds. This will make
your model more efficient, and avoid the possibility of unexpected overflows. One excep-
tion is when you introduce a new variable which is immediately defined as equal to an
expression. Usually MiniZinc will be able to infer effective bounds from the expression.

2.6.2 Effec ve Generators

Imagine we want to count the number of triangles (K3 subgraphs) appearing in a graph. Sup-
pose the graph is defined by an adjacency matrix: adj[i,j] is true if nodes i and j are adjacent.
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We might write

int: count = sum ([ 1 | i,j,k in NODES where i < j /\ j < k
/\ adj[i,j] /\ adj[i,k] /\ adj[j,k]]);

which is certainly correct, but it examines all triples of nodes. If the graph is sparse we can do
better by realising that some tests can be applied as soon as we select i and j.

int: count = sum ([ 1 | i,j in NODES where i < j /\ adj[i,j],
k in NODES where j < k /\ adj[i,k] /\ adj[j,k]]);

You can use the builitin trace function to help determine what is happening inside generators.
Tracing
The function trace(s,e) prints the string s before evaluating the expression e and return-
ing its value. It can be used in any context.

For example, we can see howmany times the test is performed in the inner loop for both versions
of the calculation.

int:count=sum([ 1 | i,j,k in NODES where
trace("+", i<j /\j<k /\ adj[i,j] /\ adj[i,k] /\ adj[j,k]) ]);

adj = [| false, true, true, false
| true, false, true, false
| true, true, false, true
| false, false, true, false |];

constraint trace("\n",true);
solve satisfy;

Produces the output:

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
----------

indicating the inner loop is evaluated 64 times while

int: count = sum ([ 1 | i,j in NODES where i < j /\ adj[i,j],
k in NODES where trace("+", j < k /\ adj[i,k] /\␣

↪→adj[j,k])]);

Produces the output:

++++++++++++++++
----------

indicating the inner loop is evaluated 16 times.
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Note that you can use the dependent strings in trace to understand what is happening during
model creation.

int: count = sum( i,j in NODES where i < j /\ adj[i,j])(
sum([trace("("++show(i)++","++show(j)++","++show(k)++")",1) |

k in NODES where j < k /\ adj[i,k] /\ adj[j,k]]));

will print out each of triangles that is found in the calculation. It produces the output

(1,2,3)
----------

We have to admit that we cheated a bit here: In certain circumstances, the MiniZinc compiler is
in fact able to re-order the arguments in a where clause automatically, so that they are evaluated
as early as possible. In this case, adding the trace function in fact prevented this optimisation. In
general, it is however a good idea to help the compiler get it right, by splitting the where clauses
and placing them as close to the generators as possible.

2.6.3 Redundant Constraints

The form of a model will affect how well the constraint solver can solve it. In many cases adding
constraints which are redundant, i.e. are logically implied by the existing model, may improve
the search for solutions by making more information available to the solver earlier.
Consider the magic series problem from Complex Constraints (page 50). Running this for n = 16
as follows:

$ minizinc --solver gecode --all-solutions --statistics magic-series.mzn -D
↪→"n=16;"

might result in output

s = [12, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0];
----------
==========

and the statistics showing 89 failures required.
We can add redundant constraints to the model. Since each number in the sequence counts the
number of occurrences of a number we know that they sum up to n. Similarly we know that the
sum of s[i] * imust also add up to n because the sequence is magic. Adding these constraints
gives the model in Listing 2.6.2.

Listing 2.6.2: Model solving the magic series problem with redundant constraints
(magic-series2.mzn).

int: n;
array[0..n-1] of var 0..n: s;

100 Chapter 2.6. Effec ve Modelling Prac ces in MiniZinc



MiniZinc Handbook, Release 2.4.3

constraint forall(i in 0..n-1) (
s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));

% redundant
constraint sum(i in 0..n-1)(s[i]) = n;
constraint sum(i in 0..n-1)(s[i] * i) = n;
solve satisfy;

output [ "s = ", show(s), ";\n" ] ;

Running the same problem as before

$ minizinc --solver gecode --all-solutions --statistics magic-series2.mzn -D
↪→"n=16;"

results in the same output, but with statistics showing just 14 failures explored. The redundant
constraints have allowed the solver to prune the search much earlier.

2.6.4 Modelling Choices

There are many ways to model the same problem in MiniZinc, although some may be more
natural than others. Different models may have very different efficiency of solving, and worse
yet, different models may be better or worse for different solving backends. There are however
some guidelines for usually producing better models:

Choosing between models
The better model is likely to have some of the following features
• smaller number of variables, or at least those that are not functionally defined by
other variables

• smaller domain sizes of variables
• more succinct, or direct, definition of the constraints of the model
• uses global constraints as much as possible

In reality all this has to be tempered by how effective the search is for the model. Usually
the effectiveness of search is hard to judge except by experimentation.

Consider the problem of finding permutations of n numbers from 1 to n such that the differences
between adjacent numbers also form a permutation of numbers 1 to n − 1. Note that the u
variables are functionally defined by the x variables so the raw search space is nn. The obvious
way to model this problem is shown in Listing 2.6.3.

Listing 2.6.3: A natural model for the all interval series problem prob007 in CSPlib
(allinterval.mzn).

include "alldifferent.mzn";

int: n;
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array[1..n] of var 1..n: x; % sequence of numbers
array[1..n-1] of var 1..n-1: u; % sequence of differences

constraint alldifferent(x);
constraint alldifferent(u);
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i]));

solve :: int_search(x, first_fail, indomain_min)
satisfy;

output ["x = \(x);\n"];

In this model the array x represents the permutation of the n numbers and the constraints are
naturally represented using alldifferent.
Running the model

$ minizinc --solver gecode --all-solutions --statistics allinterval.mzn -D
↪→"n=10;"

finds all solutions in 16077 nodes and 71ms
An alternate model uses array y where y[i] gives the position of the number i in the sequence.
We also model the positions of the differences using variables v. v[i] is the position in the
sequence where the absolute difference i occurs. If the values of y[i] and y[j] differ by one
where j > i, meaning the positions are adjacent, then v[j-i] is constrained to be the earli-
est of these positions. We can add two redundant constraints to this model: since we know
that a difference of n-1 must result, we know that the positions of 1 and n must be adjacent
(abs( y[1] - y[n] ) = 1), which also tell us that the position of difference n-1 is the earlier
of y[1] and y[n], i.e. v[n-1] = min(y[1], y[n]). With this we can model the problem as
shown in Listing 2.6.4. The output statement recreates the original sequence x from the array
of positions y.

Listing 2.6.4: An inverse model for the all interval series problem prob007 in CSPlib
(allinterval2.mzn).

include "alldifferent.mzn";

int: n;

array[1..n] of var 1..n: y; % position of each number
array[1..n-1] of var 1..n-1: v; % position of difference i

constraint alldifferent(y);
constraint alldifferent(v);
constraint forall(i,j in 1..n where i < j)(

(y[i] - y[j] = 1 -> v[j-i] = y[j]) /\
(y[j] - y[i] = 1 -> v[j-i] = y[i])

);

constraint abs(y[1] - y[n]) = 1 /\ v[n-1] = min(y[1], y[n]);
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solve :: int_search(y, first_fail, indomain_min)
satisfy;

array[1..n] of 1..n: x :: output_only
= [ sum(i in 1..n)(i*(fix(y[j]) = i) | j in 1..n ];

output [ "x = \(x);\n" ]

The inverse model has the same size as the original model, in terms of number of variables and
domain sizes. But the inverse model has a much more indirect way of modelling the relationship
between the y and v variables as opposed to the relationship between x and u variables. Hence
we might expect the original model to be better.
The command

$ minizinc --solver gecode --all-solutions --statistics allinterval2.mzn -D
↪→"n=10;"

finds all the solutions in 98343 nodes and 640 ms. So the more direct modelling of the con-
straints is clearly paying off.
Note that the inverse model prints out the answers using the same x view of the solution. The
way this is managed is using output_only annotations. The array x is defined as a fixed array
and annotated as output_only. This means it will only be evaluated, and can only be used in
output statements. Once a solution for y is discovered the value of x is calculated during output
processing, and hence can be displayed in the output.

Output_only annotation
The output_only annotation can be applied to variable definitions. The variable defined
must not be a var type, it can only be par. The variable must also have a right hand side
definition giving its value. This right hand side definition can make use of fix functions
to access the values of decision variables, since it is evaluated at solution processing time

2.6.5 Mul ple Modelling and Channels

When we have two models for the same problem it may be useful to use both models together
by tying the variables in the two models together, since each can give different information to
the solver.

Listing 2.6.5: A dual model for the all interval series problem prob007 in CSPlib
(allinterval3.mzn).

include "inverse.mzn";

int: n;

array[1..n] of var 1..n: x; % sequence of numbers
array[1..n-1] of var 1..n-1: u; % sequence of differences
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constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] - x[i]));

array[1..n] of var 1..n: y; % position of each number
array[1..n-1] of var 1..n-1: v; % position of difference i

constraint inverse(x,y);
constraint inverse(u,v);

constraint abs(y[1] - y[n]) = 1 /\ v[n-1] = min(y[1], y[n]);

solve :: int_search(y, first_fail, indomain_min)
satisfy;

output ["x = ",show(x),"\n"];

Listing 2.6.5 gives a dual model combining features of allinterval.mzn and allinterval2.mzn.
The beginning of the model is taken from allinterval.mzn. We then introduce the y and
v variables from allinterval2.mzn. We tie the variables together using the global inverse
constraint: inverse(x,y) holds if y is the inverse function of x (and vice versa), that is
x[i] = j <-> y[j] = i. A definition is shown in Listing 2.6.6. The model does not include
the constraints relating the y and v variables, they are redundant (and indeed propagation re-
dundant) so they do not add information for a propagation solver. The alldifferent constraints
are also missing since they are made redundant (and propagation redundant) by the inverse con-
straints. The only constraints are the relationships of the x and u variables and the redundant
constraints on y and v.

Listing 2.6.6: A definition of the inverse global constraint (inverse.mzn).

predicate inverse(array[int] of var int: f,
array[int] of var int: invf) =

forall(j in index_set(invf))(invf[j] in index_set(f)) /\
forall(i in index_set(f))(

f[i] in index_set(invf) /\
forall(j in index_set(invf))(j == f[i] <-> i == invf[j])

);

One of the benefits of the dual model is that there is more scope for defining different search
strategies. Running the dual model,

$ minizinc --solver g12fd --all-solutions --statistics allinterval3.mzn -D
↪→"n=10;"

which uses the search strategy of the inverse model, labelling the y variables, finds all solutions
in 1714 choice points and 0.5s. Note that running the same model with labelling on the x
variables requires 13142 choice points and 1.5s.
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2.6.6 Symmetry

Symmetry is very common in constraint satisfaction and optimisation problems. To illustrate
this, let us look again at the n-queens problem from Listing 2.5.1. The top left chess board in
Fig. 2.6.1 shows a solution to the 8-queens problems (labeled “original”). The remaining chess
boards show seven symmetric variants of the same solution: rotated by 90, 180 and 270 degrees,
and flipped vertically.

flip
vertically

original 90º 180º 270º

Fig. 2.6.1: Symmetric variants of an 8-queens solution

If we wanted to enumerate all solutions to the 8-queens problem, we could obviously save the
solver some work by only enumerating non-symmetric solutions, and then generating the sym-
metric variants ourselves. This is one reason why we want to get rid of symmetry in constraint
models. The other, much more important reason, is that the solver may also explore symmetric
variants of non-solution states!
For example, a typical constraint solver may try to place the queen in column 1 into row 1 (which
is fine), and then try to put the column 2 queen into row 3, which, at first sight, does not violate
any of the constraints. However, this configuration cannot be completed to a full solution (which
the solver finds out after a little search). Fig. 2.6.2 shows this configuration on the top left chess
board. Now nothing prevents the solver from trying, e.g., the second configuration from the left
in the bottom row of Fig. 2.6.2, where the queen in column 1 is still in row 1, and the queen in
column 3 is placed in row 2. Therefore, even when only searching for a single solution, the solver
may explore many symmetric states that it has already seen and proven unsatisfiable before!

2.6.6.1 Sta c Symmetry Breaking

The modelling technique for dealing with symmetry is called symmetry breaking, and in its sim-
plest form, involves adding constraints to the model that rule out all symmetric variants of a
(partial) assignment to the variables except one. These constraints are called static symmetry
breaking constraints.
The basic idea behind symmetry breaking is to impose an order. For example, to rule out any
vertical flips of the chess board, we could simply add the constraint that the queen in the first
column must be in the top half of the board:
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Fig. 2.6.2: Symmetric variants of an 8-queens unsatisfiable partial assignment

constraint q[1] <= n div 2;

Convince yourself that this would remove exactly half of the symmetric variants in Fig. 2.6.1. In
order to remove all symmetry, we need to work a bit harder.
Whenever we can express all symmetries as permutations of the array of variables, a set of
lexicographic ordering constraints can be used to break all symmetry. For example, if the array of
variables is called x, and reversing the array is a symmetry of the problem, then the following
constraint will break that symmetry:

constraint lex_lesseq(x, reverse(x));

How about two-dimensional arrays? Lexicographic ordering works just the same, we only have
to coerce the arrays into one dimension. For example, the following breaks the symmetry of
flipping the array along one of the diagonals (note the swapped indices in the second compre-
hension):

array[1..n,1..n] of var int: x;
constraint lex_lesseq([ x[i,j] | i,j in 1..n ], [ x[j,i] | i,j in 1..n ]);

The great thing about using lexicographic ordering constraints is that we can add multiple ones
(to break several symmetries simultaneously), without them interfering with each other, as long
as we keep the order in the first argument the same.
For the n-queens problem, unfortunately this technique does not immediately apply, because
some of its symmetries cannot be described as permutations of the q array. The trick to overcome
this is to express the n-queens problem in terms of Boolean variables that model, for each field
of the board, whether it contains a queen or not. Now all the symmetries can be modeled as
permutations of this array. Since the main constraints of the n-queens problem are much easier
to express with the integer q array, we simply use both models together and add channeling
constraints between them, as explained in Multiple Modelling and Channels (page 103).
The full model, with added Boolean variables, channeling constraints and symmetry breaking
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constraints is shown in Listing 2.6.7. We can conduct a little experiment to check whether it
successfully breaks all the symmetry. Try running the model with increasing values for n, e.g.
from 1 to 10, counting the number of solutions (e.g., by using the -s flag with the Gecode solver,
or selecting “Print all solutions” as well as “Statistics for solving” in the IDE). You should get the
following sequence of numbers of solutions: 1, 0, 0, 1, 2, 1, 6, 12, 46, 92. To verify the sequence,
you can search for it in the On-Line Encyclopedia of Integer Sequences (http://oeis.org).

Listing 2.6.7: Partial model for n-queens with symmetry breaking (full model:
nqueens_sym.mzn).

% Map each position i,j to a Boolean telling us whether there is a queen at␣
↪→i,j
array[1..n,1..n] of var bool: qb;

% Channeling constraint
constraint forall (i,j in 1..n) ( qb[i,j] <-> (q[i]=j) );

% Lexicographic symmetry breaking constraints
constraint

lex_lesseq(array1d(qb), [ qb[j,i] | i,j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i,j in reverse(1..n) ])
;

2.6.6.2 Other Examples of Symmetry

Many other problems have inherent symmetries, and breaking these can often make a significant
difference in solving performance. Here is a list of some common cases:
• Bin packing: when trying to pack items into bins, any two bins that have the same capacity
are symmetric.

• Graph colouring: When trying to assign colours to nodes in a graph such that adjacent
nodes must have different colours, we typically model colours as integer numbers. How-
ever, any permutation of colours is again a valid graph colouring.

• Vehicle routing: if the task is to assign customers to certain vehicles, any two vehicles with
the same capacity may be symmetric (this is similar to the bin packing example).

• Rostering/time tabling: two staff members with the same skill set may be interchangeable,
just like two rooms with the same capacity or technical equipment.
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CHAPTER2.7

Boolean Sa sfiability Modelling in MiniZinc

MiniZinc can be used to model Boolean satisfiability problems where the variables are restricted
to be Boolean (bool). MiniZinc can be used with efficient Boolean satisfiability solvers to solve
the resulting models efficiently.

2.7.1 Modelling Integers

Many times although we wish to use a Boolean satisfiability solver we may need to model some
integer parts of our problem.
There are three common ways of modelling an integer variables I in the range 0 . . .m where
m = 2k − 1 using Boolean variables.
• Binary: I is represented by k binary variables i0, . . . , ik−1 where I = 2k−1ik−1+2k−2ik−2+
· · ·+ 2i1 + i0. This can be represented in MiniZinc as

array[0..k-1] of var bool: i;
var 0..pow(2,k)-1: I = sum(j in 0..k-1)(bool2int(i[j])*pow(2,j));

• Unary: where I is represented bym binary variables i1, . . . , im and i =
∑m

j=1 bool2int(ij).
Since there is massive redundancy in the unary representation we usually require that
ij → ij−1, 1 < j ≤ m. This can be represented in MiniZinc as

array[1..m] of var bool: i;
constraint forall(j in 2..m)(i[j] -> i[j-1]);
var 0..m: I = sum(j in 1..m)(bool2int(i[j]);

• Value: where I is represented by m+ 1 binary variables i0, . . . , im where I = k ⇔ ik, and
at most one of i0, . . . , im is true. This can be represented in MiniZinc as
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array[0..m] of var bool: i;
constraint sum(j in 0..m)(bool2int(i[j]) == 1;
var 0..m: I;
constraint forall(j in 0..m)(I == j <-> i[j]);

There are advantages and disadvantages to each representation. It depends on what operations
on integers are to required in the model as to which is preferable.

2.7.2 Modelling Disequality

Let us consider modelling a latin squares problem. A latin square is an n × n grid of numbers
from 1..n such that each number appears exactly once in every row and column. An integer
model for latin squares is shown in Listing 2.7.1.

Listing 2.7.1: Integer model for Latin Squares (latin.mzn).

int: n; % size of latin square
array[1..n,1..n] of var 1..n: a;

include "alldifferent.mzn";
constraint forall(i in 1..n)(

alldifferent(j in 1..n)(a[i,j]) /\
alldifferent(j in 1..n)(a[j,i])

);
solve satisfy;
output [ show(a[i,j]) ++ if j == n then "\n" else " " endif |

i in 1..n, j in 1..n ];

The only constraint on the integers is in fact disequality, which is encoded in the alldifferent
constraint. The value representation is the best way of representing disequality. A Boolean only
model for latin squares is shown in Listing 2.7.2. Note each integer array element a[i,j] is
replaced by an array of Booleans. We use the exactlyone predicate to encode that each value is
used exactly once in every row and every column, as well as to encode that exactly one of the
Booleans corresponding to integer array element a[i,j] is true.

Listing 2.7.2: Boolean model for Latin Squares (latinbool.mzn).

int: n; % size of latin square
array[1..n,1..n,1..n] of var bool: a;

predicate atmostone(array[int] of var bool:x) =
forall(i,j in index_set(x) where i < j)(
(not x[i] \/ not x[j]));

predicate exactlyone(array[int] of var bool:x) =
atmostone(x) /\ exists(x);

constraint forall(i,j in 1..n)(
exactlyone(k in 1..n)(a[i,j,k]) /\
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exactlyone(k in 1..n)(a[i,k,j]) /\
exactlyone(k in 1..n)(a[k,i,j])

);
solve satisfy;
output [ if fix(a[i,j,k]) then

show(k) ++ if j == n then "\n" else " " endif
else "" endif | i,j,k in 1..n ];

2.7.3 Modelling Cardinality

Let us consider modelling the Light Up puzzle. The puzzle consists of a rectangular grid of
squares which are blank, or filled. Every filled square may contain a number from 1 to 4, or may
have no number. The aim is to place lights in the blank squares so that
• Each blank square is “illuminated”, that is can see a light through an uninterrupted line of
blank squares

• No two lights can see each other
• The number of lights adjacent to a numbered filled square is exactly the number in the
filled square.

An example of a Light Up puzzle is shown in Fig. 2.7.1 with its solution in Fig. 2.7.2.

Fig. 2.7.1: An example of a Light Up puzzle

It is natural to model this problem using Boolean variables to determine which squares contain
a light and which do not, but there is some integer arithmetic to consider for the filled squares.
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Fig. 2.7.2: The completed solution of the Light Up puzzle

Listing 2.7.3: SAT Model for the Light Up puzzle (lightup.mzn).

int: h; set of int: H = 1..h; % board height
int: w; set of int: W = 1..w; % board width
array[H,W] of -1..5: b; % board
int: E = -1; % empty square
set of int: N = 0..4; % filled and numbered square
int: F = 5; % filled unnumbered square

% position (i1,j1) is visible to (i2,j2)
test visible(int: i1, int: j1, int: i2, int: j2) =

((i1 == i2) /\ forall(j in min(j1,j2)..max(j1,j2))(b[i1,j] == E))
\/ ((j1 == j2) /\ forall(i in min(i1,i2)..max(i1,i2))(b[i,j1] == E));

array[H,W] of var bool: l; % is there a light

% filled squares have no lights
constraint forall(i in H, j in W, where b[i,j] != E)(l[i,j] == false);
% lights next to filled numbered square agree
include "boolsum.mzn";
constraint forall(i in H, j in W where b[i,j] in N)(

bool_sum_eq([ l[i1,j1] | i1 in i-1..i+1, j1 in j-1..j+1 where
abs(i1 - i) + abs(j1 - j) == 1 /\
i1 in H /\ j1 in W ], b[i,j]));

% each blank square is illuminated
constraint forall(i in H, j in W where b[i,j] == E)(

exists(j1 in W where visible(i,j,i,j1))(l[i,j1]) \/
exists(i1 in H where visible(i,j,i1,j))(l[i1,j])

);
% no two lights see each other

112 Chapter 2.7. Boolean Sa sfiability Modelling in MiniZinc



MiniZinc Handbook, Release 2.4.3

constraint forall(i1,i2 in H, j1,j2 in W where
(i1 != i2 \/ j1 != j2) /\ b[i1,j1] == E
/\ b[i2,j2] == E /\ visible(i1,j1,i2,j2))(

not l[i1,j1] \/ not l[i2,j2]
);

solve satisfy;
output [ if b[i,j] != E then show(b[i,j])

else if fix(l[i,j]) then "L" else "." endif
endif ++ if j == w then "\n" else " " endif |
i in H, j in W];

A model for the problem is given in Listing 2.7.3. A data file for the problem shown in Fig. 2.7.1
is shown in Listing 2.7.4.

Listing 2.7.4: Datafile for the Light Up puzzle instance shown in Fig. 2.7.1.

h = 7;
w = 7;
b = [| -1,-1,-1,-1, 0,-1,-1

| -1,-1,-1,-1,-1,-1,-1
| 0,-1,-1, 3,-1,-1,-1
| -1,-1, 2,-1, 4,-1,-1
| -1,-1,-1, 5,-1,-1, 1
| -1,-1,-1,-1,-1,-1,-1
| 1,-1, 2,-1,-1,-1,-1 |];

The model makes use of a Boolean sum predicate

predicate bool_sum_eq(array[int] of var bool:x, int:s);

which requires that the sum of an array of Boolean equals some fixed integer. There are a
number of ways of modelling such cardinality constraints using Booleans.
• Adder networks: we can use a network of adders to build a binary Boolean representation
of the sum of the Booleans

• Sorting networks: we can use a sorting network to sort the array of Booleans to create a
unary representation of the sum of the Booleans

• Binary decision diagrams: we can create a binary decision diagram (BDD) that encodes
the cardinality constraint.

Listing 2.7.5: Cardinality constraints by binary adder networks (bboolsum.mzn).

% the sum of booleans x = s
predicate bool_sum_eq(array[int] of var bool:x, int:s) =

let { int: c = length(x) } in
if s < 0 then false
elseif s == 0 then

forall(i in 1..c)(x[i] == false)
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elseif s < c then
let { % cp = number of bits required for representing 0..c

int: cp = floor(log2(int2float(c))),
% z is sum of x in binary
array[0..cp] of var bool:z } in

binary_sum(x, z) /\
% z == s
forall(i in 0..cp)(z[i] == ((s div pow(2,i)) mod 2 == 1))

elseif s == c then
forall(i in 1..c)(x[i] == true)

else false endif;

include "binarysum.mzn";

Listing 2.7.6: Code for building binary addition networks (binarysum.mzn).

% the sum of bits x = s in binary.
% s[0], s[1], ..., s[k] where 2^k >= length(x) > 2^(k-1)
predicate binary_sum(array[int] of var bool:x,

array[int] of var bool:s)=
let { int: l = length(x) } in
if l == 1 then s[0] = x[1]
elseif l == 2 then

s[0] = (x[1] xor x[2]) /\ s[1] = (x[1] /\ x[2])
else let { int: ll = (l div 2),

array[1..ll] of var bool: f = [ x[i] | i in 1..ll ],
array[1..ll] of var bool: t = [x[i]| i in ll+1..2*ll],
var bool: b = if ll*2 == l then false else x[l] endif,
int: cp = floor(log2(int2float(ll))),
array[0..cp] of var bool: fs,
array[0..cp] of var bool: ts } in
binary_sum(f, fs) /\ binary_sum(t, ts) /\
binary_add(fs, ts, b, s)

endif;

% add two binary numbers x, and y and carry in bit ci to get binary s
predicate binary_add(array[int] of var bool: x,

array[int] of var bool: y,
var bool: ci,
array[int] of var bool: s) =

let { int:l = length(x),
int:n = length(s), } in

assert(l == length(y),
"length of binary_add input args must be same",

assert(n == l \/ n == l+1, "length of binary_add output " ++
"must be equal or one more than inputs",

let { array[0..l] of var bool: c } in
full_adder(x[0], y[0], ci, s[0], c[0]) /\
forall(i in 1..l)(full_adder(x[i], y[i], c[i-1], s[i], c[i])) /\
if n > l then s[n] = c[l] else c[l] == false endif ));
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predicate full_adder(var bool: x, var bool: y, var bool: ci,
var bool: s, var bool: co) =

let { var bool: xy = x xor y } in
s = (xy xor ci) /\ co = ((x /\ y) \/ (ci /\ xy));

We can implement bool_sum_eq using binary adder networks using the code shown in Listing
2.7.5. The predicate binary_sum defined in Listing 2.7.6 creates a binary representation of the
sum of x by splitting the list into two, summing up each half to create a binary representation
and then summing these two binary numbers using binary_add. If the list x is odd the last bit is
saved to use as a carry in to the binary addition.

Listing 2.7.7: Cardinality constraints by sorting networks (uboolsum.mzn).

% the sum of booleans x = s
predicate bool_sum_eq(array[int] of var bool:x, int:s) =

let { int: c = length(x) } in
if s < 0 then false
elseif s == 0 then forall(i in 1..c)(x[i] == false)
elseif s < c then

let { % cp = nearest power of 2 >= c
int: cp = pow(2,ceil(log2(int2float(c)))),
array[1..cp] of var bool:y, % y is padded version of x
array[1..cp] of var bool:z } in

forall(i in 1..c)(y[i] == x[i]) /\
forall(i in c+1..cp)(y[i] == false) /\
oesort(y, z) /\ z[s] == true /\ z[s+1] == false

elseif s == c then forall(i in 1..c)(x[i] == true)
else false endif;

include "oesort.mzn";

Listing 2.7.8: Odd-even merge sorting networks (oesort.mzn).

%% odd-even sort
%% y is the sorted version of x, all trues before falses
predicate oesort(array[int] of var bool:x, array[int] of var bool:y)=

let { int: c = card(index_set(x)) } in
if c == 1 then x[1] == y[1]
elseif c == 2 then comparator(x[1],x[2],y[1],y[2])
else

let {
array[1..c div 2] of var bool:xf = [x[i] | i in 1..c div 2],
array[1..c div 2] of var bool:xl = [x[i] | i in c div 2 +1..c],
array[1..c div 2] of var bool:tf,
array[1..c div 2] of var bool:tl } in

oesort(xf,tf) /\ oesort(xl,tl) /\ oemerge(tf ++ tl, y)
endif;
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%% odd-even merge
%% y is the sorted version of x, all trues before falses
%% assumes first half of x is sorted, and second half of x
predicate oemerge(array[int] of var bool:x, array[int] of var bool:y)=

let { int: c = card(index_set(x)) } in
if c == 1 then x[1] == y[1]
elseif c == 2 then comparator(x[1],x[2],y[1],y[2])
else

let { array[1..c div 2] of var bool:xo =
[ x[i] | i in 1..c where i mod 2 == 1],

array[1..c div 2] of var bool:xe =
[ x[i] | i in 1..c where i mod 2 == 0],

array[1..c div 2] of var bool:to,
array[1..c div 2] of var bool:te } in

oemerge(xo,to) /\ oemerge(xe,te) /\
y[1] = to[1] /\
forall(i in 1..c div 2 -1)(

comparator(te[i],to[i+1],y[2*i],y[2*i+1])) /\
y[c] = te[c div 2]

endif));

% comparator o1 = max(i1,i2), o2 = min(i1,i2)
predicate comparator(var bool:i1,var bool:i2,var bool:o1,var bool:o2)=

(o1 = (i1 \/ i2)) /\ (o2 = (i1 /\ i2));

We can implement bool_sum_eq using unary sorting networks using the code shown in Listing
2.7.7. The cardinality constraint is defined by expanding the input x to have length a power of
2, and sorting the resulting bits using an odd-even merge sorting network. The odd-even merge
sorter shown in ex-oesort works recursively by splitting the input list in 2, sorting each list and
merging the two sorted lists.

Listing 2.7.9: Cardinality constraints by binary decision diagrams (bddsum.mzn).

% the sum of booleans x = s
predicate bool_sum_eq(array[int] of var bool:x, int:s) =

let { int: c = length(x),
array[1..c] of var bool: y = [x[i] | i in index_set(x)]

} in
rec_bool_sum_eq(y, 1, s);

predicate rec_bool_sum_eq(array[int] of var bool:x, int: f, int:s) =
let { int: c = length(x) } in
if s < 0 then false
elseif s == 0 then

forall(i in f..c)(x[i] == false)
elseif s < c - f + 1 then

(x[f] == true /\ rec_bool_sum_eq(x,f+1,s-1)) \/
(x[f] == false /\ rec_bool_sum_eq(x,f+1,s))

elseif s == c - f + 1 then
forall(i in f..c)(x[i] == true)
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else false endif;

We can implement bool_sum_eq using binary decision diagrams using the code shown in
ex:bddsum. The cardinality constraint is broken into two cases: either the first element x[1]
is true, and the sum of the remaining bits is s-1, or x[1] is false and the sum of the remaining
bits is s. For efficiency this relies on common subexpression elimination to avoid creating many
equivalent constraints.
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CHAPTER2.8

FlatZinc and Fla ening

Constraint solvers do not directly support MiniZinc models, rather in order to run a MiniZinc
model, it is translated into a simple subset of MiniZinc called FlatZinc. FlatZinc reflects the fact
that most constraint solvers only solve satisfaction problems of the form ¯existsc1 ∧ · · · ∧ cm or
optimization problems of the form minimize z subject to c1 ∧ · · · ∧ cm, where ci are primitive
constraints and z is an integer or float expression in a restricted form.
The minizinc tool includes the MiniZinc compiler, which takes a MiniZinc model and data files
and creates a flattened FlatZinc model which is equivalent to the MiniZinc model with the given
data, and that appears in the restricted form discussed above. Normally the construction of a
FlatZinc model which is sent to a solver is hidden from the user but you can view the result of
flattening a model model.mzn with its data data.dzn as follows:

minizinc -c model.mzn data.dzn

which creates a FlatZinc model called model.fzn.
In this chapter we explore the process of translation from MiniZinc to FlatZinc.

2.8.1 Fla ening Expressions

The restrictions of the underlying solver mean that complex expressions in MiniZinc need to
be flattened to only use conjunctions of primitive constraints which do not themselves contain
structured terms.
Consider the following model for ensuring that two circles in a rectangular box do not overlap:

Listing 2.8.1: Modelling non overlap of two circles (cnonoverlap.mzn).

float: width; % width of rectangle to hold circles
float: height; % height of rectangle to hold circles
float: r1;
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var r1..width-r1: x1; % (x1,y1) is center of circle of radius r1
var r1..height-r1: y1;
float: r2;
var r2..width-r2: x2; % (x2,y2) is center of circle of radius r2
var r2..height-r2: y2;

% centers are at least r1 + r2 apart
constraint (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) >= (r1+r2)*(r1+r2);
solve satisfy;

2.8.1.1 Simplifica on and Evalua on

Given the data file

width = 10.0;
height = 8.0;
r1 = 2.0;
r2 = 3.0;

the translation to FlatZinc first simplifies the model by replacing all the parameters by their
values, and evaluating any fixed expression. After this simplification the values of parameters
are not longer needed. An exception to this is large arrays of parametric values. If they are used
more than once, then the parameter is retained to avoid duplicating the large expression.
After simplification the variable and parameter declarations parts of the model of Listing 2.8.1
become

var 2.0 .. 8.0: x1;
var 2.0 .. 6.0: y1;
var 3.0 .. 7.0: x2;
var 3.0 .. 5.0: y2;

2.8.1.2 Defining Subexpressions

Now no constraint solver directly handles complex constraint expressions like the one in List-
ing 2.8.1. Instead, each subexpression in the expression is named, and we create a con-
straint to construct the value of each expression. Let’s examine the subexpressions of the
constraint expression. (x1 - x2) is a subexpression, if we name if FLOAT01 we can de-
fine it as constraint FLOAT01 = x1 - x2; Notice that this expression occurs twice in the
model. We only need to construct the value once, we can then reuse it. This is called
common subexpression elimination. The subexpression (x1 - x2)*(x1 - x2) can be named
FLOAT02 and we can define it as constraint FLOAT02 = FLOAT01 * FLOAT01; We can similarly
name constraint FLOAT03 = y1 - y2; and constraint FLOAT04 = FLOAT03 * FLOAT03; and
finally constraint FLOAT05 = FLOAT02 * FLOAT04;. The inequality constraint itself becomes
constraint FLOAT05 >= 25.0; since (r1+r2)*(r1 + r2) is calculated as 25.0. The flattened
constraint is hence
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constraint FLOAT01 = x1 - x2;
constraint FLOAT02 = FLOAT01 * FLOAT01;
constraint FLOAT03 = y1 - y2;
constraint FLOAT04 = FLOAT03 * FLOAT03;
constraint FLOAT05 = FLOAT02 * FLOAT04;
constraint FLOAT05 >= 25.0

2.8.1.3 FlatZinc constraint form

Flattening as its final step converts the form of the constraint to a standard FlatZinc form which
is always p(a1, . . . , an) where p is the name of the primitive constraint and a1, . . . , an are the
arguments. FlatZinc tries to use a minimum of different constraint forms so for example the
constraint FLOAT01 = x1 - x2 is first rewritten to FLOAT01 + x2 = x1 and then output using
the float_plus primitive constraint. The resulting constraint form is as follows:

constraint float_plus(FLOAT01, x2, x1);
constraint float_plus(FLOAT03, y2, y1);
constraint float_plus(FLOAT02, FLOAT04, FLOAT05);
constraint float_times(FLOAT01, FLOAT01, FLOAT02);
constraint float_times(FLOAT03, FLOAT03, FLOAT04);

2.8.1.4 Bounds analysis

We are still missing one thing, the declarations for the introduced variables FLOAT01, …, FLOAT05.
While these could just be declared as var float, in order to make the solver’s task easier MiniZ-
inc tries to determine upper and lower bounds on newly introduced variables, by a simple bounds
analysis. For example since FLOAT01 = x1 - x2 and 2.0 ≤ x1 ≤ 8.0 and 3.0 ≤ x2 ≤ 7.0 then we
can see that −5.0 ≤ FLOAT0 ≤ 5.0. Given this information we can see that −25.0 ≤ FLOAT02
≤ 25.0 (although note that if we recognized that the multiplication was in fact a squaring we
could give the much more accurate bounds 0.0 ≤ FLOAT02 ≤ 25.0).
The alert reader may have noticed a discrepancy between the flattened form of the constraints in
Defining Subexpressions (page 120) and FlatZinc constraint form (page 121). In the latter there
is no inequality constraint. Since unary inequalities can be fully represented by the bounds of
a variable, the inequality forces the lower bound of FLOAT05 to be 25.0 and is then redundant.
The final flattened form of the model of Listing 2.8.1 is:

% Variables
var 2.0 .. 8.0: x1;
var 2.0 .. 6.0: y1;
var 3.0 .. 7.0: x2;
var 3.0 .. 5.0: y2;
%
var -5.0..5.0: FLOAT01;
var -25.0..25.0: FLOAT02;
var -3.0..3.0: FLOAT03;
var -9.0..9.0: FLOAT04;
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var 25.0..34.0: FLOAT05;
% Constraints
constraint float_plus(FLOAT01, x2, x1);
constraint float_plus(FLOAT03, y2, y1);
constraint float_plus(FLOAT02, FLOAT04, FLOAT05);
constraint float_times(FLOAT01, FLOAT01, FLOAT02);
constraint float_times(FLOAT03, FLOAT03, FLOAT04);
%
solve satisfy;

2.8.1.5 Objec ves

MiniZinc flattens minimization or maximization objectives just like constraints. The objective
expression is flattened and a variable is created for it, just as for other expressions. In the
FlatZinc output the solve item is always on a single variable. See Let Expressions (page 131) for
an example.

2.8.2 Linear Expressions

One of the most important form of constraints, widely used for modelling, are linear constraints
of the form

a1x1 + · · ·+ anxn

=
≤
<

a0

where ai are integer or floating point constants, and xi are integer or floating point variables.
They are highly expressive, and are the only class of constraint supported by (integer) linear
programming constraint solvers. The translator from MiniZinc to FlatZinc tries to create linear
constraints, rather than break up linear constraints into many subexpressions.

Listing 2.8.2: A MiniZinc model to illustrate linear constraint flattening (linear.mzn).

int: d = -1;
var 0..10: x;
var -3..6: y;
var 3..8: z;
constraint 3*x - y + x * z <= 19 + d * (x + y + z) - 4*d;
solve satisfy;

Consider the model shown in Listing 2.8.2. Rather than create variables for all the subexpres-
sions 3 ∗ x, 3 ∗ x − y, x ∗ z, 3 ∗ x − y + x ∗ z, x + y + z, d ∗ (x + y + z), 19 + d ∗ (x + y + z),
and 19 + d ∗ (x+ y+ z)− 4 ∗ d translation will attempt to create a large linear constraint which
captures as much as possible of the constraint in a single FlatZinc constraint.
Flattening creates linear expressions as a single unit rather than building intermediate variables
for each subexpression. It also simplifies the linear expression created. Extracting the linear
expression from the constraints leads to
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var 0..80: INT01;
constraint 4*x + z + INT01 <= 23;
constraint INT01 = x * z;

Notice how the nonlinear expression x×z is extracted as a new subexpression and given a name,
while the remaining terms are collected together so that each variable appears exactly once (and
indeed variable y whose terms cancel is eliminated).
Finally each constraint is written to FlatZinc form obtaining:

var 0..80: INT01;
constraint int_lin_le([1,4,1],[INT01,x,z],23);
constraint int_times(x,z,INT01);

2.8.3 Unrolling Expressions

Most models require creating a number of constraints which is dependent on the input data.
MiniZinc supports these models with array types, list and set comprehensions, and aggregation
functions.
Consider the following aggregate expression from the production scheduling example of Listing
2.2.2.

int: mproducts = max (p in Products)
(min (r in Resources where consumption[p,r] > 0)

(capacity[r] div consumption[p,r]));

Since this uses generator call syntax we can rewrite it to equivalent form which is processed by
the compiler:

int: mproducts = max([ min [ capacity[r] div consumption[p,r]
| r in Resources where consumption[p,r] > 0])

| p in Products]);

Given the data

nproducts = 2;
nresources = 5;
capacity = [4000, 6, 2000, 500, 500];
consumption= [| 250, 2, 75, 100, 0,

| 200, 0, 150, 150, 75 |];

this first builds the array for p = 1

[ capacity[r] div consumption[p,r]
| r in 1..5 where consumption[p,r] > 0]
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which is [16, 3, 26, 5] and then calculates the minimum as 3. It then builds the same array
for p = 2which is [20, 13, 3, 6] and calculates the minimum as 3. It then constructs the array
[3, 3] and calculates the maximum as 3. There is no representation of mproducts in the output
FlatZinc, this evaluation is simply used to replace mproducts by the calculated value 3.
The most common form of aggregate expression in a constraint model is forall. Forall expres-
sions are unrolled into multiple constraints.
Consider the MiniZinc fragment

array[1..8] of var 0..9: v = [S,E,N,D,M,O,R,Y];
constraint forall(i,j in 1..8 where i < j)(v[i] != v[j])

which arises from the SEND-MORE-MONEY example of Listing 2.2.4 using a default decomposi-
tion for alldifferent. The forall expression creates a constraint for each i, j pair which meet
the requirement i < j, thus creating

constraint v[1] != v[2]; % S != E
constraint v[1] != v[3]; % S != N
...
constraint v[1] != v[8]; % S != Y
constraint v[2] != v[3]; % E != N
...
constraint v[7] != v[8]; % R != Y

In FlatZinc form this is

constraint int_neq(S,E);
constraint int_neq(S,N);
...
constraint int_neq(S,Y);
constraint int_neq(E,N);
...
constraint int_neq(R,Y);

Notice how the temporary array variables v[i] are replaced by the original variables in the
output FlatZinc.

2.8.4 Arrays

One dimensional arrays in MiniZinc can have arbitrary indices as long as they are contiguous
integers. In FlatZinc all arrays are indexed from 1..l where l is the length of the array. This
means that array lookups need to be translated to the FlatZinc view of indices.
Consider the following MiniZinc model for balancing a seesaw of length 2 * l2, with a child of
weight cw kg using exactly m 1kg weights.

int: cw; % child weight
int: l2; % half seesaw length
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int: m; % number of 1kg weight
array[-l2..l2] of var 0..max(m,cw): w; % weight at each point
var -l2..l2: p; % position of child
constraint sum(i in -l2..l2)(i * w[i]) = 0; % balance
constraint sum(i in -l2..l2)(w[i]) = m + cw; % all weights used
constraint w[p] = cw; % child is at position p
solve satisfy;

Given cw = 2, l2 = 2, and m = 3 the unrolling produces the constraints

array[-2..2] of var 0..3: w;
var -2..2: p
constraint -2*w[-2] + -1*w[-1] + 0*w[0] + 1*w[1] + 2*w[2] = 0;
constraint w[-2] + w[-1] + w[0] + w[1] + w[2] = 5;
constraint w[p] = 2;

But FlatZinc insists that the w array starts at index 1. This means we need to rewrite all the
array accesses to use the new index value. For fixed array lookups this is easy, for variable array
lookups we may need to create a new variable. The result for the equations above is

array[1..5] of var 0..3: w;
var -2..2: p
var 1..5: INT01;
constraint -2*w[1] + -1*w[2] + 0*w[3] + 1*w[4] + 2*w[5] = 0;
constraint w[1] + w[2] + w[3] + w[4] + w[5] = 5;
constraint w[INT01] = 2;
constraint INT01 = p + 3;

Finally we rewrite the constraints into FlatZinc form. Note how the variable array index lookup
is mapped to array_var_int_element.

array[1..5] of var 0..3: w;
var -2..2: p
var 1..5: INT01;
constraint int_lin_eq([2, 1, -1, -2], [w[1], w[2], w[4], w[5]], 0);
constraint int_lin_eq([1, 1, 1, 1, 1], [w[1],w[2],w[3],w[4],w[5]], 5);
constraint array_var_int_element(INT01, w, 2);
constraint int_lin_eq([-1, 1], [INT01, p], -3);

Multidimensional arrays are supported by MiniZinc, but only single dimension arrays are sup-
ported by FlatZinc (at present). This means that multidimensional arrays must be mapped to
single dimension arrays, andmultidimensional array access must be mapped to single dimension
array access.
Consider the Laplace equation constraints defined for a finite element plate model in Listing
2.2.1:
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set of int: HEIGHT = 0..h;
set of int: CHEIGHT = 1..h-1;
set of int: WIDTH = 0..w;
set of int: CWIDTH = 1..w-1;
array[HEIGHT,WIDTH] of var float: t; % temperature at point (i,j)
var float: left; % left edge temperature
var float: right; % right edge temperature
var float: top; % top edge temperature
var float: bottom; % bottom edge temperature

% equation
% Laplace equation: each internal temp. is average of its neighbours
constraint forall(i in CHEIGHT, j in CWIDTH)(

4.0*t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);

Assuming w = 4 and h = 4 this creates the constraints

array[0..4,0..4] of var float: t; % temperature at point (i,j)
constraint 4.0*t[1,1] = t[0,1] + t[1,0] + t[2,1] + t[1,2];
constraint 4.0*t[1,2] = t[0,2] + t[1,1] + t[2,2] + t[1,3];
constraint 4.0*t[1,3] = t[0,3] + t[1,2] + t[2,3] + t[1,4];
constraint 4.0*t[2,1] = t[1,1] + t[2,0] + t[3,1] + t[2,2];
constraint 4.0*t[2,2] = t[1,2] + t[2,1] + t[3,2] + t[2,3];
constraint 4.0*t[2,3] = t[1,3] + t[2,2] + t[3,3] + t[2,4];
constraint 4.0*t[3,1] = t[2,1] + t[3,0] + t[4,1] + t[3,2];
constraint 4.0*t[3,2] = t[2,2] + t[3,1] + t[4,2] + t[3,3];
constraint 4.0*t[3,3] = t[2,3] + t[3,2] + t[4,3] + t[3,4];

The 2 dimensional array of 25 elements is converted to a one dimensional array and the indices
are changed accordingly: so index [i,j] becomes [i * 5 + j + 1].

array [1..25] of var float: t;
constraint 4.0*t[7] = t[2] + t[6] + t[12] + t[8];
constraint 4.0*t[8] = t[3] + t[7] + t[13] + t[9];
constraint 4.0*t[9] = t[4] + t[8] + t[14] + t[10];
constraint 4.0*t[12] = t[7] + t[11] + t[17] + t[13];
constraint 4.0*t[13] = t[8] + t[12] + t[18] + t[14];
constraint 4.0*t[14] = t[9] + t[13] + t[19] + t[15];
constraint 4.0*t[17] = t[12] + t[16] + t[22] + t[18];
constraint 4.0*t[18] = t[13] + t[17] + t[23] + t[19];
constraint 4.0*t[19] = t[14] + t[18] + t[24] + t[20];

2.8.5 Reifica on

FlatZinc models involve only variables and parameter declarations and a series of primitive con-
straints. Hence when we model in MiniZinc with Boolean connectives other than conjunction,
something has to be done. The core approach to handling complex formulae that use connec-
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tives other than conjunction is by reification. Reifying a constraint c creates a new constraint
equivalent to b ↔ c where the Boolean variable b is true if the constraint holds and false if it
doesn’t hold.
Once we have the capability to reify constraints the treatment of complex formulae is not differ-
ent from arithmetic expressions. We create a name for each subexpression and a flat constraint
to constrain the name to take the value of its subexpression.
Consider the following constraint expression that occurs in the jobshop scheduling example of
Listing 2.2.8.

constraint %% ensure no overlap of tasks
forall(j in 1..tasks) (

forall(i,k in 1..jobs where i < k) (
s[i,j] + d[i,j] <= s[k,j] \/
s[k,j] + d[k,j] <= s[i,j]

) );

Given the data file

jobs = 2;
tasks = 3;
d = [| 5, 3, 4 | 2, 6, 3 |]

then the unrolling creates

constraint s[1,1] + 5 <= s[2,1] \/ s[2,1] + 2 <= s[1,1];
constraint s[1,2] + 3 <= s[2,2] \/ s[2,2] + 6 <= s[1,2];
constraint s[1,3] + 4 <= s[2,3] \/ s[2,3] + 3 <= s[1,3];

Reification of the constraints that appear in the disjunction creates new Boolean variables to
define the values of each expression.

array[1..2,1..3] of var 0..23: s;
constraint BOOL01 <-> s[1,1] + 5 <= s[2,1];
constraint BOOL02 <-> s[2,1] + 2 <= s[1,1];
constraint BOOL03 <-> s[1,2] + 3 <= s[2,2];
constraint BOOL04 <-> s[2,2] + 6 <= s[1,2];
constraint BOOL05 <-> s[1,3] + 4 <= s[2,3];
constraint BOOL06 <-> s[2,3] + 3 <= s[1,3];
constraint BOOL01 \/ BOOL02;
constraint BOOL03 \/ BOOL04;
constraint BOOL05 \/ BOOL06;

Each primitive constraint can now be mapped to the FlatZinc form. Note how the two dimen-
sional array s is mapped to a one dimensional form.

array[1..6] of var 0..23: s;
constraint int_lin_le_reif([1, -1], [s[1], s[4]], -5, BOOL01);
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constraint int_lin_le_reif([-1, 1], [s[1], s[4]], -2, BOOL02);
constraint int_lin_le_reif([1, -1], [s[2], s[5]], -3, BOOL03);
constraint int_lin_le_reif([-1, 1], [s[2], s[5]], -6, BOOL04);
constraint int_lin_le_reif([1, -1], [s[3], s[6]], -4, BOOL05);
constraint int_lin_le_reif([-1, 1], [s[3], s[6]], -3, BOOL06);
constraint array_bool_or([BOOL01, BOOL02], true);
constraint array_bool_or([BOOL03, BOOL04], true);
constraint array_bool_or([BOOL05, BOOL06], true);

The int_lin_le_reif is the reified form of the linear constraint int_lin_le.
Most FlatZinc primitive constraints p(x̄) have a reified form p_reif(x̄, b)which takes an additional
final argument b and defines the constraint b↔ p(x̄). FlatZinc primitive constraints which define
functional relationships, like int_plus and int_plus, do not need to support reification. Instead,
the equality with the result of the function is reified.
Another important use of reification arises when we use the coercion function bool2int (either
explicitly, or implicitly by using a Boolean expression as an integer expression). Flattening cre-
ates a Boolean variable to hold the value of the Boolean expression argument, as well as an
integer variable (restricted to 0..1) to hold this value.
Consider the magic series problem of Listing 2.2.12.

int: n;
array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (
s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));

Given n = 2 the unrolling creates

constraint s[0] = bool2int(s[0] = 0) + bool2int(s[1] = 0);
constraint s[1] = bool2int(s[0] = 1) + bool2int(s[1] = 1);

and flattening creates

constraint BOOL01 <-> s[0] = 0;
constraint BOOL03 <-> s[1] = 0;
constraint BOOL05 <-> s[0] = 1;
constraint BOOL07 <-> s[1] = 1;
constraint INT02 = bool2int(BOOL01);
constraint INT04 = bool2int(BOOL03);
constraint INT06 = bool2int(BOOL05);
constraint INT08 = bool2int(BOOL07);
constraint s[0] = INT02 + INT04;
constraint s[1] = INT06 + INT08;

The final FlatZinc form is
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var bool: BOOL01;
var bool: BOOL03;
var bool: BOOL05;
var bool: BOOL07;
var 0..1: INT02;
var 0..1: INT04;
var 0..1: INT06;
var 0..1: INT08;
array [1..2] of var 0..2: s;
constraint int_eq_reif(s[1], 0, BOOL01);
constraint int_eq_reif(s[2], 0, BOOL03);
constraint int_eq_reif(s[1], 1, BOOL05);
constraint int_eq_reif(s[2], 1, BOOL07);
constraint bool2int(BOOL01, INT02);
constraint bool2int(BOOL03, INT04);
constraint bool2int(BOOL05, INT06);
constraint bool2int(BOOL07, INT08);
constraint int_lin_eq([-1, -1, 1], [INT02, INT04, s[1]], 0);
constraint int_lin_eq([-1, -1, 1], [INT06, INT08, s[2]], 0);
solve satisfy;

2.8.6 Predicates

An important factor in the support for MiniZinc by many different solvers is that global con-
straints (and indeed FlatZinc constraints) can be specialized for the particular solver.
Each solver will either specify a predicate without a definition, or with a definition. For example
a solver that has a builtin global alldifferent predicate, will include the definition

predicate alldifferent(array[int] of var int:x);

in its globals library, while a solver using the default decomposition will have the definition

predicate alldifferent(array[int] of var int:x) =
forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

Predicate calls p(t̄) are flattened by first constructing variables vi for each argument terms ti.
If the predicate has no definition we simply use a call to the predicate with the constructed
arguments: p(v̄). If the predicate has a definition p(x̄) = ϕ(x̄) then we replace the predicate
call p(t̄) with the body of the predicate with the formal arguments replaced by the argument
variables, that is ϕ(v̄). Note that if a predicate call p(t̄) appears in a reified position and it has no
definition, we check for the existence of a reified version of the predicate p_reif(x̄, b) in which
case we use that.
Consider the alldifferent constraint in the SEND-MORE-MONEY example of Listing 2.2.4

constraint alldifferent([S,E,N,D,M,O,R,Y]);
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If the solver has a builtin alldifferent we simply construct a new variable for the argument,
and replace it in the call.

array[1..8] of var 0..9: v = [S,E,N,D,M,O,R,Y];
constraint alldifferent(v);

Notice that bounds analysis attempts to find tight bounds on the new array variable. The reason
for constructing the array argument is if we use the same array twice the FlatZinc solver does
not have to construct it twice. In this case since it is not used twice a later stage of the translation
will replace v by its definition.
What if the solver uses the default definition of alldifferent? Then the variable v is defined
as usual, and the predicate call is replaced by a renamed copy where v replaces the formal
argument x. The resulting code is

array[1..8] of var 0..9: v = [S,E,N,D,M,O,R,Y];
constraint forall(i,j in 1..8 where i < j)(v[i] != v[j])

which we examined in Unrolling Expressions (page 123).
Consider the following constraint, where alldifferent appears in a reified position.

constraint alldifferent([A,B,C]) \/ alldifferent([B,C,D]);

If the solver has a reified form of alldifferent this will be flattened to

constraint alldifferent_reif([A,B,C],BOOL01);
constraint alldifferent_reif([B,C,D],BOOL02);
constraint array_bool_or([BOOL01,BOOL02],true);

Using the default decomposition, the predicate replacement will first create

array[1..3] of var int: v1 = [A,B,C];
array[1..3] of var int: v2 = [B,C,D];
constraint forall(i,j in 1..3 where i<j)(v1[i] != v1[j]) \/

forall(i,j in 1..3 where i<j)(v2[i] != v2[j]);

which will eventually be flattened to the FlatZinc form

constraint int_neq_reif(A,B,BOOL01);
constraint int_neq_reif(A,C,BOOL02);
constraint int_neq_reif(B,C,BOOL03);
constraint array_bool_and([BOOL01,BOOL02,BOOL03],BOOL04);
constraint int_neq_reif(B,D,BOOL05);
constraint int_neq_reif(C,D,BOOL06);
constraint array_bool_and([BOOL03,BOOL05,BOOL06],BOOL07);
constraint array_bool_or([BOOL04,BOOL07],true);
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Note how common subexpression elimination reuses the reified inequality B != C (although
there is a better translation which lifts the common constraint to the top level conjunction).

2.8.7 Let Expressions

Let expressions are a powerful facility of MiniZinc to introduce new variables. This is useful
for creating common sub expressions, and for defining local variables for predicates. During
flattening let expressions are translated to variable and constraint declarations. The relational
semantics of MiniZinc means that these constraints must appear as if conjoined in the first en-
closing Boolean expression.
A key feature of let expressions is that each time they are used they create new variables.
Consider the flattening of the code

constraint even(u) \/ even(v);
predicate even(var int: x) =

let { var int: y } in x = 2 * y;

First the predicate calls are replaced by their definition.

constraint (let { var int: y} in u = 2 * y) \/
(let { var int: y} in v = 2 * y);

Next let variables are renamed apart

constraint (let { var int: y1} in u = 2 * y1) \/
(let { var int: y2} in v = 2 * y2);

Finally variable declarations are extracted to the top level

var int: y1;
var int: y2;
constraint u = 2 * y1 \/ v = 2 * y2;

Once the let expression is removed we can flatten as usual.
Remember that let expressions can define values for newly introduced variables (and indeed
must do so for parameters). These implicitly define constraints that must also be flattened.
Consider the complex objective function for wedding seating problem of Listing 2.3.10.

solve maximize sum(h in Hatreds)(
let { var Seats: p1 = pos[h1[h]],

var Seats: p2 = pos[h2[h]],
var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6) } in

same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1));

For conciseness we assume only the first two Hatreds, so
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set of int: Hatreds = 1..2;
array[Hatreds] of Guests: h1 = [groom, carol];
array[Hatreds] of Guests: h2 = [clara, bestman];

The first step of flattening is to unroll the sum expression, giving (we keep the guest names and
parameter Seats for clarity only, in reality they would be replaced by their definition):

solve maximize
(let { var Seats: p1 = pos[groom],

var Seats: p2 = pos[clara],
var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6) } in

same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1))
+
(let { var Seats: p1 = pos[carol],

var Seats: p2 = pos[bestman],
var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6) } in

same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1));

Next each new variable in a let expression is renamed to be distinct

solve maximize
(let { var Seats: p11 = pos[groom],

var Seats: p21 = pos[clara],
var 0..1: same1 = bool2int(p11 <= 6 <-> p21 <= 6) } in

same1 * abs(p11 - p21) + (1-same1) * (abs(13 - p11 - p21) + 1))
+
(let { var Seats: p12 = pos[carol],

var Seats: p22 = pos[bestman],
var 0..1: same2 = bool2int(p12 <= 6 <-> p22 <= 6) } in

same2 * abs(p12 - p22) + (1-same2) * (abs(13 - p12 - p22) + 1));

Variables in the let expression are extracted to the top level and defining constraints are extracted
to the correct level (which in this case is also the top level).

var Seats: p11;
var Seats: p21;
var 0..1: same1;
constraint p12 = pos[clara];
constraint p11 = pos[groom];
constraint same1 = bool2int(p11 <= 6 <-> p21 <= 6);
var Seats p12;
var Seats p22;
var 0..1: same2;
constraint p12 = pos[carol];
constraint p22 = pos[bestman];
constraint same2 = bool2int(p12 <= 6 <-> p22 <= 6) } in
solve maximize

same1 * abs(p11 - p21) + (1-same1) * (abs(13 - p11 - p21) + 1))
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+
same2 * abs(p12 - p22) + (1-same2) * (abs(13 - p12 - p22) + 1));

Now we have constructed equivalent MiniZinc code without the use of let expressions and the
flattening can proceed as usual.
As an illustration of let expressions that do not appear at the top level consider the following
model

var 0..9: x;
constraint x >= 1 -> let { var 2..9: y = x - 1 } in

y + (let { var int: z = x * y } in z * z) < 14;

We extract the variable definitions to the top level and the constraints to the first enclosing
Boolean context, which here is the right hand side of the implication.

var 0..9: x;
var 2..9: y;
var int: z;
constraint x >= 1 -> (y = x - 1 /\ z = x * y /\ y + z * z < 14);

Note that if we know that the equation defining a variable definition cannot fail we can extract
it to the top level. This will usually make solving substantially faster.
For the example above the constraint y = x - 1 can fail since the domain of y is not big enough
for all possible values of x - 1. But the constraint z = x * y cannot (indeed bounds analysis
will give z bounds big enough to hold all possible values of x * y). A better flattening will give

var 0..9: x;
var 2..9: y;
var int: z;
constraint z = x * y;
constraint x >= 1 -> (y = x - 1 /\ y + z * z < 14);

Currently the MiniZinc compiler does this by always defining the declared bounds of an intro-
duced variable to be big enough for its defining equation to always hold and then adding bounds
constraints in the correct context for the let expression. On the example above this results in

var 0..9: x;
var -1..8: y;
var -9..72: z;
constraint y = x - 1;
constraint z = x * y;
constraint x >= 1 -> (y >= 2 /\ y + z * z < 14);

This translation leads to more efficient solving since the possibly complex calculation of the let
variable is not reified.
Another reason for this approach is that it also works when introduced variables appear in neg-
ative contexts (as long as they have a definition). Consider the following example similar to the
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previous one

var 0..9: x;
constraint (let { var 2..9: y = x - 1 } in

y + (let { var int: z = x * y } in z * z) > 14) -> x >= 5;

The let expressions appear in a negated context, but each introduced variable is defined. The
flattened code is

var 0..9: x;
var -1..8: y;
var -9..72: z;
constraint y = x - 1;
constraint z = x * y;
constraint (y >= 2 /\ y + z * z > 14) -> x >= 5;

Note the analog to the simple approach to let elimination does not give a correct translation:

var 0..9: x;
var 2..9: y;
var int: z;
constraint (y = x - 1 /\ z = x * y /\ y + z * z > 14) -> x >= 5;

gives answers for all possible values of x, whereas the original constraint removes the possibility
that x = 4.
The treatment of constraint items in let expressions is analogous to defined variables. One can
think of a constraint as equivalent to defining a new Boolean variable. The definitions of the
new Boolean variables are extracted to the top level, and the Boolean remains in the correct
context.

constraint z > 1 -> let { var int: y,
constraint (x >= 0) -> y = x,
constraint (x < 0) -> y = -x

} in y * (y - 2) >= z;

is treated like

constraint z > 1 -> let { var int: y,
var bool: b1 = ((x >= 0) -> y = x),
var bool: b2 = ((x < 0) -> y = -x),
constraint b1 /\ b2

} in y * (y - 2) >= z;

and flattens to

constraint b1 = ((x >= 0) -> y = x);
constraint b2 = ((x < 0) -> y = -x);
constraint z > 1 -> (b1 /\ b2 /\ y * (y - 2) >= z);
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CHAPTER3.1

The MiniZinc Command Line Tool

The core of the MiniZinc constraint modelling system is the minizinc tool. You can use it directly
from the command line, through the MiniZinc IDE, or through a programmatic interface (API).
This chapter summarises the options accepted by the tool, and explains how it interacts with
target solvers.

3.1.1 Basic Usage

The minizinc tool performs three basic functions: it compiles a MiniZinc model (plus instance
data), it runs an external solver, and it translates solver output into the form specified in the
model. Most users would use all three functions at the same time. For example, let us assume
that wewant to solve the following simple problem, given as two files (model.mzn and data.dzn):

int: n;
array[1..n] of var 1..2*n: x;
include "alldifferent.mzn";
constraint alldifferent(x);
solve maximize sum(x);
output ["The resulting values are \(x).\n"];

n = 5;

To run the model file model.mzn with data file data.dzn using the Gecode solver, you can use
the following command line:

$ minizinc --solver Gecode model.mzn data.dzn

This would result in the output
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The resulting values are [10, 9, 8, 7, 6].
----------
==========

However, each of the three functions can also be accessed individually. For example, to compile
the same model and data, use the -c option:

$ minizinc -c --solver Gecode model.mzn data.dzn

This will result in two new files, model.fzn and model.ozn, being output in the same directory
as model.mzn. You could then run a target solver directly on the model.fzn file, or use minizinc:

$ minizinc --solver Gecode model.fzn

You will see that the solver produces output in a standardised form, but not the output prescribed
by the output item in the model:

x = array1d(1..5 ,[10, 9, 8, 7, 6]);
----------
==========

The translation from this output to the form specified in the model is encoded in the model.ozn
file. You can use minizinc to execute the .ozn file. In this mode, it reads a stream of solutions
from standard input, so we need to pipe the solver output into minizinc:

$ minizinc --solver Gecode model.fzn | minizinc --ozn-file model.ozn

These are themost basic command line options that you need in order to compile and runmodels
and translate their output. The next section lists all available command line options in detail.
Section 4.3.5 explains how new solvers can be added to the system.

3.1.2 Adding Solvers

Solvers that support MiniZinc typically consist of two parts: a solver executable, which can be
run on the FlatZinc output of the MiniZinc compiler, and a solver library, which consists of a set
of MiniZinc files that define the constraints that the solver supports natively. This section deals
with making existing solvers available to the MiniZinc tool chain. For information on how to
add FlatZinc support to a solver, refer to Section 4.3.

3.1.2.1 Configura on files

In order for MiniZinc to be able to find both the solver library and the executable, the solver
needs to be described in a solver configuration file (see Section 4.3.5 for details). If the solver you
want to install comes with a configuration file (which has the file extension .msc for MiniZinc
Solver Configuration), it has to be in one of the following locations:
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• In the minizinc/solvers/ directory of the MiniZinc installation. If you install MiniZinc
from the binary distribution, this directory can be found at /usr/share/minizinc/solvers
on Linux systems, inside theMiniZincIDE application onmacOS system, and in the Program
Files\\MiniZinc IDE (bundled) folder on Windows.

• In the directory $HOME/.minizinc/solvers on Linux and macOS systems, and the Appli-
cation Data directory on Windows systems.

• In any directory listed on the MZN_SOLVER_PATH environment variable (directories are sep-
arated by : on Linux and macOS, and by ; on Windows systems).

• In any directory listed in the mzn_solver_path option of the global or user-specific config-
uration file (see Section 3.1.4)

• Alternatively, you can use the MiniZinc IDE to create solver configuration files, see Section
3.2.5.2 for details.

After adding a solver, it will be listed in the output of the minizinc --solvers command.

3.1.2.2 Configura on for MIP solvers

Some solvers require additional configuration flags before they can be used. For example, the
binary bundle of MiniZinc comes with interfaces to the CPLEX and Gurobi Mixed Integer Pro-
gramming solvers. However, due to licensing restrictions, the solvers themselves are not part of
the bundled release. Depending on where CPLEX or Gurobi is installed on your system, MiniZinc
may be able to find the solvers automatically, or it may require an additional option to point it
to the shared library.
In case the libraries cannot be found automatically, you can use one of the following:
• CPLEX: Specify the location of the shared library using the --cplex-dll command line
option. On Windows, the library is called cplexXXXX.dll and typically found in same
directory as the cplex executable. On Linux it is libcplexXXX.so, and on macOS
libcplexXXXX.jnilib, where XXX and XXXX stand for the version number.

• Gurobi: The command line option for Gurobi is --gurobi-dll. On Windows, the library is
called gurobiXX.dll (in the same directory as the gurobi executable), and on Linux and
macOS is it libgurobiXX.so (in the lib directory of your Gurobi installation).

• You can define these paths as defaults in your user configuration file, see Section 3.1.4.

3.1.3 Op ons

You can get a list of all the options supported by the minizinc tool using the --help flag.

3.1.3.1 General op ons

These options control the general behaviour of the minizinc tool.
--help, -h

Print a help message.
--version

Print version information.
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--solvers
Print list of available solvers.

--solver <id>, --solver <solver configuration file>.msc
Select solver to use. The first form of the command selects one of the solvers known to
MiniZinc (that appear in the list of the --solvers command). You can select a solver
by name, id, or tag, and add a specific version. For example, to select a mixed-integer
programming solver, identified by the mip tag, you can use --solver mip. To select
a specific version of Gurobi (in case you have two versions installed), use --solver
Gurobi@7.5.2. Instead of the name you can also use the solver’s identifier, e.g. --solver
org.gecode.gecode.
The second form of the command selects the solver from the given configuration file (see
Section 4.3.5).

--help <id>
Print help for a particular solver. The scheme for selecting a solver is the same as for the
--solver option.

-v, -l, --verbose
Print progress/log statements (for both compilation and solver). Note that some solvers
may log to stdout.

--verbose-compilation
Print progress/log statements for compilation only.

-s, --statistics
Print statistics (for both compilation and solving).

--compiler-statistics
Print statistics for compilation.

-c, --compile
Compile only (do not run solver).

--config-dirs
Output configuration directories.

--solvers-json
Print configurations of available solvers as a JSON array.

3.1.3.2 Solving op ons

Each solver may support specific command line options for controlling its behaviour. These can
be queried using the --help <id> flag, where <id> is the name or identifier of a particular solver.
Most solvers will support some or all of the following options.
-a, --all-solutions

Report all solutions in the case of satisfaction problems, or print intermediate solutions of
increasing quality in the case of optimisation problems.

-n <i>, --num-solutions <i>
Stop after reporting i solutions (only used with satisfaction problems).

-f, --free-search
Instructs the solver to conduct a “free search”, i.e., ignore any search annotations. The
solver is not required to ignore the annotations, but it is allowed to do so.
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--solver-statistics
Print statistics during and/or after the search for solutions.

--verbose-solving
Print log messages (verbose solving) to the standard error stream.

-p <i>, --parallel <i>
Run with i parallel threads (for multi-threaded solvers).

-r <i>, --random-seed <i>
Use i as the random seed (for any random number generators the solver may be using).

3.1.3.3 Fla ener input op ons

These options control aspects of the MiniZinc compiler.
--ignore-stdlib

Ignore the standard libraries stdlib.mzn and builtins.mzn
--instance-check-only

Check the model instance (including data) for errors, but do not convert to FlatZinc.
-e, --model-check-only

Check the model (without requiring data) for errors, but do not convert to FlatZinc.
--model-interface-only

Only extract parameters and output variables.
--model-types-only

Only output variable (enum) type information.
--no-optimize

Do not optimize the FlatZinc
-d <file>, --data <file>

File named <file> contains data used by the model.
-D <data>, --cmdline-data <data>

Include the given data assignment in the model.
--stdlib-dir <dir>

Path to MiniZinc standard library directory
-G --globals-dir --mzn-globals-dir <dir>

Search for included globals in <stdlib>/<dir>.
- --input-from-stdin

Read problem from standard input
-I --search-dir

Additionally search for included files in <dir>.
-D "fMIPdomains=false"

No domain unification for MIP
--MIPDMaxIntvEE <n>

Max integer domain subinterval length to enforce equality encoding, default 0
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--MIPDMaxDensEE <n>
Max domain cardinality to N subintervals ratio to enforce equality encoding, default 0,
either condition triggers

--only-range-domains
When no MIPdomains: all domains contiguous, holes replaced by inequalities

--allow-multiple-assignments
Allow multiple assignments to the same variable (e.g. in dzn)

--compile-solution-checker <file>.mzc.mzn
Compile solution checker model.

Fla ener two-pass op ons

Two-pass compilation means that the MiniZinc compiler will first compile the model in order to
collect some global information about it, which it can then use in a second pass to improve the
resulting FlatZinc. For some combinations of model and target solver, this can lead to substantial
improvements in solving time. However, the additional time spent on the first compilation pass
does not always pay off.
--two-pass

Flatten twice to make better flattening decisions for the target
--use-gecode

Perform root-node-propagation with Gecode (adds –two-pass)
--shave

Probe bounds of all variables at the root node (adds –use-gecode)
--sac

Probe values of all variables at the root node (adds –use-gecode)
--pre-passes <n>

Number of times to apply shave/sac pass (0 = fixed-point, 1 = default)
-O<n>

Two-pass optimisation levels:
-O0: Disable optimize (–no-optimize) -O1: Single pass (default) -O2: Same as: –two-pass
-O3: Same as: –use-gecode -O4: Same as: –shave -O5: Same as: –sac

Fla ener output op ons

These options control how the MiniZinc compiler produces the resulting FlatZinc output. If you
run the solver directly through the minizinc command or the MiniZinc IDE, you do not need to
use any of these options.
--no-output-ozn, -O-

Do not output ozn file
--output-base <name>

Base name for output files
--fzn <file>, --output-fzn-to-file <file>

Filename for generated FlatZinc output
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-O, --ozn, --output-ozn-to-file <file>
Filename for model output specification (-O- for none)

--keep-paths
Don’t remove path annotations from FlatZinc

--output-paths
Output a symbol table (.paths file)

--output-paths-to-file <file>
Output a symbol table (.paths file) to <file>

--output-to-stdout, --output-fzn-to-stdout
Print generated FlatZinc to standard output

--output-ozn-to-stdout
Print model output specification to standard output

--output-paths-to-stdout
Output symbol table to standard output

--output-mode <item|dzn|json>
Create output according to output item (default), or output compatible with dzn or json
format

--output-objective
Print value of objective function in dzn or json output

-Werror
Turn warnings into errors

3.1.3.4 Solu on output op ons

These options control how solutions are output. Some of these options only apply if minizinc is
used to translate a stream of solutions coming from a solver into readable output (using a .ozn
file generated by the compiler).
--ozn-file <file>

Read output specification from ozn file.
-o <file>, --output-to-file <file>

Filename for generated output.
-i <n>, --ignore-lines <n>, --ignore-leading-lines <n>

Ignore the first <n> lines in the FlatZinc solution stream.
--soln-sep <s>, --soln-separator <s>, --solution-separator <s>

Specify the string printed after each solution (as a separate line). The default is to use the
same as FlatZinc, “———-“.

--soln-comma <s>, --solution-comma <s>
Specify the string used to separate solutions. The default is the empty string.

--unsat-msg (--unsatisfiable-msg)
Specify status message for unsatisfiable problems (default: "=====UNSATISFIABLE=====")

--unbounded-msg
Specify status message for unbounded problems (default: "=====UNBOUNDED=====")
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--unsatorunbnd-msg
Specify status message for unsatisfiable or unbounded problems (default:
"=====UNSATorUNBOUNDED=====")

--unknown-msg
Specify status message if search finished before determining status (default:
"=====UNKNOWN=====")

--error-msg
Specify status message if search resulted in an error (default: "=====ERROR=====")

--search-complete-msg <msg>
Specify status message if when search exhausted the entire search space (default:
"==========")

--non-unique
Allow duplicate solutions.

-c, --canonicalize
Canonicalize the output solution stream (i.e., buffer and sort).

--output-non-canonical <file>
Non-buffered solution output file in case of canonicalization.

--output-raw <file>
File to dump the solver’s raw output (not for hard-linked solvers)

--no-output-comments
Do not print comments in the FlatZinc solution stream.

--output-time
Print timing information in the FlatZinc solution stream.

--no-flush-output
Don’t flush output stream after every line.

3.1.4 User Configura on Files

The minizinc tool reads a system-wide and a user-specific configuration file to determine default
paths, solvers and solver options. The files are called Preferences.json, and you can find out
the locations for your platform using the option --config-dirs:

$ minizinc --config-dirs
{

"globalConfigFile" : "/Applications/MiniZincIDE.app/Contents/Resources/
↪→share/minizinc/Preferences.json",
"userConfigFile" : "/Users/Joe/.minizinc/Preferences.json",
"userSolverConfigDir" : "/Users/Joe/.minizinc/solvers",
"mznStdlibDir" : "/Applications/MiniZincIDE.app/Contents/Resources/share/

↪→minizinc"
}

The configuration files are simple JSON files that can contain the following configuration op-
tions:
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• mzn_solver_path (list of strings): Additional directories to scan for solver configuration
files.

• mzn_lib_dir (string): Location of the MiniZinc standard library.
• tagDefaults (list of lists of strings): Each entry maps a tag to the default solver for that tag.
For example, [["cp","org.chuffed.chuffed"],["mip","org.minizinc.gurobi"]] would
declare that whenever a solver with tag "cp" is requested, Chuffed should be used, and
for the "mip" tag, Gurobi is the default. The empty tag ("") can be used to define the
system-wide default solver (i.e., the solver that is chosen when running minizinc without
the --solver argument).

• solverDefaults (list of lists of strings): Each entry consists of a list of three
strings: a solver identifier, a command line option, and a value for that com-
mand line option.For example, [["org.minizinc.gurobi","--gurobi-dll",
"/Library/gurobi752/mac64/lib/libgurobi75.so"]] would specify the Gurobi
shared library to use (on a macOS system with Gurobi 7.5.2). For command
line options that don’t take a value, you have to specify an empty string, e.g.
[["org.minizinc.gurobi","--uniform-search",""]].

Here is a sample configuration file:

{
"mzn_solver_path": ["/usr/share/choco"],
"tagDefaults": [["cp","org.choco-solver.choco"],["mip","org.minizinc.cplex

↪→"],["","org.gecode.gecode"]],
"solverDefaults": [["org.minizinc.cplex","--cplex-dll","/opt/CPLEX_

↪→Studio128/cplex/bin/x86-64_sles10_4.1/libcplex128.so"]]
}

Configuration values in the user-specific configuration file override the global values, except for
solver default arguments, which are only overridden if the name of the option is the same, and
otherwise get added to the command line.
Note: Due to current limitations in MiniZinc’s JSON parser, we use lists of strings rather than
objects for the default mappings. This may change in a future release, but the current syntax will
remain valid. The location of the global configuration is currently the share/minizinc directory
of the MiniZinc installation. This may change in future versions to be more consistent with file
system standards (e.g., to use /etc on Linux and /Library/Preferences on macOS).
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The MiniZinc IDE

The MiniZinc IDE lets you edit and run MiniZinc models. It requires a working installation of
the MiniZinc tool chain (which is included when you download the bundled version of the IDE).
For installation instructions, see Section 1.2. This document assumes that you have installed
the IDE from the bundled binary distribution, which means that it will already be configured
correctly when you start it for the first time. The configuration options are described in Section
3.2.5.
Section 1.3 contains an introduction to the absolute basics of working with the IDE. This docu-
ment goes into a bit more detail.

3.2.1 Edi ng files

The basic editor provides the usual functionality of a simple text editor. You can edit MiniZinc
models (file extension .mzn) and data files (.dzn). When you first open the MiniZinc IDE, you
are presented with an empty Playground editor, which lets you quickly try out simple MiniZinc
models (it does not have to be saved to a file before running a solver on it).
Each file will be opened in a separate tab. To switch between files, click on the tab, select the
file from the Window menu, or use the Previous tab/Next tab options from the View menu.
When saving a file, make sure that you select the correct file type (represented by the file exten-
sion). Models should be saved as .mzn files, while data files should have a .dzn extension. This
is important because the IDE will only let you invoke the solver on model files.

3.2.1.1 Edi ng func ons

The Edit menu contains the usual functions for editing text files, such as undo/redo,
copy/cut/paste, and find/replace. It also allows you to jump to a particular line number (Go to
line), and to shift the currently selected text (or the current line if nothing is selected) right or
left by two spaces. The (Un)comment option will turn the current selection (or current line) into
comments, or remove the comment symbols if it is already commented.
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3.2.1.2 Fonts and dark mode

You can select the font and font size in the Viewmenu. We recommend to use a fixed-width font
(the IDE should pick such a font by default).
Depending on your platform, the View menu also lets you activate “dark mode”, which switches
the colour scheme to a dark background. On macOS 10.14 and later, the operating systems
supports a global dark mode, and the MiniZinc IDE will follow that setting.

3.2.2 Configuring and Running a Solver

The MiniZinc IDE automatically detects which solvers are available to MiniZinc. You can select
the solver to use from the solver selection drop-down menu next to the Run icon in the tool bar:

3.2.2.1 Running a model

MiniZinc models can be compiled and run by clicking the Run icon, selecting Run from the
MiniZinc menu, or using the keyboard shortcut Ctrl+R (Cmd+R on macOS). The IDE will use the
currently selected solver for compiling and running the model.
Running a model will open the Output window, usually located at the bottom of the IDE’s main
window. MiniZinc displays progress messages as well as any output received from the solver
there. If compilation resulted in an error message, clicking on the error will jump to the corre-
sponding location in the model or data file.
The current run can be aborted by clicking the Stop icon, selecting Stop from theMiniZincmenu,
or using the keyboard shortcut Ctrl+E (Cmd+E on macOS).
If the selected model requires some parameters to be set before it can be run, the MiniZinc
IDE will open a parameter dialog. It has two tabs. The left tab lets you enter the parameters
manually:

The second tab lets you select one or several of the data files that are currently open:
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3.2.2.2 Solver configura ons

Selecting one of the built-in solvers from the drop-downmenu activates its default configuration.
In order to change the solver’s behaviour, open the solver configuration editor by clicking on the
icon in the tool bar, selecting Show configuration editor from the MiniZinc/Solver configurations
menu, or using the keyboard shortcut Ctrl+Shift+C (Cmd+Shift+C on macOS).
Fig. 3.2.1 shows the configuration window. The first section (marked with a 1 in a red circle)
contains a drop-down menu to select the solver configuration. In this case, a built-in configu-
ration for the COIN-BC solver was selected. You can make this configuration the default (the
MiniZinc IDE will remember this setting), you can reset all values to the defaults, and you can
make a clone of the configuration. Cloning a configuration is useful if you want to be able to
quickly switch between different sets of options.
Note that any changes to the built-in configurations will be lost when you close the IDE. Any
changes to a cloned configuration are saved as part of the project (see Section 3.2.3).
The Solving section below contains a number of general options. First of all, it shows the concrete
solver used in this configuration. Below that, you can set a time limit, after which the execution
will be stopped. The built-in configurations all use the “default behaviour” (marked with a 2),
which is to print all intermediate solutions for optimisation problems, and stop after the first
found solution for satisfaction problems. To change this, you can select User-defined behavior
instead (marked with a 3).
The next section, Compiler options (marked with a 4), controls different aspects of the compila-
tion from MiniZinc to FlatZinc for the selected solver. The first two checkboxes control verbosity
and statistics output of the compiler. The drop-down below controls the optimisation level of
the compiler, i.e., how much effort it should spend on creating the best possible FlatZinc repre-
sentation for the given model. The two input fields below allow you to specify additional data
(passed into the compilation as if it was part of a .dzn file) and additional command line options
for the compiler.
The Solver options section (marked with a 5) contains configuration options for the selected
solver. Only options that are supported by the solver will be available, others will be grayed out
(e.g., the selected solver in Fig. 3.2.1 does not support setting a random seed, or free search).
Finally, the Output options section gives you control over the output behaviour. The first tick
box enables you to clear the Output window automatically every time you run a model. The
second option inserts timing information into the stream of solutions. The third check box
(Check solutions) is described in Section 3.2.2.3 below. The Compress solution output option is
useful for problems that produce a lot (read: thousands) of solutions, which can slow down
and clutter the output window. The compression works by printing just the number of solutions
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Fig. 3.2.1: The solver configuration window
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rather than the solutions themselves. For example, the following model would produce 1000
solutions when run with User-defined behavior and solution limit set to 0:

var 1..1000: x;
solve satisfy;

When runnning with compression set to 100, MiniZinc will output the first 100 solutions, and
then a sequence of output like this:

[ 100 more solutions ]
[ 200 more solutions ]
[ 400 more solutions ]
[ 199 more solutions ]
x = 1000;
----------
==========

The number of solutions captured by one of the ... more solutions lines is doubled each time,
in order to keep the overall output low. The last solution produced by the solver will always be
printed (since, in the case of optimisation problems, the last solution is the best one found).

3.2.2.3 Automa c Solu on Checking

MiniZinc can automatically run the output of a model through a solution checker, another MiniZ-
inc model that verifies that the solution satisfies a given set of rules. This can be useful for
teaching constraint modelling, if the solution checker is given to students. Another use case is
to use a simple checker while working on a more complex model, to ensure that the complex
model still meets the specification.
The default behaviour of the MiniZinc IDE is to run a solution checker if one is present. For
a model abc.mzn, a solution checker must be called abc.mzc or abc.mzc.mzn. If a checker is
present, the Run icon will turn into a Run + check icon instead. The output of the solution
checker is displayed together with the normal solution output in the Output window.
You can disable solution checkers by deselecting the Check solutions option in the solver config-
uration window.
You can find a detailed description of MiniZinc solution checkers in Automatic Solution Checking
(page 167).

3.2.2.4 Compiling a model

It can sometimes be useful to look at the FlatZinc code generated by the MiniZinc compiler for a
particular model. You can use the Compile option from theMiniZincmenu to compile the model
without solving. The generated FlatZinc will be opened in a new tab. You can edit and save the
FlatZinc to a file, and run it directly (without recompiling).
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3.2.2.5 Profiling a model

MiniZinc can produce statistics about the translation of a model to FlatZinc, which can be helpful
in order to better understand the behaviour of the model. In the IDE, this feature can be accessed
from theMiniZincmenu: Select Profile compilation, which will run the compiler with the current
settings (such as selected solver etc.) and output compilation statistics next to each line of code.
For the Magic Series puzzle from Listing 2.6.2, profiling using the Gurobi solver backend could
produce the statistics shown in Fig. 3.2.2. The first column (“Cons”) represents the number of
FlatZinc constraints generated from each line of code, the second column (“Vars”) the number
of variables, and the third column (“Time”) the time it took to compile the line. In this example,
for n=10, the constraint in lines 4 and 5 creates 100 variables (one 0/1 variable for each of the
bool2int calls), and the constraints in lines 7 and 8 each result in a single FlatZinc constraint
and no additional variables.

Fig. 3.2.2: Profiling results for the Magic Series problem (n=10)

3.2.3 Working With Projects

Each main window of the MiniZinc IDE corresponds to a project, a collection of files and settings
that belong together. A project can be saved to and loaded from a file.
You can open a new project by selecting the New project option from the File menu, or using the
Ctrl+Shift+N keyboard shortcut (Cmd+Shift+N on macOS).
All the files that belong to the current project are shown in the Project explorer (see Fig. 3.2.3),
which can be opened using the tool bar icon, or using the Show project explorer option in the View
menu. The project explorer lets you run the model in the currently active tab with any of the
data files by right-clicking on a .dzn file and selecting Run model with this data. Right-clicking
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Fig. 3.2.3: Project explorer
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any file presents a number of options: opening it, removing it from the project, renaming it,
running it, and adding new files to the project.
A saved project contains the following pieces of information:
• The names of all files in the project. These are stored as relative paths (relative to the
project file).

• Which files were open in tabs (and in which order) at the time the project was saved.
• The active solver configuration.
• The state of any cloned solver configuration.

The following will not be saved as part of the project:
• The contents of the Output window.
• The state of the built-in solver configurations.

3.2.4 Submi ng Solu ons to Online Courses

The MiniZinc IDE has built-in support for submitting solutions and models to online courses,
including the Coursera courses that introduce modelling in MiniZinc:
• Basic Modeling for Discrete Optimization6

• Advanced Modeling for Discrete Optimization7

The submission system is controlled by a file called _mooc, which is typically part of the projects
that you can download for workshops and assignments. When a project contains this file, a new
submission icon will appear in the tool bar, together with an option in the MiniZinc menu.
Clicking the icon (or selecting the menu option) opens the submission dialog (see Fig. 3.2.4). It
lets you select the problems that you would like to run on yourmachine, after which the solutions
will be sent to the online course auto-grading system. Some projects may also contain model
submissions, which are not run on your machine, but are evaluated by the online auto-grader
on new data that was not available to you for testing.
You will have to enter the assignment-specific login details. By clicking the Run and submit
button, you start the solving process. When it finishes, theMiniZinc IDEwill upload the solutions
to the auto-grading platform.

3.2.5 Configura on Op ons

The MiniZinc IDE can be configured through the Preferences dialog in the MiniZinc menu (on
Windows and Linux) or the MiniZincIDE menu (on macOS), as shown in Fig. ??.

3.2.5.1 Loca ng the MiniZinc installa on

The most important configuration option is the path to the minizinc executable. In the example
in Fig. ??, this field has been left empty, in which case minizinc is assumed to be on the standard

6 https://www.coursera.org/learn/basic-modeling
7 https://www.coursera.org/learn/advanced-modeling
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Fig. 3.2.4: Submitting to Coursera
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search path (usually the PATH environment variable). Typically, in a bundled binary installation
of MiniZinc, this field can therefore be left empty.
If you installed MiniZinc from sources, or want to switch between different versions of the com-
piler, you can add the path to the directory that contains the minizinc executable here. You
can select a directory from a file dialog using the Select button, or enter it manually. Clicking
the Check button will check that minizinc can in fact be run, and has the right version. The
version of minizinc that was found is displayed below the path input field. Fig. ?? below shows
an example where MiniZinc is located at /home/me/minizinc-2.2.0/bin.
You can have the MiniZinc IDE check once a day whether a new version of MiniZinc is available.

3.2.5.2 Adding Third-Party Solvers

The Solver section of the configuration dialog can be used to inspect the solvers that are currently
available to MiniZinc, and to add new solvers to the system.

Configuring exis ng solvers

You can use the configuration dialog to set up defaults for the installed solvers. In the current
version of the MiniZinc IDE, this is limited to configuring the CPLEX and Gurobi backends. The
bundled binary version of MiniZinc comes with support for loading CPLEX and Gurobi as plugins,
i.e., MiniZinc does not ship with the code for these solvers but can load them dynamically if they
are installed.
For example, Fig. ?? shows a potential configuration for Gurobi. On Windows, the library is
called gurobiXX.dll (in the same directory as the gurobi executable), and on Linux and macOS
is it libgurobiXX.so (in the lib directory of your Gurobi installation), where XX stands for the
version number of Gurobi.
If you select the CPLEX solver, a similar option appears (--cplex-dll). On Windows, the CPLEX
library is called cplexXXXX.dll and typically found in same directory as the cplex executable.
On Linux it is libcplexXXX.so, and on macOS libcplexXXXX.jnilib, where XXX and XXXX stand
for the version number of CPLEX.

Adding new solvers

The example in Fig. ?? shows a potential configuration for Gecode, which was installed in
/home/me/gecode.
Each solver needs to be given
• a name;
• a unique identifier (usually in reverse domain name notation);
• a version string; and
• the executable that can run FlatZinc.

In addition, you can specify the location of a solver-specific MiniZinc library (see Section 4.3.3
for details). If you leave this field empty, the MiniZinc standard library will be used. The path
entered into this field should be an absolute path in the file system, without extra quoting, and
without any command line arguments (such as -I).
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Most solvers will require compilation and output processing, since they only deal with FlatZinc
files. For these solvers, the Run with mzn2fzn and solns2out option must be selected. For solvers
that can deal with MiniZinc models natively, this option can be deselected.
Some solvers open an independent application with its own graphical user interface. One such
example is the Gecode (Gist) solver that comes with the bundled version of the IDE. For these
solvers, select the Run solver detached from IDE option, so that the IDE does not wait for solver
output.
Finally, you can select which command line flags are supported by the solver. This controls which
options will be available in the solver configuration window.
Solver configurations that are edited or created through the IDE are saved in a configuration file
in a standard location. These solvers are therefore available the next time the IDE is started, as
well as through the minizinc command line tool.
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CHAPTER3.3

Solving Technologies and Solver Backends

The minizinc tool can use various solver backends for a given model. Some solvers are separate
executables that are called by minizinc; other solvers are part of the minizinc binary (either
hard-coded or loaded as a dynamic library or “plugin”). In the former case, a temporary FlatZinc
file is created and passed to the solver binary; in the latter one, the flattened model is passed
to the backend directly in memory. Some solvers are part of the binary MiniZinc distribution,
others have to be installed separately. You can find instructions for installing these solvers from
source code and integrating into the minizinc tool in Installation from Source Code (page 199).
This chapter summarises usage options available for various target solvers.
The help text of minizinc shows a list of configured solver backends and their tags. You can see
solver-specific command-line options by running

$ minizinc --help <solver-id or tag>

3.3.1 Constraint Programming Solvers

Constraint Programming is the ‘native’ paradigm of MiniZinc. Below we discuss most common
CP solvers. For their performance, consult MiniZinc Challenges (https://www.minizinc.org/
challenge.html).

3.3.1.1 Gecode

Gecode is an open-source constraint programming system (see https://www.gecode.org). It
supports many of MiniZinc’s global constraints natively, and has support for integer, set and
float variables.
Gecode supports a number of constraints and search annotations that are not part of theMiniZinc
standard library. You can get access to these by adding include "gecode.mzn"; to your model.
The additional declarations are documented in Section 4.2.7.
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3.3.1.2 Chuffed

Chuffed is a constraint solver based on lazy clause generation (see https://github.com/chuffed/
chuffed). This type of solver adapts techniques from SAT solving, such as conflict clause learning,
watched literal propagation and activity-based search heuristics, and can often be much faster
than traditional CP solvers.
In order to take full advantage of Chuffed’s performance, it is often useful to add a search an-
notation to the model (see Search (page 85)), but allow Chuffed to switch between this defined
search and its activity-based search. In order to enable this behaviour, use the -f (free search)
command line option or select Free search in the solver configuration pane of the MiniZinc IDE.
Chuffed supports a number of additional search annotations that are not part of the MiniZinc
standard library. The additional declarations are documented in Section 4.2.8.

3.3.1.3 OR-Tools

OR-Tools is a powerful open-source CP/SAT/LP solver (see https://developers.google.com/
optimization/). It supports many of MiniZinc’s global constraints natively. It often performs
better multi-threaded (option -p) so it can employ various solving technologies. A search anno-
tation (see Search (page 85)) can be useful, however allowing OR-Tools to mix the prescribed
strategy with its own (option -f) usually is best, analogously to Chuffed.

3.3.2 Mixed-Integer Programming Solvers

MiniZinc has built-in support for Mixed Integer Programing solvers. If you have any MIP solver
installed (and MiniZinc was compiled with its support), you can run a model using MIP like this
on the command line:

minizinc --solver mip -v -s -a model.mzn data.dzn

Of course, you can also select a particular solver, e.g. Gurobi (in case it is available):

minizinc --solver gurobi -v -s -a model.mzn data.dzn

3.3.2.1 MIP-Aware Modeling (But Mostly Useful for All Backends)

Avoid mixing positive and negative coefficients in the objective. Use ‘complementing’ variables
to revert sense.
Avoid nested expressions which are hard to linearize (decompose for MIP). For example, instead
of

constraint forall(s in TASKS)(exists([whentask[s]=0] ++
[whentask[s]>= start[s]+(t*numslots) /\ whentask[s]<=stop[s]+(t*numslots)␣

↪→| t in 0..nummachines-1]));

prefer the tight domain constraint
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constraint forall(s in TASKS)(whentask[s] in
{0} union array_union([ start[s]+(t*numslots) .. stop[s]+(t*numslots) | t␣

↪→in 0..nummachines-1]));

To avoid numerical issues, make variable domains as tight as possible (compiler can deduce
bounds in certain cases but explicit bounding can be stronger). Try to keep magnitude differ-
ence in each constraint below 1e4. Especially for variables involved in logical constraints, if you
cannot reduce the domains to be in +/-1e4, consider indicator constraints (available for some
solvers, see below), or use the following trick: instead of saying b=1 -> x<=0 where x can be-
come very big, use e.g. b=1 -> 0.001*x<=0.0. Especially for integer variables, the domain size
of 1e4 should be an upper bound if possible – what is the value of integrality otherwise? Avoid
large coefficients too, as well as large values in the objective function. See more on tolerances
in the Solver Options section.
Example 1: basic big-M constraint vs implication. Instead of <expr> <= 1000000*y given
var 0..1: y and where you use the ‘big-M’ value of 1000000 because you don’t know a good
upper bound on <expr>, prefer y=0 -> <expr> <= 0 so that MiniZinc computes a possibly tighter
bound, and consider the above trick: y=0 -> 0.0001*<expr> <= 0.0 to reduce magnitudes.
Example 2: cost-based choice. Assume you want the model to make a certain decision, e.g.,
constructing a road, but then its cost should be minimal among some others, otherwise not
considered. This can be modeled as follows:

var 0..1: c; %% Whether we␣
↪→construct the road
var int: cost_road = 286*c + 1000000*(1-c);
var int: cost_final = min( [ cost_road, cost1, cost2 ] );

Note the big coefficient in the definition of cost_road. It can lead to numerical issues and a
wrong answer: when the solver’s integrality tolerance is 1e-6, it can assume c=0.999999 as
equivalent to c=1 leading to cost_road=287 after rounding.
A better solution, given reasonable bounds on cost1 and cost2, is to replace the definition as
follows:

int: cost_others_ub = 1+2*ub_array( [cost1, cost2] ); %% Multiply by 2␣
↪→for a stronger LP relaxation
var int: cost_road = 286*c + cost_others_ub*(1-c);

3.3.2.2 Useful Fla ening Parameters

The following parameters can be given on the command line or modified in
share/minizinc/linear/options.mzn:

-D nSECcuts=0/1/2 %% Subtour Elimination␣
↪→Constraints, see below
-D fMIPdomains=true/false %% The unified domains feature,␣
↪→see below
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-D float_EPS=1e-6 %% Epsilon for floats' strict␣
↪→comparison,

%% used e.g. for the following␣
↪→cases:

%% x!=y, x<y, b -> x<y, b <-> x
↪→<=y
-DfIndConstr=true -DfMIPdomains=false %% Use solver's indicator␣
↪→constraints, see below
--no-half-reifications %% Turn off halfreification␣
↪→(full reification was until v2.2.3)

3.3.2.3 Some Solver Op ons and Changed Default Values

The following command-line options affect the backend or invoke extra functionality. Note that
some of them have default values which may be different from the backend’s ones. For exam-
ple, tolerances have been tightened to enable more precise solving with integer variables and
objective. This slightly deteriorates performance on average, so when your model has moderate
constant and bound magnitudes, you may want to pass negative values to use solver’s defaults.

-h <solver-tag> full description of the backend options
--relGap <n> relative gap |primal-dual|/<solver-dep> to stop. Default␣
↪→1e-8, set <0 to use backend's default
--feasTol <n> primal feasibility tolerance (Gurobi). Default 1e-8
--intTol <n> integrality tolerance for a variable. Default 1e-8
--solver-time-limit-feas <n>, --solver-tlf <n>

stop after <n> milliseconds after the first feasible␣
↪→solution (some backends)
--writeModel <file>

write model to <file> (.lp, .mps, .sav, ...). All solvers␣
↪→support the MPS format

which is industry standard. Most support the LP format.␣
↪→Some solvers have own formats,

for example, the CIP format of SCIP ("constraint integer␣
↪→programming").
--readParam <file>

read backend-specific parameters from file (some backends)
--writeParam <file>

write backend-specific parameters to file (some backends)
--keep-paths this standard flattening option annotates every item in␣
↪→FlatZinc by its "flattening history".

For MIP solvers, it additionally assigns each constraint
↪→'s name as the first 255 symbols of that.
--cbcArgs '-guess -cuts off -preprocess off -passc 1'

parameters for the COIN-OR CBC backend

All MIP solvers directly support multi-threading (option -p). For COIN-BC to use it, it needs to
be configured with --enable-cbc-parallel.
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3.3.2.4 Subtour Elimina on Constraints

Optionally use the SEC cuts for the circuit global constraint. Currently only Gurobi, IBM ILOG
CPLEX, and COIN-OR CBC (trunk as of Nov 2019). If compiling from source, this needs boost
and cmake flag -DCOMPILE_BOOST_MINCUT=ON (or #define it in lib/algorithms/min_cut.cpp).
Compile your model with the flag -DnSECcuts=<n> with the following possible <n>: 0,1: use
MTZ formulation; 1,2: pass on circuit constraints to the SEC cut generator, so 1 would use both.

3.3.2.5 Unified Domains (MIPdomains)

The ‘MIPdomains’ feature of the Flattener aims at reducing the number of binary flags encoding
linearized domain constraints, see the paper Belov, Stuckey, Tack, Wallace. Improved Linearization
of Constraint Programming Models. CP 2016.
By default it is on. To turn it off which might be good for some models, add option -D
fMIPdomains=false during flattening. Some parameters of the unification are available, run
with --help.

3.3.2.6 Indicator Constraints

Some solvers (IBM ILOG CPLEX, Gurobi, SCIP) have indicator constrains with greater numer-
ical stability than big-M decomposition. Moreover, they can be applied to decompose logical
constraints on unbounded variables. Add command-line parameters -D fIndConstr=true -D
fMIPdomains=false when flattening to use them.

3.3.2.7 Pools of User Cuts and Lazy Constraints

Some constraints in the model can be declared as user and/or lazy cuts and they will be
added to the corresponding pools for the solvers supporting them. For that, apply annota-
tions ::MIP_cut and/or ::MIP_lazy after a constraint. For Gurobi and IBM ILOG CPLEX, see
share/minizinc/linear/options.mzn for their exact meaning.

3.3.2.8 Warm Starts

For general information of warm start annotations, seeWarm Starts (page 94). Warm starts are
currently implemented for Gurobi, IBM ILOG CPLEX, XPRESS, and COIN-OR CBC.

3.3.3 Non-linear Solvers

MiniZinc has experimental support for non-linear solvers that conform to the AMPL NL standard.
There are a number of open-source solvers, such as Ipopt, Bonmin and Couenne, that can be
interfaced to MiniZinc in this way.
You can download binaries of these solvers from AMPL (https://ampl.com/products/solvers/
open-source/). In order to use them with MiniZinc, you need to create a solver configuration
file. Future version of MiniZinc will make this easier, but for now you can follow these steps:
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1. Download the solver binary. For this example, we assume you chose the Couenne solver,
which supports non-linear, non-convex, mixed discrete and continuous problems.

2. Create a solver configuration file called couenne.msc in the share/minizinc/solvers di-
rectory of your MiniZinc installation, with the following contents:

{
"id" : "org.coin-or.couenne",
"name" : "Couenne",
"executable" : "/Users/tack/Downloads/couenne-osx/couenne",
"version": "0.5.6",
"supportsFzn":false,
"supportsNL":true

}

You can adapt the version field if you downloaded a different version (it’s only used
for displaying).

3. Run minizinc --solvers. The Couenne solver should appear in the list of solvers now.
4. Run minizinc --solver couenne model.mzn on some MiniZinc model, or use Couenne
from the MiniZinc IDE.

The AMPL NL support is currently experimental, and your MiniZinc model is translated to NL
without regard for the capabilities of the target solver. For example, Ipopt only supports con-
tinuous variables, so translating a model with integer variables will result in a solver-level error
message. There is currently no support for translating Boolean variables and constraints into
0/1 integer variables (as required by e.g. Couenne). You can experiment with the standard
linearisation library, using the -Glinear flag. However, this will linearise all integer constraints,
even the ones that solvers like Couenne may support natively (it does allow you to use non-
linear constraints on float variables, though). We will ship dedicated solver libraries for some
NL solvers with future versions of MiniZinc.
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Automa c Solu on Checking

MiniZinc provides support for checking the correctness of solutions of a model by using a checker
model. This approach has two main applications:
• Instructors can provide checker models for student assignments. This provides students
with immediate, detailed feedback on their modelling attempts.

• A simplified checker model can be used to verify a complex model used for solving. This
can be useful when experimenting with new decompositions of constraints, or for post-
processing solutions if some constraints cannot be added to the original model (e.g. in
case the solver does not support certain constructs).

Running MiniZinc with solution checking is easy. On the command line, simply pass the name
of the checker model in addition to the problem model:

minizinc model.mzn model.mzc.mzn data.dzn

Checker models can be pre-compiled in order to obfuscate their contents (e.g. if they contain
clues to students how to model the problem):

minizinc --compile-solution-checker model.mzc.mzn

This will create the compiled checker model model.mzc, which can be used instead of the clear
text version for checking:

minizinc model.mzn model.mzc data.dzn

The MiniZinc IDE has built-in support for solution checkers. Whenever the current project con-
tains a file with the same file name as the current model but file extension .mzc or .mzc.mzn,
the “Run” button turns into a “Run+Check” button.
The rest of this section describes how to implement checker models.
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3.4.1 Basic checker models

At its core, a checker model takes each solution that a solver produces as input, and outputs
whether the solution is correct or not. Let’s use the simple map colouring model from the tutorial
as an example. Here is the model again:

Listing 3.4.1: A MiniZinc model aust.mzn for colouring the states and territories in
Australia

% Colouring Australia using nc colours
int: nc = 3;

var 1..nc: wa; var 1..nc: nt; var 1..nc: sa; var 1..nc: q;
var 1..nc: nsw; var 1..nc: v; var 1..nc: t;

constraint wa != nt;
constraint wa != sa;
constraint nt != sa;
constraint nt != q;
constraint sa != q;
constraint sa != nsw;
constraint sa != v;
constraint q != nsw;
constraint nsw != v;
solve satisfy;

output ["wa=\(wa)\t nt=\(nt)\t sa=\(sa)\n",
"q=\(q)\t nsw=\(nsw)\t v=\(v)\n",
"t=", show(t), "\n"];

A checker model for this model requires the values of the variables wa, nt, and so on, for each
solution, and then has to test whether all constraints hold. The output of the checker model
should contain a line starting with CORRECT if the solution passes the test, or INCORRECT if it
doesn’t.
Since these values will be fixed in any solution, checker models simply declare parameters with
the same name as the model variables:

Listing 3.4.2: A MiniZinc checker model aust.mzc.mzn for the map colouring problem

int: wa;
int: nt;
int: sa;
int: q;
int: nsw;
int: v;
int: t;

output [
if wa!=nt /\ wa!=sa /\ nt!=sa /\ nt!=q /\ sa!=q /\

sa!=nsw /\ sa!=v /\ q!=nsw /\ nsw!=v
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then "CORRECT\n"
else "INCORRECT\n"
endif

];

Running the model and the checker will produce output like this:

wa=3 nt=2 sa=1
q=3 nsw=2 v=3
t=3
% Solution checker report:
% CORRECT
----------

The solution checker report is embedded as comments in the original output.

3.4.2 Detailed feedback

The basic checker model above only reports whether the solutions satisfy the constraints, but it
doesn’t provide any insights into the nature of the error if a constraint is violated.
We can use standard MiniZinc functionality to provide much more detailed feedback. The fol-
lowing checker model introduces a helper function checkwhich outputs a detailed error message
if a constraint doesn’t hold. The results of all the checks are combined, and if any of the con-
straints was violated, the output is INCORRECT, otherwise it is CORRECT.

Listing 3.4.3: A checker model aust-2.mzc.mzn for the map colouring problem with
more detailed error messages

int: wa;
int: nt;
int: sa;
int: q;
int: nsw;
int: v;
int: t;

test check(bool: b,string: s) =
if b then true else trace_stdout("ERROR: "++s++"\n",false) endif;

output [
if check(wa!=nt, "wa and nt have the same colour")
/\ check(wa!=sa, "wa and sa have the same colour")
/\ check(nt!=sa, "nt and sa have the same colour")
/\ check(nt!=q, "nt and q have the same colour")
/\ check(sa!=q, "sa and q have the same colour")
/\ check(sa!=nsw, "sa and nsw have the same colour")
/\ check(sa!=v, "sa and v have the same colour")
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/\ check(q!=nsw, "q and nsw have the same colour")
/\ check(nsw!=v, "nsw and v have the same colour")
then "CORRECT: all constraints hold.\n"
else "INCORRECT\n"
endif

];

However, the checker model will only report the first violated constraint, since the conjunction
operator short-circuits the evaluation when one of its arguments is false. For example, if we
remove all constraints from the original model, the output would be:

wa=3 nt=3 sa=3
q=3 nsw=3 v=3
t=3
% Solution checker report:
% ERROR: wa and nt have the same colour
% INCORRECT
----------

In order to get all error messages, we can force the evaluation of all checkers by creating an
auxiliary array of check results:

Listing 3.4.4: A checker model aust-3.mzc.mzn for the map colouring problem without
short-circuit evaluation

int: wa;
int: nt;
int: sa;
int: q;
int: nsw;
int: v;
int: t;

test check(bool: b,string: s) =
if b then true else trace_stdout("ERROR: "++s++"\n",false) endif;

array[int] of bool: checks = [
check(wa!=nt, "wa and nt have the same colour"),
check(wa!=sa, "wa and sa have the same colour"),
check(nt!=sa, "nt and sa have the same colour"),
check(nt!=q, "nt and q have the same colour"),
check(sa!=q, "sa and q have the same colour"),
check(sa!=nsw, "sa and nsw have the same colour"),
check(sa!=v, "sa and v have the same colour"),
check(q!=nsw, "q and nsw have the same colour"),
check(nsw!=v, "nsw and v have the same colour")

];

output [
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if forall(checks)
then "CORRECT: all constraints hold.\n"
else "INCORRECT\n"
endif

];

Now the output contains all error messages (for the case where the model has no constraints):

wa=3 nt=3 sa=3
q=3 nsw=3 v=3
t=3
% Solution checker report:
% ERROR: nsw and v have the same colour
% ERROR: q and nsw have the same colour
% ERROR: sa and v have the same colour
% ERROR: sa and nsw have the same colour
% ERROR: sa and q have the same colour
% ERROR: nt and q have the same colour
% ERROR: nt and sa have the same colour
% ERROR: wa and sa have the same colour
% ERROR: wa and nt have the same colour
% INCORRECT
----------

3.4.3 Instance data in checker models

The map colouring example was quite simple because the model did not contain any parameter
declarations. For a model that is parameterised, the checker model simply contains the same
parameter declarations. MiniZinc will then pass the actual parameters of the instance being
solved to the checker model.
For example, the following checker model could be used for the n-Queens problem.

Listing 3.4.5: A checker model nqueens.mzc.mzn for the n-Queens problem

int: n; % number of queens
set of int: ROW = 1..n;
set of int: COL = 1..n;
array[int] of int: q; % col of queen in each row

test check(bool: b,string: s) =
if b then true else trace_stdout("ERROR: "++s++"\n",false) endif;

output [
if check(index_set(q)=1..n, "ERROR: array q should have index set 1..\(n)")
/\ forall(i in 1..n)(check(q[i] in 1..n, "ERROR: q[\(i)] should have a␣

↪→value in 1..\(n)"))
/\ forall(r1, r2 in 1..n where r1 < r2)
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(check(q[r1] != q[r2],
"queens in rows \(r1) and \(r2) are on same column\n")
/\
check(q[r1]+r1 != q[r2]+r2,
"queens in rows \(r1) and \(r2) are on same up diagonal\n")
/\
check(q[r1]-r1 != q[r2]-r2,
"queens in rows \(r1) and \(r2) are on same down diagonal\n")
)

then "CORRECT: All constraints hold"
else "INCORRECT" endif ];

The checker model first makes sure that the solution has the right dimensions (correct array
index set, and each variable is assigned a value in the correct domain), and then uses standard
MiniZinc constructs to check each constraint.

3.4.4 Checking op misa on problems

Optimisation problems pose a difficulty for automatic checking. When a solver claims to prove
optimality, we cannot easily verify this claimwithout solving the problem again (using a different
model that is known to be correct). At the moment, solution checking for optimisation problems
is restricted to checking that the objective has been computed correctly.
To check that the objective value is calculated correctly, define a parameter called _objective of
the appropriate type (int or float) in the checker. The example in the next section illustrates
this.

3.4.5 Hidden variables

For many models, the decision variables which describe the solution may not be the variables
that are natural to describe the constraints. There may be other internal variables which are
functionally defined by the decision variables, and which are likely to be used in the model for
building constraints and/or are much more natural for describing the correctness of a candidate
solution.
Consider the problem of lining up n people numbered from 1 to n for a photo in a single line.
We want to make sure that there are no more than two people of the same gender (male, female
or other) in sequence in the line. We want to minimize the total distance between the pairs of
people who are numbered consecutively. The decisions are an array pos which for each person
gives their position in the line. A correct model for this is given in Listing 3.4.6.

Listing 3.4.6: A model photo.mzn for the photo lineup problem

int: n; % number of people
set of int: PERSON = 1..n; % set of people
enum GENDER = { M, F, O }; % set of genders
array[PERSON] of GENDER: g; % the gender of each person
set of int: POSN = 1..n; % set of positions
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array[PERSON] of var POSN: pos; % decisions: a position for each person

array[POSN] of var PERSON: who; % view: a person for each position
include "inverse.mzn";
constraint inverse(pos,who); % channel from decisions to view
constraint forall(i in 1..n-2)

(g[who[i]] != g[who[i+1]] \/ g[who[i+1]] != g[who[i+2]]);

solve minimize sum(i in 1..n-1)(abs(pos[i] - pos[i+1]));

A critical part of learning how to model this problem is to realise that it is worth introducing
the inverse of the pos variables, called who in this model. The who array makes it much easier to
specify that no more than two people of the same gender can be adjacent. The checker model
should not include the who variables, because that would effectively give away the key to the
solution.
The use of hidden variables (such as who) makes checking harder in two ways. First, we may
need to define these in the checker model as decision variables (rather than parameters), and
MiniZinc will then need to invoke a solver to generate the values of these variables in order to
check a given solution. Second, given an incorrect candidate solution, there may be no possible
value for these hidden variables, hence we have to guard the checking to ensure we do not
assume that there is some value for the hidden variables.
Consider this data file for the photo problem:

n = 9;
g = [M,M,M,M,F,F,F,M,M];

and assume that an incorrect model returns the erroneous candidate solution
pos = [1,2,3,4,5,6,7,2,9]; _objective=25;. If we simply assert inverse(pos,who) in
the checker model, then this constraint will fail since there is no inverse of this position array,
because persons 2 and 8 are both at position 2. Hence the checker must guard the inverse
constraint, and only when that succeeds use the computed values of the who variables for
checking the solution. A checking model for the photo problem might look like this:

Listing 3.4.7: A checker model photo.mzc.mzn for the photo lineup problem

int: n;
set of int: PERSON = 1..n;
enum GENDER = { M, F, O };
array[PERSON] of GENDER: g;
set of int: POSN = 1..n;
array[int] of int: pos;

array[POSN] of var PERSON: who;
int: _objective;

test alldifferent(array[int] of int: x) =
forall(i,j in index_set(x) where i < j)(x[i] != x[j]);
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include "inverse.mzn";
constraint if alldifferent(pos) then inverse(pos,who)

else forall(i in 1..n)(who[i] = 1) endif;

output [if
check_array(pos, n, POSN, "pos") /\
check_alldifferent(pos,"pos") /\
check_array(fix(pos), n, PERSON, "who") /\
forall(i in 1..n-2)

(check(g[fix(who[i])] != g[fix(who[i+1])] \/
g[fix(who[i+1])] != g[fix(who[i+2])],
"three people of the same gender \(g[fix(who[i])]) in␣

↪→positions \(i)..\(i+2)\n")) /\
let { int: obj = sum(i in 1..n-1)(abs(pos[i] - pos[i+1])); } in

check(obj = _objective, "calculated objective \(obj) does not agree with␣
↪→objective from the model (\(_objective))\n")
then

"CORRECT: All constraints hold"
else

"INCORRECT"
endif];

test check(bool: b,string: s) =
if b then true else trace_stdout("ERROR: "++s++"\n",false) endif;

test check_alldifferent(array[int] of int: x, string: name) =
forall(i, j in index_set(x) where i < j)

(check(x[i] != x[j], name ++ "[\(i)] = \(x[i]) = " ++
name ++ "[\(j)] " ++
"when they should be different\n"));

test check_int(int: x, set of int: vals, string: name) =
check(x in vals, "integer \(name) is not in values \(vals)\n");

function bool: check_array(array[int] of int: x, int: length, set of int:␣
↪→vals, string: name) =
check(length(x) = length, "array \(name) is not of length \(length)\n") /\
forall(i in index_set(x))

(check(x[i] in vals, "element \(i) of array \(name), \(x[i]) is not␣
↪→in values \(vals)\n"));

The checker model first tests whether the given pos array satisfies the alldifferent property
(using a custom test for alldifferent on a par array). If it passes the test, the inverse con-
straint is applied. Otherwise, the who array is simply fixed to a list of ones.
The check for the alldifferent constraint is a good example for a checker that tries to give a
detailed description of the error.
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Globalizer

Globalizer1 analyses a model and set of data to provide suggestions of global constraints that
can replace or enhance a user’s model.

3.5.1 Basic Usage

To use Globalizer simply execute it on a model and set of data files:
minizinc --solver org.minizinc.globalizer model.mzn data-1.dzn data-2.dzn

Note: Globalizer may also be executed on a non-parameterised model with no data files.
The following demonstrates the basic usage of Globalizer. Below, we see a simple model for the
car sequencing problem2, cars.mzn.

Listing 3.5.1: Model for the car sequencing problem (cars.mzn).

% cars.mzn
include "globals.mzn";

int: n_cars; int: n_options; int: n_classes;

set of int: steps = 1..n_cars;
set of int: options = 1..n_options;
set of int: classes = 1..n_classes;

array [options] of int: max_per_block;
array [options] of int: block_size;
array [classes] of int: cars_in_class;
array [classes, options] of 0..1: need;

1 Leo, K. et al., “Globalizing Constraint Models”, 2013.
2 http://www.csplib.org/Problems/prob001/
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% The class of car being started at each step.
array [steps] of var classes: class;

% Which options are required by the car started at each step.
array [steps, options] of var 0..1: used;

% Block p must be used at step s if the class of the car to be
% produced at step s needs it.
constraint forall (s in steps, p in options) (used[s, p]=need[class[s], p]);

% For each option p with block size b and maximum limit m, no consecutive
% sequence of b cars contains more than m that require option p.
constraint

forall (p in options, i in 1..(n_cars - (block_size[p] - 1))) (
sum (j in 0..(block_size[p] - 1)) (used[i + j, p])

<= max_per_block[p]);

% Require that the right number of cars in each class are produced.
constraint forall (c in classes) (count(class, c, cars_in_class[c]));

solve satisfy; % Find any solution.

And here we have a data file cars_data.dzn.

Listing 3.5.2: Data for the car sequencing problem (cars_data.dzn).

% cars_data.dzn
n_cars = 10;
n_options = 5;
n_classes = 6;
max_per_block = [1, 2, 1, 2, 1];
block_size = [2, 3, 3, 5, 5];
cars_in_class = [1, 1, 2, 2, 2, 2];

need = array2d(1..6, 1..5, [
1, 0, 1, 1, 0,
0, 0, 0, 1, 0,
0, 1, 0, 0, 1,
0, 1, 0, 1, 0,
1, 0, 1, 0, 0,
1, 1, 0, 0, 0

]);

Executing Globalizer on this model and data file we get the following output:

% minizinc --solver globalizer cars.mzn cars_data.dzn
cars.mzn|33|12|33|69 [ ] gcc(class,cars_in_class)
cars.mzn|33|35|33|68 [ ] count(class,c,cars_in_class[c])
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cars.mzn|28|27|28|65;cars.mzn|29|9|30|32 [ ] sliding_sum(0,max_per_block[p],
↪→block_size[p],used[_, p])

Each line of output is comprised of three elements.
1. Expression locations (separated by semicolon ‘;’) that the constraint might be able to re-
place.

2. (Between square brackets ‘[‘ ‘]’) the context under which the constraint might replace the
expressions of 1.

3. The replacement constraint.
From the example above we see that a gcc constraint and a sliding_sum constraint can replace
some constraints in the model. Taking the sliding_sum case, we see that it replaces the ex-
pression cars.mzn|28|27|28|65 which corresponds to i in 1..(n_cars - (block_size[p] -
1)) and cars.mzn|29|27|28|65 which corresponds to the <= expression including the sum. The
original constraint can be replaced with:

constraint forall (p in options) (
sliding_sum(0, max_per_block[p], block_size[p], used[..,p]));

3.5.2 Caveats

MiniZinc syntax support. Globalizer was implemented with support for a subset of an early ver-
sion of the MiniZinc 2.0 language. As a result there are some limitations. First, Globalizer does
not support set variables or enum types. The array slicing syntax supported in MiniZinc was not
decided upon when Globalizer was implemented so it uses an incompatible syntax. Globalizer
uses _ instead of ... This can be seen above in the translation of used[_,p] to used[..,p].
New constraint. A special two argument version of the global_cardinality constraint called
gcc has been added which is not in the standard library. It is defined as follows:

predicate gcc(array[int] of var int: x, array[int] of var int: counts) =
global_cardinality(x,

[ i | i in index_set(counts) ],
array1d(counts));

3.5.3 Supported Constraints

Globalizer currently supports detection of the following constraints:

alldifferent alldifferent_except_0 all_equal_int
bin_packing bin_packing_capa bin_packing_load
binaries_represent_int binaries_represent_int_3A binaries_represent_int_
↪→3B
binaries_represent_int_3C channel channelACB
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count_geq cumulative_assert decreasing
gcc global_cardinality inverse
lex_lesseq_int_checking lex2_checking maximum_int_checking
minimum_int_checking member nvalue
strict_lex2_checking subcircuit_checking true
atleast atmost bin_packing_load_ub
circuit_checking count diffn
distribute element increasing
lex_less_int_checking sliding_sum sort_checking
unary value_precede_checking

3.5.4 Using Globalizer in the MiniZinc IDE

To use the Globalizer in the MiniZinc IDE, open a model, and several data files. Select
Globalizer from the solver configuration dropdown menu. Click the solve button (play sym-
bol). If you did not select any data file, a dialog should pop up that allows you to select data
files. To select multiple data files hold the Ctrl or Cmd key while clicking on each data file.

Click run. While processing your model and data files the MiniZinc IDE will display a progress
bar on the toolbar.
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Any discovered global constraints will be listed in the output pane of the IDE. Clicking on one
of these constraints will highlight in the model the expressions that might be replaceable or
strengthened by the constraint.

3.5.5 How it works

A summary of the algorithm is presented here. For a more detailed exploration of the approach
see the Globalizing Constraint Models paper1.
• Normalize. In this step the model is transformed to make analysis easier.

– Conjunctions of constraints are broken into individual constraints. For example: C1
/\ C2; becomes C1; C2;

– Conjunctions under forall constraints are broken into individual forall constraints.
For example: forall(...) (C1 /\ C2); becomes forall(...) (C1); forall(...)
(C2)

• Generate submodels. In this step all subsets containing 1 or 2 constraints (this can be
configured using --numConstraints argument) are enumerated.
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• Instantiate and unroll into groups. Each submodel is instantiated with the provided
data files. These instantiated submodels are further used to produce more submodels by
unrolling loops. For example, a constraint such as forall(i in 1..n) (c(i)); will be
used to produce the constraints: c(1) and c(n) for each instantiation of n in the data files.
All instantiated submodels are then grouped together.

• Process groups. For each submodel in a group a set of 30 random solutions are found.
(configurable using the --randomSolutions argument). A template model with all of these
random solutions is created.
The different variables (including arrays and array accesses) and parameters used by a
submodel are collected into a set of potential arguments along with the constant 0 and a
special blank symbol representing an argument that can be inferred based on others used.
The list of constraints above is filtered based on the arguments available. For example, the
alldifferent constraint will be removed from the list of candidates if the submodel does
not reference any arrays of variables.
Finally the set of constraints are filtered by adding them to the template and solving it. If
the template is satisfiable, the constraint accepts all of the random solutions.
30 sample solutions for each candidate constraint are generated. (configurable using the
--sampleSolutions argument). The candidate is then ranked based on how many of these
solutions are also solutions to the original submodel. If its score is less than some threshold
the candidate is removed from the set of candidates for this group and will not be tested
on later submodels.

• Report. The remaining candidates are presented to the user.

3.5.6 Performance ps

Globalizing constraint models can be a time consuming task. If
• Use small or relatively easy instances. Globalizer solves many subproblems while pro-
cessing your model and data files. Using easier instances can speed up the process consid-
erably.

• Disable the initial pass. As discussed above, Globalizer performs two passes. The first
pass tries to detect alternate viewpoints that can be added to your model. If you are
confident that this will not be useful we recommend disabling this first pass using the
--no-initial-pass argument.

• Narrow search using filters. Globalizer attempts to match a large selection of global
constraints to subproblems in your model. If you wish to check if only a few specific
constraints are present you can focus Globalizer using the --constraintFilter or -f ar-
guments followed by a comma separated list of strings. Only global constraints where one
of the strings is a substring will be included in the search.

• Disable implies check. The implication check can also be disabled to improve perfor-
mance. This results in less accurate results but may still help a user to understand the
structure of their model.

• Free-search. To improve accuracy and to avoid false positives, subproblems solved by
Globalizer are solved using a random heuristic and restarts. If the subproblems are par-
ticularly difficult to solve a random heuristic may be prohibitive and the solver may not
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be able to produce enough samples within the solving timelimit. In these circumstances a
user can either increase the solver timeout using the -t argument followed by the number
of milliseconds a solver should be given to find samples. Alternatively the --free-search
argument can be used to force Globalizer to use the solver’s free search to find samples.
This has the downside of reducing the diversity of samples but allows enough samples to
be found to allow suggested globals to be found.

3.5.7 Limita ons / Future work

• Globalizer supports only a subset of the MiniZinc language and as such cannot be executed
on all MiniZinc models.

• There are some relatively cheap syntactic approaches that should be performed before
Globalization that currently is not implemented. For example, there are several common
formulations of an alldifferent constraint that can be detected syntactically. This would
be much cheaper than using Globalizer.
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FindMUS

Version: 0.5.0
FindMUS1 lists unsatisfiable subsets of constraints in your MiniZinc model. These subsets, called
Minimal Unsatisfiable Subsets can help you to find faults in your unsatisfiable constraint model.
FindMUS uses the hierarchical structure provided by the model to guide its search.

3.6.1 Basic Usage

To use FindMUS on the command line simply execute it on a model and set of data files by
typing:
findMUS model.mzn data-1.dzn

This will perform a simple search for a single generalized MUS. To acquire a more accurate
MUS with correct index variable assignments the --paramset mzn argument should be used. To
search for more than one MUS use the -a or -n <count> arguments. By default FindMUS will
use gecode for checking the satisfiability of a subset of constraints. This can be changed using
the --solver argument. For example, given a model that is better suited to a Mixed Integer
Programming solver, the argument --solver cbc could be used to instruct FindMUS to flatten
the model with the linear library and use the CBC solver for satisfiability checking.
Note: FindMUS requires a fully instantiated constraint model.

3.6.1.1 Commandline arguments

The FindMUS tool supports the following arguments:
Driver options
The driver creates the map solver and sub-solver and requests MUSes from FindMUS’s enumer-
ation algorithm HierMUS.

1 Leo, K. et al., “Debugging Unsatisfiable Constraint Models”, 2017.
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-n &lt;count&gt; Stop after the n th MUS is found (Default: 1)
-a Find all MUSes
--timeout &lt;s&gt Stop search after s seconds (Default: 1800)
--paramset hint,mzn,fzn Use a preset collection of parameters. The default behaviour of the

tool is to use the hint set which should quickly produce an MUS. The mzn and fzn options
can acquire MUSes in more detail.
hint –structure gen –depth mzn –shrink-alg map_lin
mzn –structure normal –depth mzn –shrink-alg map_qx
fzn –structure normal –depth fzn –shrink-alg map_qx

Enumeration options
The enumeration algorithm (HierMUS) explores the constraint hierarchy provided in the user’s
model and proposes potential MUSes to the sub-solver. A shrink algorithm is used to reduce
found unsat subsets to MUSes. There are currently four available shrink algorithms available
with FindMUS.
--shrink-alg lin,map_lin,qx,map_qx Select shrink algorithm (Default: map_lin)

lin simple linear shrink algorithm.
map_lin alternative implementation of the linear algorithm that updates a global
map of explored subsets while shrinking the subset.
qx uses the QuickXplain4 algorithm to shrink the subset to a MUS.
map_qx is an alternative implementation of QuickXplain that uses the global map
to avoid repeating any SAT checks while shrinking.

--depth mzn,fzn,&lt;n&gt How deep in the tree should search explore. (Default: mzn)
mzn expands the search as far as the point when the compiler leaves the MiniZinc
model.
fzn expands search as far as the FlatZinc constraints.
&lt;n&gt expand search to the n level of the hierarchy.

Subsolver options
FindMUS can be used in conjunction with any FlatZinc solver. These options mimic the minizinc
arguments --solver and --fzn-flags. The behavior of these arguments is likely to change in
later versions of the tool.
--solver &lt;s&gt Use solver s for SAT checking. (Default: “gecode”)
--solver-flags &lt;f&gt Pass flags f to sub-solver. (Default: empty)
--solver-timelimit &lt;ms&gt Set hard time limit for solver in milliseconds. (Default: 1100)
--soft-defines Consider functional constraints as part of MUSes
Filtering options
FindMUS can include or exclude constraints from its search based on the expression and con-
straint name annotations as well as properties of their paths (for example, line numbers). These

4 Junker, U. et al., “QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems”, 2004.
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filters are currently based on substrings but in future may support text spans and regular ex-
pressions.
--named-only Only consider constraints annotated with string annotations
--filter-named &lt;names&gt; --filter-named-exclude &lt;names&gt; Include/exclude
constraints with names that match sep separated names
--filter-path &lt;paths&gt; --filter-path-exclude &lt;paths&gt; Include/exclude based
on paths
--filter-sep &lt;sep&gt; Separator used for named and path filters
Structure options
The structure coming from a user’s model can significantly impact the performance of a MUS
enumeration algorithm. The hierarchy is constructed in two steps. The first takes the existing
model structure and can modify it in several ways. The second step adds extra binary structure.
--structure flat,gen,normal,mix

Alters initial structure: (Default: gen)
flat Remove all structure
gen Remove instance specific structure (merges constraints)
normal No change
mix Apply gen before normal
idx Remove all location information
idxmix Apply idx before normal

--no-binarize

By default will introduce extra binary structure to the hierarchy. This option disables
this behaviour.

Verbosity options
--verbose-{map,enum,subsolve} &lt;n&gt Set verbosity level for different components
--verbose Set verbosity level of all components to 1
Misc options
--dump-dot &lt;dot&gtWrite tree in GraphViz format to file <dot>

3.6.1.2 Example

The following demonstrates the basic usage of FindMUS on a simple example. Below, we see
a model for the latin squares puzzle2 with some incompatible symmetry breaking constraints
added.

2 https://en.wikipedia.org/wiki/Latin_square
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Listing 3.6.1: Faulty model for Latin Squares (latin_squares.mzn).

% latin_squares.mzn
include "globals.mzn";

int: n = 3;
set of int: N = 1..n;
array[N, N] of var N: X;

constraint :: "ADRows"
forall (i in N)

(alldifferent(row(X, i)) :: "AD(row \(i))");
constraint :: "ADCols"

forall (j in N)
(alldifferent(col(X, j)) :: "AD(col \(j))");

constraint :: "LLRows"
forall (i in 1..n-1)

(lex_less(row(X, i), row(X, i+1)) :: "LL(rows \(i) \(i+1))");
constraint :: "LGCols"

forall (j in 1..n-1)
(lex_greater(col(X, j), col(X, j+1)) :: "LG(cols \(j) \(j+1)");

solve satisfy;

output [ show2d(X) ];

Here we have used the new constraint and expression annotations added inMiniZinc 2.2.0. Note
that these annotations are not necessary for FindMUS to work but may help with interpreting
the output. The first two constraints: ADRows and ADCols define the alldifferent constraints
on the respective rows and columns of the latin square. The next two constraints LLRows and
LGCols post lex constraints that order the rows to be increasing and the columns to be increasing.
Certain combinations of these constraints are going to be in conflict.
Executing the command minizinc --solver -a latin_squares.mzn returns the following out-
put. Note that the -a argument requests all MUSes that can be found with the default settings
(more detail below).

FznSubProblem: hard cons: 36 soft cons: 26 leaves: 26 branches: 21␣
↪→ Built tree in 0.03100 seconds.
SubsetMap: nleaves: 4 nbranches: 1
MUS: 0 1 2 21 22 3 32 33 4 43 44 5 54 55 6 7 8
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Brief: exists;@{LG(cols 1 2@LGCols}:() exists;@{LG(cols 2 3@LGCols}:()␣
↪→exists;@{LL(rows 1 2)@LLRows}:() exists;@{LL(rows 2 3)@LLRows}:() int_lin_
↪→le;@{LG(cols 1 2@LGCols}:() int_lin_le;@{LG(cols 2 3@LGCols}:() int_lin_le;
↪→@{LL(rows 1 2)@LLRows}:() int_lin_le;@{LL(rows 2 3)@LLRows}:() int_lin_ne;@
↪→{AD(row 1)@ADRows}:() int_lin_ne;@{AD(row 1)@ADRows}:() int_lin_ne;@
↪→{AD(row 1)@ADRows}:() int_lin_ne;@{AD(row 2)@ADRows}:() int_lin_ne;@
↪→{AD(row 2)@ADRows}:() int_lin_ne;@{AD(row 2)@ADRows}:() int_lin_ne;@
↪→{AD(row 3)@ADRows}:() int_lin_ne;@{AD(row 3)@ADRows}:() int_lin_ne;@
↪→{AD(row 3)@ADRows}:()

Traces:
latin_squares.mzn|9|5|10|51|ca|forall
latin_squares.mzn|16|5|17|68|ca|forall
latin_squares.mzn|19|5|20|70|ca|forall
====================

MUS: 10 11 12 13 14 15 16 17 21 22 32 33 43 44 54 55 9
Brief: exists;@{LG(cols 1 2@LGCols}:() exists;@{LG(cols 2 3@LGCols}:()␣
↪→exists;@{LL(rows 1 2)@LLRows}:() exists;@{LL(rows 2 3)@LLRows}:() int_lin_
↪→le;@{LG(cols 1 2@LGCols}:() int_lin_le;@{LG(cols 2 3@LGCols}:() int_lin_le;
↪→@{LL(rows 1 2)@LLRows}:() int_lin_le;@{LL(rows 2 3)@LLRows}:() int_lin_ne;@
↪→{AD(col 1)@ADCols}:() int_lin_ne;@{AD(col 1)@ADCols}:() int_lin_ne;@
↪→{AD(col 1)@ADCols}:() int_lin_ne;@{AD(col 2)@ADCols}:() int_lin_ne;@
↪→{AD(col 2)@ADCols}:() int_lin_ne;@{AD(col 2)@ADCols}:() int_lin_ne;@
↪→{AD(col 3)@ADCols}:() int_lin_ne;@{AD(col 3)@ADCols}:() int_lin_ne;@
↪→{AD(col 3)@ADCols}:()

Traces:
latin_squares.mzn|16|5|17|68|ca|forall
latin_squares.mzn|12|5|13|51|ca|forall
latin_squares.mzn|19|5|20|70|ca|forall
====================

Total Time: 0.24700 nmuses: 2 map: 10 sat: 6 total: 16

=====UNKNOWN=====

The first two lines, starting with FznSubProblem: and SubsetMap provide some useful informa-
tion for debugging the findMUS tool. Next we have the list of MUSes separated by a series of
equals = signs. Each MUS is described with three sections:
1. MUS: lists the indices of FlatZinc constraints involved in this MUS.
2. Brief: lists the FlatZinc constraint name, the expression name, and the constraint name
for each involved FlatZinc constraint.

3. Traces: lists the MiniZinc paths corresponding to the constraints of the MUS. Each path
typically contains a list of path elements separated by semi-colons ;. Each element includes
a file path, a start line, start column, end line and end column denoting a span of text from
the listed file. And finally, a description of the element. In the examples above all paths
point to calls to a forall on different lines of the model. (ca|forall)
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The final line of output lists the Total Time, the number of MUSes found, and some statistics
about the number of times the internal map solver map was called, and the number of times the
subproblem solver was called sat.
Interpreting the two MUSes listed here we see that the lex constraints from lines 16 and 19 were
included in both and only one of the alldifferent constraints from line 9 and 12 are required
for the model to be unsatisfiable. The lex constraints being involved in every MUS make them
a strong candidate for being the source of unsatisfiability in the user’s model.

3.6.2 Using FindMUS in the MiniZinc IDE

To use FindMUS in the MiniZinc IDE, upon discovering that a model is unsatisfiable. Select
FindMUS from the solver configuration dropdown menu and click the solve button (play symbol).
By default FindMUS is configured to return a single MUS using the hint parameter set. This
should be relatively fast and help locate the relevant constraint items. The following shows the
result of running FindMUS with the default options.
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Selecting the returned MUS highlights three top level constraints as shown: ADRows, LLRows and
LGCols. To get a more specific MUS we can instruct FindMUS to go deeper than the top level
constraints by clicking the “Show configuration editor” button in the top right hand corner of
the MiniZinc IDE window, and selecting the “Extra solver options” and selecting the mzn option
under “Preset parameters”. The following shows a more specific MUS in this model.
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In this case we can see that the output pane lists more specific information about the constraints
involved in the MUS. After each listed constraint name we see what any loop variables were
assigned to when the constraint was added to the FlatZinc. For example (j=2).
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3.6.3 How it works

A simple explanation of the algorithm is presented here. For a more detailed exploration of an
earlier version of the approach see the Debugging Unsatisfiable Constraint Models paper1.
The approach takes the full FlatZinc program and partitions the constraints into groups based
on the hierarchy provided in the user’s model. To begin with (at depth ‘1’) we search for MUSes
in the set of top level constraint items using the MARCO3 MUS enumeration algorithm. If we are
not at the target depth we recursively select a found MUS, split its constituent constraints into
lower level constraints based on the hierarchy and begin another search for MUSes underneath
this high-level MUS. If any MUSes are found we know that the high-level MUS is not minimal
and so it should not be reported. This process is repeated on any found unsatisfiable subsets
until we reach the required depth at which point we will start to report MUSes. If in the recursive
search we return to a high-level MUS without finding any sub-MUSes we can report this MUS
as a real MUS. This recursive process is referred to as HierMUS. At each stage when we request
the enumeration of a set of MUSes underneath a high-level MUS we can use one of several MUS
enumeration algorithms.

3.6.4 Performance ps

If you are trying to find MUSes in a very large instance it is advised to make use of the filtering
tools available. Use the default settings to find a very high-level MUS and then use the --depth
option to find lower-level, more specific MUSes in conjunction with the --filter-name and
--filter-path options to focus on finding specific sub-MUSes of a found high-level MUS.

3.6.5 Limita ons / Future work

There are several features that we aim to include quite soon:
Regular expression based filtering This will allow more complex filtering to be

used.
Text span based filtering This will allow a user to simply click-and-drag a selection

around the parts of a constraint model they wish to analyse.

3 Liffiton, M. H. et al., “Fast, Flexible MUS Enumeration”, 2016.
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CHAPTER3.7

Using MiniZinc in Jupyter Notebooks

You can use MiniZinc inside a Jupyter / IPython notebook using the iminizinc Python module.
The module provides a “cell magic” extension that lets you solve MiniZinc models.
The module requires an existing installation of MiniZinc.

3.7.1 Installa on

You can install or upgrade this module via pip:

pip install -U iminizinc

Consult your Python documentation to find out if you need any extra options (e.g. you may
want to use the --user flag to install only for the current user, or you may want to use virtual
environments).
Make sure that the minizinc binary are on the PATH environment variable when you start the
notebook server. The easiest way to do that is to get the “bundled installation” that includes
the MiniZinc IDE and a few solvers, available from GitHub here: https://github.com/MiniZinc/
MiniZincIDE/releases/latest You then need to change your PATH environment variable to include
the MiniZinc installation.

3.7.2 Basic usage

After installing the module, you have to load the extension using %load_ext iminizinc. This
will enable the cell magic %%minizinc, which lets you solve MiniZinc models. Here is a simple
example:
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In[1]: %load_ext iminizinc

In[2]: n=8

In[3]: %%minizinc

include "globals.mzn";
int: n;
array[1..n] of var 1..n: queens;
constraint all_different(queens);
constraint all_different([queens[i]+i | i in 1..n]);
constraint all_different([queens[i]-i | i in 1..n]);
solve satisfy;

Out[3]: {u'queens': [4, 2, 7, 3, 6, 8, 5, 1]}

As you can see, the model binds variables in the environment (in this case, n) to MiniZinc pa-
rameters, and returns an object with fields for all declared decision variables.
Alternatively, you can bind the decision variables to Python variables:

In[1]: %load_ext iminizinc

In[2]: n=8

In[3]: %%minizinc -m bind

include "globals.mzn";
int: n;
array[1..n] of var 1..n: queens;
constraint all_different(queens);
constraint all_different([queens[i]+i | i in 1..n]);
constraint all_different([queens[i]-i | i in 1..n]);
solve satisfy;

In[4]: queens

Out[4]: [4, 2, 7, 3, 6, 8, 5, 1]

If you want to find all solutions of a satisfaction problem, or all intermediate solutions of an
optimisation problem, you can use the -a flag:

In[1]: %load_ext iminizinc

In[2]: n=6

In[3]: %%minizinc -a

include "globals.mzn";
int: n;
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array[1..n] of var 1..n: queens;
constraint all_different(queens);
constraint all_different([queens[i]+i | i in 1..n]);
constraint all_different([queens[i]-i | i in 1..n]);
solve satisfy;

Out[3]: [{u'queens': [5, 3, 1, 6, 4, 2]},
{u'queens': [4, 1, 5, 2, 6, 3]},
{u'queens': [3, 6, 2, 5, 1, 4]},
{u'queens': [2, 4, 6, 1, 3, 5]}]

The magic supports a number of additional options, in particular loading MiniZinc models and
data from files. Some of these may only work with the development version of MiniZinc (i.e.,
not the one that comes with the bundled binary releases). You can take a look at the help using

In[1]: %%minizinc?
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CHAPTER3.8

Python Interface

MiniZinc can be directly used from Python using the MiniZinc Python package. This package
provides an native python interface that interacts directly with the MiniZinc bundle installed on
the machine. For installation instructions and more information about the package that provides
the MiniZinc python interface please visit https://minizinc-python.readthedocs.io/.

Warning:
The development of MiniZinc Python is still in the very early stages. We appreciate any
feedback for the package, but we would recommend refraining from using the package
in production software. The package can drastically change and backwards compatible
changes are not guaranteed.
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CHAPTER3.9

Installa on from Source Code

The easiest way to install a complete version of MiniZinc is to use the binary packages we provide
for several platforms, as explained in Installation (page 7). In the following, we describe how
to install MiniZinc from source code.
All components of MiniZinc are free and open source software, and compilation should be
straightforward if you have all the necessary build tools installed. However, third-party com-
ponents, in particular the different solvers, may be more difficult to install correctly, and we
cannot provide any support for these components.
The source code for MiniZinc can be downloaded from its GitHub repository at https://github.
com/MiniZinc/libminizinc. The source code for the MiniZinc IDE is available from https://
github.com/MiniZinc/MiniZincIDE. The master branch of each repository points to the latest
release version, while the develop branch points to the current state of development (and may
be buggy or not even compile sometimes).
You will also need to install additional solvers to use with MiniZinc. To get started, try Gecode
(http://www.gecode.org) or Chuffed (https://github.com/chuffed/chuffed). We don’t cover
installation instructions for these solvers here.
The build system for MiniZinc relies on the CMake tool (https://cmake.org). It will try to find
some solvers (Gecode, CBC, SCIP, Gurobi, XPRESS and CPLEX) in their standard locations. You
can point to alternative locations using flags such as -DGECODE_ROOT=... as additional flags to
the cmake commands explained below. Standard environment variables, such as GUROBI_HOME,
are checked as well. See the file CMakeLists.txt for the current list of solvers.
The following sections contain installation instructions for different operating systems:

3.9.1 Installa on Instruc ons for Microso Windows

3.9.1.1 MiniZinc

Required development tools:
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• CMake, version 3.4.0 or later (https://cmake.org)
• Microsoft Visual C++ 2013 or later (e.g. the Community Edition available from https:
//www.visualstudio.com/de/downloads/)

• Optional, only needed for MiniZinc IDE: Qt toolkit, version 5.9 or later (http://qt.io)
Unpack the source code (or clone the git repository). Open a command prompt and change into
the source code directory. The following sequence of commands will build a 64 bit version of
the MiniZinc compiler tool chain (you may need to adapt the cmake command to fit your version
of Visual Studio):

mkdir build
cd build
cmake -G"Visual Studio 14 2015 Win64" -DCMAKE_INSTALL_PREFIX="C:/Program␣
↪→Files/MiniZinc" ..
cmake --build . --config Release --target install

This will install MiniZinc in the usual Program Files location. You can change where it gets
installed by modifying the CMAKE_INSTALL_PREFIX.

3.9.1.2 MiniZinc IDE

Required development tools:
• Microsoft Visual C++ 2013 or later (e.g. the Community Edition available from https:
//www.visualstudio.com/de/downloads/)

• Qt toolkit, version 5.9 or later (http://qt.io)
Unpack the source code (or clone the git repository). Open a Visual Studio command prompt
that matches the version of the Qt libraries installed on your system. Change into the source
code directory for the MiniZinc IDE. Then use the following commands to compile:

mkdir build
cd build
qmake ../MiniZincIDE
nmake

3.9.1.3 Gecode

You can obtain the Gecode source code from GitHub (https://github.com/gecode/gecode). You
can find detailed compilation instructions for Gecode on its web site (https://www.gecode.org).
Gecode’s build system relies on some Unix tools, so you may have to install an environment
such as Cygwin. In short, to compile from source, run the following in a terminal from within
the Gecode source code directory, where you replace <INSTALLATION_PREFIX> with the path
where you want Gecode to be installed:

mkdir build
cd build
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../configure --prefix=<INSTALLATION_PREFIX>
make -j8
make install

After installing Gecode, you can compile MiniZinc with built-in support for Gecode, which en-
ables extended pre-solving and solution checking. In order for the MiniZinc compilation to find
your Gecode installation, you have to use the option -DGECODE_ROOT=<INSTALLATION_PREFIX>
when calling cmake.
In order to use Gecode as a solver with MiniZinc (as opposed to an internal pre-solving tool),
you have to create an appropriate solver configuration file. Add a file gecode.msc in an appro-
priate location (see Solver Configuration Files (page 420)) containing the following, where you
replace <INSTALLATION_PREFIX>with the actual installation path and update the version number
if necessary:

{
"id": "org.gecode.gecode",
"name": "Gecode",
"description": "Gecode FlatZinc executable",
"version": "6.2.0",
"mznlib": "<INSTALLATION_PREFIX>/share/gecode/mznlib",
"executable": "<INSTALLATION_PREFIX>/bin/fzn-gecode",
"tags": ["cp","int", "float", "set", "restart"],
"stdFlags": ["-a","-f","-n","-p","-r","-s","-t"],
"supportsMzn": false,
"supportsFzn": true,
"needsSolns2Out": true,
"needsMznExecutable": false,
"needsStdlibDir": false,
"isGUIApplication": false
}

3.9.1.4 Chuffed

You can obtain Chuffed’s source from https://github.com/chuffed/chuffed. You can compile
and install it using the following commands:

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=<INSTALLATION_PREFIX>
cmake --build .
cmake --build . --target install

This will install Chuffed in the installation directory specified as <INSTALLATION_PREFIX>.
In order for MiniZinc to recognise the Chuffed solver, add a configuration file chuffed.msc to
an appropriate location (see Solver Configuration Files (page 420)) with the following content,
where you replace <INSTALLATION_PREFIX> with the actual installation path and update the
version number if necessary:
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{
"id": "org.chuffed.chuffed",
"name": "Chuffed",
"description": "Chuffed FlatZinc executable",
"version": "0.9",
"mznlib": "<INSTALLATION_PREFIX>/share/chuffed/mznlib",
"executable": "<INSTALLATION_PREFIX>/bin/fzn-chuffed",
"tags": ["cp","lcg","int"],
"stdFlags": ["-a","-f","-n","-r","-s","-t","-v"],
"supportsMzn": false,
"supportsFzn": true,
"needsSolns2Out": true,
"needsMznExecutable": false,
"needsStdlibDir": false,
"isGUIApplication": false
}

3.9.1.5 COIN-OR CBC

CBC is an open-source Mixed Integer Programming solver. You can find out more about it at
https://github.com/coin-or/Cbc. MiniZinc contains a built-in interface to CBC, so in order to
use it you have to install CBC before compiling MiniZinc.
These instructions apply to CBC versions 2.10/stable or newer. Thanks to David Catteeuw for
help with building the parallel version of CBC.
1. OBTAIN AND BUILD CBC
CBC is on github, but has many dependencies: https://github.com/coin-or/Cbc
AMPL provides a CBC binary and has the entire project with dependencies on github:
https://github.com/ampl/coin
Building Couenne fails, but we don’t need it. Remove couenne, ipopt, and bonmin
directories.
Install zlib and bzip2, e.g., using vcpkg. Its CMake integration does not work as of
vcpkg 2018.11.23 so you need to use its install folder manually, e.g., by adding the
following to CBC’s CMakeLists.txt:

include_directories(...vcpkg/installed/x86-windows/
↪→include)
link_libraries(...vcpkg/installed/x86-windows/lib/zlib.
↪→lib)
link_libraries(...vcpkg/installed/x86-windows/lib/bz2.lib)

Then

$ cd C:\dev
$ git clone https://github.com/ampl/coin.git
$ cd coin
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$ rmdir /s Bonmin
$ rmdir /s Couenne
$ rmdir /s Ipopt
$ mkdir build
$ cd build
$ cmake .. -G "Visual Studio 15 2017" -A x64 -DCMAKE_INSTALL_
↪→PREFIX=C:\dev\Cbc_install
$ cmake --build . --target install

=> successfully builds Cbc.lib, debug version in C:\dev\coin\build\Debug.
2. BUILD MINIZINC WITH CBC
Copy C:\dev\coin\build\Debug\*.lib to C:\dev\Cbc_install\lib
Configure MiniZinc’s CMake with -DOSICBC_ROOT=C:\dev\cbc_install.

3.9.2 Installa on Instruc ons for Linux and macOS

These instructions should work for most Linux distributions.

3.9.2.1 MiniZinc

Required development tools:
• CMake, version 3.4.0 or later
• On Linux: A recent C++ compiler (g++ or clang)
• On macOS: The Xcode developer tools

Before compilingMiniZinc, consider whether youwant to install additional solvers. In particular,
MIP solvers such as CBC, SCIP, Gurobi, IBM ILOG CPLEX, and XPRESS need to be installed
prior to compiling MiniZinc, so that the build system can find them. If you want to use the
solution checking functionality or extended presolving, you will also need to install Gecode
before compiling MiniZinc. See below for installation instructions for these solvers.
To install MiniZinc, unpack the source code (or clone the git repository). Open a terminal and
change into the source code directory. The following sequence of commands will build the
MiniZinc compiler tool chain:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build .

3.9.2.2 MiniZinc IDE

Required development tools:
• A recent C++ compiler (g++ or clang)

3.9.2. Installa on Instruc ons for Linux and macOS 203



MiniZinc Handbook, Release 2.4.3

• Qt toolkit, version 5.9 or later (http://qt.io)
Unpack the source code (or clone the git repository). Open a terminal and change into the
source code directory for the MiniZinc IDE. Then use the following commands to compile:

mkdir build
cd build
qmake ../MiniZincIDE
make

3.9.2.3 Gecode

You can obtain the Gecode source code from GitHub (https://github.com/gecode/gecode). You
can find detailed compilation instructions for Gecode on its web site (https://www.gecode.org).
In short, to compile from source, run the following in a terminal (from within the Gecode source
code directory):

mkdir build
cd build
../configure
make -j8
sudo make install

which compiles Gecode and installs it in the standard location. You can choose a different
installation directory using ../configure --prefix=<INSTALLATION_PREFIX>. In that case you
can run make install without sudo.
After installing Gecode, you can compile MiniZinc with built-in support for Gecode,
which enables extended pre-solving and solution checking. In order for the MiniZ-
inc compilation to find your Gecode installation, Gecode either has to be in the
default location (such as /usr/local/include etc.), or you have to use the option
-DGECODE_ROOT=<INSTALLATION_PREFIX> when calling cmake.
In order to use Gecode as a solver with MiniZinc (as opposed to an internal pre-solving tool),
you have to create an appropriate solver configuration file. Add a file gecode.msc in an appro-
priate location (see Solver Configuration Files (page 420)) containing the following, where you
replace <INSTALLATION_PREFIX>with the actual installation path and update the version number
if necessary:

{
"id": "org.gecode.gecode",
"name": "Gecode",
"description": "Gecode FlatZinc executable",
"version": "6.2.0",
"mznlib": "<INSTALLATION_PREFIX>/share/gecode/mznlib",
"executable": "<INSTALLATION_PREFIX>/bin/fzn-gecode",
"tags": ["cp","int", "float", "set", "restart"],
"stdFlags": ["-a","-f","-n","-p","-r","-s","-t"],
"supportsMzn": false,
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"supportsFzn": true,
"needsSolns2Out": true,
"needsMznExecutable": false,
"needsStdlibDir": false,
"isGUIApplication": false
}

3.9.2.4 OR Tools

You can install the OR-Tools FlatZinc module as binary or obtain the source code from GitHub
(https://github.com/google/or-tools). You can find detailed compilation instructions for OR-
Tools on https://developers.google.com/optimization/. To compile the FlatZinc module from
source, run the following in a terminal (from within the OR-Tools source code directory):

make fz -j8
make test_fz

In order to use OR-Tools with MiniZinc, you have to create an appropriate solver configuration
file. Add a file ortools.msc in an appropriate location (see Solver Configuration Files (page 420))
containing the following, where you replace <INSTALLATION_PREFIX>with the actual installation
path and update the version number if necessary:

{
"id": "org.ortools.ortools",
"name": "OR Tools",
"description": "Or Tools FlatZinc executable",
"version": "7.0/stable",
"mznlib": "<INSTALLATION_PREFIX>/ortools/flatzinc/mznlib_sat",
"executable": "<INSTALLATION_PREFIX>/bin/fz",
"tags": ["cp","int", "lcg", "or-tools"],
"stdFlags": ["-a", "-n", "-p", "-f", "-r", "-v", "-l", "-s"],
"supportsMzn": false,
"supportsFzn": true,
"needsSolns2Out": true,
"needsMznExecutable": false,
"needsStdlibDir": false,
"isGUIApplication": false
}

3.9.2.5 Chuffed

You can obtain Chuffed’s source from https://github.com/chuffed/chuffed. You can compile
and install it using the following commands:

mkdir build
cd build
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cmake ..
cmake --build . -- -j8
sudo cmake --build . --target install

This will install Chuffed in the default location. Alternatively, you can choose a different instal-
lation directory by calling cmake .. -DCMAKE_INSTALL_PREFIX=<INSTALLATION_PREFIX> before
cmake --build. In that case, you may be able to install without using sudo.
In order for MiniZinc to recognise the Chuffed solver, add a configuration file chuffed.msc to
an appropriate location (see Solver Configuration Files (page 420)) with the following content,
where you replace <INSTALLATION_PREFIX> with the actual installation path and update the
version number if necessary:

{
"id": "org.chuffed.chuffed",
"name": "Chuffed",
"description": "Chuffed FlatZinc executable",
"version": "0.9",
"mznlib": "<INSTALLATION_PREFIX>/share/chuffed/mznlib",
"executable": "<INSTALLATION_PREFIX>/bin/fzn-chuffed",
"tags": ["cp","lcg","int"],
"stdFlags": ["-a","-f","-n","-r","-s","-t","-v"],
"supportsMzn": false,
"supportsFzn": true,
"needsSolns2Out": true,
"needsMznExecutable": false,
"needsStdlibDir": false,
"isGUIApplication": false
}

3.9.2.6 COIN-OR CBC

CBC is an open-source Mixed Integer Programming solver. You can find out more about it at
https://github.com/coin-or/Cbc. MiniZinc contains a built-in interface to CBC, so in order to
use it you have to install CBC before compiling MiniZinc.
These instructions apply to CBC versions 2.10/stable or newer.
To download and compile CBC, run the following:

svn checkout https://projects.coin-or.org/svn/Cbc/stable/2.10/ Cbc-stable
cd Cbc-stable
./configure --enable-cbc-parallel
make
sudo make install

This will install CBC in the default location. You can choose a different installation directory
using ../configure --enable-cbc-parallel --prefix=<INSTALLATION_PREFIX>. In that case
you can run make install without sudo.
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The MiniZinc build system should find CBC automatically if it is installed in the default location.
You can use the command line flag -DOSICBC_ROOT=<INSTALLATION_PREFIX>when running cmake
for MiniZinc if you installed CBC in a different location.

3.9.2.7 SCIP

For SCIP (as of 6.0.1.0), if you download the Optimization Suite, the installation commands
should be as follows.
1. Download the SCIP Optimization Suite 6.0.1 (or higher) source code: https://scip.zib.de/
download.php?fname=scipoptsuite-6.0.1.tgz

2. Untar it and change directories into scipoptsuite-6.0.1
3. create a build directory and change directories there
4. Execute

cmake .. -DCMAKE_BUILD_TYPE=Release [-DCMAKE_INSTALL_PREFIX=/home/user/local/
↪→scip/installation]

The first flag is necessary, the second one is optional in order to install SCIP and SoPlex non-
systemwide.
5. Compile and install SoPlex, SCIP, and its optional components:

make && make install

6. Configure minizinc:

cmake .. -DUSE_PROPRIETARY=on [-DCMAKE_PREFIX_PATH=/home/user/local/scip/
↪→installation]

The optional prefix path variable is only necessary if you installed SCIP in a non-systemwide
directory.
7. Compile Minizinc and enjoy SCIP as a solver.

If you have folders for SCIP and SoPlex separately, follow these steps:

$ tar xvfz scipoptsuite-6.0.1.tgz
$ cd scipoptsuite-6.0.1
$ cd soplex
$ mkdir build
$ cd build
$ cmake ..
$ make -j5
$ cd ../scip
$ mdkir build
$ cd build
$ cmake .. -DSOPLEX_DIR=~/Downloads/Software/scipoptsuite-6.0.1/soplex/build
$ make -j5
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$ sudo make install ## Now MZN should find it

3.9.3 Installa on Instruc ons for Webassembly / JavaScript

Required development tools:
• CMake, version 3.4.0 or later (from https://cmake.org or e.g. through homebrew)
• emscripten sdk (from https://emscripten.org)

Compiling MiniZinc: Unpack the source code (or clone the git repository). Open a terminal and
change into the source code directory. Make sure that the emscripten sdk is on your PATH, e.g.
by sourcing the emsdk_env.sh script (see emscripten documentation). The following sequence
of commands will build the MiniZinc compiler tool chain:

mkdir build
cd build
emconfigure cmake -DCMAKE_BUILD_TYPE=MinSizeRel ..
cmake --build .

Webassemble/JavaScript support is currently experimental.
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CHAPTER4.1

Specifica on of MiniZinc

4.1.1 Introduc on

This document defines MiniZinc, a language for modelling constraint satisfaction and optimisa-
tion problems.
MiniZinc is a high-level, typed, mostly first-order, functional, modelling language. It provides:
• mathematical notation-like syntax (automatic coercions, overloading, iteration, sets, ar-
rays);

• expressive constraints (finite domain, set, linear arithmetic, integer);
• support for different kinds of problems (satisfaction, explicit optimisation);
• separation of data from model;
• high-level data structures and data encapsulation (sets, arrays, enumerated types, con-
strained type-insts);

• extensibility (user-defined functions and predicates);
• reliability (type checking, instantiation checking, assertions);
• solver-independent modelling;
• simple, declarative semantics.

MiniZinc is similar to OPL and moves closer to CLP languages such as ECLiPSe.
This document has the following structure. Notation (page 212) introduces the syntax no-
tation used throughout the specification. Overview of a Model (page 213) provides a high-
level overview of MiniZinc models. Syntax Overview (page 215) covers syntax basics. High-
level Model Structure (page 216) covers high-level structure: items, multi-file models, names-
paces, and scopes. Types and Type-insts (page 218) introduces types and type-insts. Expressions
(page 226) covers expressions. Items (page 240) describes the top-level items in detail. Annota-
tions (page 248) describes annotations. Partiality (page 249) describes how partiality is handled
in various cases. Built-in Operations (page 251) describes the language built-ins. Full grammar
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(page 261) gives the MiniZinc grammar. Content-types (page 259) defines content-types used
in this specification.
This document also provides some explanation of why certain design decisions were made. Such
explanations are marked by the word Rationale and written in italics, and do not constitute part
of the specification as such. Rationale: These explanations are present because they are useful to
both the designers and the users of MiniZinc.

4.1.1.1 Original authors.

The original version of this document was prepared by Nicholas Nethercote, Kim Marriott, Reza
Rafeh, Mark Wallace and Maria Garcia de la Banda. MiniZinc is evolving, however, and so is
this document.
For a formally published paper on the MiniZinc language and the superset Zinc language, please
see:
• N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Minizinc: To-
wards a standard CP modelling language. In C. Bessiere, editor, Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming, volume 4741
of LNCS, pages 529–543. Springer-Verlag, 2007.

• K. Marriott, N. Nethercote, R. Rafeh, P.J. Stuckey, M. Garcia de la Banda, and M. Wallace.
The Design of the Zinc Modelling Language. Constraints, 13(3):229-267, 2008.

4.1.2 Nota on

The basics of the EBNF used in this specification are as follows.
• Non-terminals are written between angle brackets, <item>.
• Terminals are written in double quotes, e.g. "constraint". A double quote terminal is
written as a sequence of three double quotes: """.

• Optional items are written in square brackets, e.g. [ "var" ].
• Sequences of zero or more items are written with parentheses and a star, e.g.

( "," <ident> )*.
• Sequences of one or more items are written with parentheses and a plus, e.g. ( <msg> )+.
• Non-empty lists are written with an item, a separator/terminator terminal, and three dots.
For example, this:

<expr> "," ...

is short for this:

<expr> ( "," <expr> )* [ "," ]

The final terminal is always optional in non-empty lists.
• Regular expressions are used in some productions, e.g. [-+]?[0-9]+.
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MiniZinc’s grammar is presented piece-by-piece throughout this document. It is also available
as a whole in Full grammar (page 261). The output grammar also includes some details of the
use of whitespace. The following conventions are used:
• A newline character or CRLF sequence is written \n.

4.1.3 Overview of a Model

Conceptually, a MiniZinc problem specification has two parts.
1. The model: the main part of the problem specification, which describes the structure of a
particular class of problems.

2. The data: the input data for the model, which specifies one particular problem within this
class of problems.

The pairing of a model with a particular data set is a model instance (sometimes abbreviated to
instance).
The model and data may be separated, or the data may be “hard-wired” into the model. Model
Instance Files (page 217) specifies how the model and data can be structured within files in a
model instance.
There are two broad classes of problems: satisfaction and optimisation. In satisfaction problems
all solutions are considered equally good, whereas in optimisation problems the solutions are
ordered according to an objective and the aim is to find a solution whose objective is optimal.
Solve Items (page 243) specifies how the class of problem is chosen.

4.1.3.1 Evalua on Phases

A MiniZinc model instance is evaluated in two distinct phases.
1. Instance-time: static checking of the model instance.
2. Run-time: evaluation of the instance (i.e., constraint solving).

The model instance may not compile due to a problem with the model and/or data, detected at
instance-time. This could be caused by a syntax error, a type-inst error, the use of an unsupported
feature or operation, etc. In this case the outcome of evaluation is a static error; this must be
reported prior to run-time. The form of output for static errors is implementation-dependent,
although such output should be easily recognisable as a static error.
An implementation may produce warnings during all evaluation phases. For example, an im-
plementation may be able to determine that unsatisfiable constraints exist prior to run-time,
and the resulting warning given to the user may be more helpful than if the unsatisfiability is
detected at run-time.
An implementation must produce a warning if the objective for an optimisation problem is un-
bounded.

4.1.3.2 Run- me Outcomes

Assuming there are no static errors, the output from the run-time phase has the following ab-
stract form:
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<output> ::= <no-solutions> [ <warnings> ] <free-text>
| ( <solution> )* [ <complete> ] [ <warnings> ] <free-text>

If a solution occurs in the output then it must be feasible. For optimisation problems, each
solution must be strictly better than any preceding solution.
If there are no solutions in the output, the outcome must indicate that there are no solutions.
If the search is complete the output may state this after the solutions. The absence of the com-
pleteness message indicates that the search is incomplete.
Any warnings produced during run-time must be summarised after the statement of complete-
ness. In particular, if there were any warnings at all during run-time then the summary must
indicate this fact.
The implementation may produce text in any format after the warnings. For example, it may
print a summary of benchmarking statistics or resources used.

4.1.3.3 Output

Implementations must be capable of producing output of content type
application/x-zinc-output, which is described below and also in Content-types (page 259).
Implementations may also produce output in alternative formats. Any output should conform
to the abstract format from the previous section and must have the semantics described there.
Content type application/x-zinc-output extends the syntax from the previous section as fol-
lows:

<solution> ::= <solution-text> [ \n ] "----------" \n

The solution text for each solution must be as described in Output Items (page 244). A newline
must be appended if the solution text does not end with a newline. Rationale: This allows
solutions to be extracted from output without necessarily knowing how the solutions are formatted.
Solutions end with a sequence of ten dashes followed by a newline.

<no-solutions> ::= "=====UNSATISFIABLE=====" \n

The completness result is printed on a separate line. Rationale: The strings are designed to clearly
indicate the end of the solutions.

<complete> ::= "==========" \n

If the search is complete, a statement corresponding to the outcome is printed. For an outcome
of no solutions the statement is that the model instance is unsatisfiable, for an outcome of no
more solutions the statement is that the solution set is complete, and for an outcome of no
better solutions the statement is that the last solution is optimal. Rationale: These are the logical
implications of a search being complete.
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<warnings> ::= ( <message> )+

<message> ::= ( <line> )+

If the search is incomplete, one or more messages describing reasons for incompleteness may be
printed. Likewise, if any warnings occurred during search they are repeated after the complete-
ness message. Both kinds of message should have lines that start with % so they are recognized as
comments by post-processing. Rationale: This allows individual messages to be easily recognised.
For example, the following may be output for an optimisation problem:

=====UNSATISFIABLE=====
% trentin.fzn:4: warning: model inconsistency detected before search.

Note that, as in this case, an unbounded objective is not regarded as a source of incompleteness.

4.1.4 Syntax Overview

4.1.4.1 Character Set

The input files to MiniZinc must be encoded as UTF-8.
MiniZinc is case sensitive. There are no places where upper-case or lower-case letters must be
used.
MiniZinc has no layout restrictions, i.e., any single piece of whitespace (containing spaces, tabs
and newlines) is equivalent to any other.

4.1.4.2 Comments

A % indicates that the rest of the line is a comment. MiniZinc also has block comments, using
symbols /* and */ to mark the beginning and end of a comment.

4.1.4.3 Iden fiers

Identifiers have the following syntax:

<ident> ::= [A-Za-z][A-Za-z0-9_]* % excluding keywords
| "'" [^'\xa\xd\x0]* "'"

my_name_2
MyName2
'An arbitrary identifier'

A number of keywords are reserved and cannot be used as identifiers. The keywords are: ann,
annotation, any, array, bool, case, constraint, diff, div, else, elseif, endif, enum, false,

4.1.4. Syntax Overview 215



MiniZinc Handbook, Release 2.4.3

float, function, if, in, include, int, intersect, let, list, maximize, minimize, mod, not,
of, op, opt, output, par, predicate, record, satisfy, set, solve, string, subset, superset,
symdiff, test, then, true, tuple, type, union, var, where, xor.
A number of identifiers are used for built-ins; see Built-in Operations (page 251) for details.

4.1.5 High-level Model Structure

A MiniZinc model consists of multiple items:

<model> ::= [ <item> ";" ... ]

Items can occur in any order; identifiers need not be declared before they are used. Items have
the following top-level syntax:

<item> ::= <include-item>
| <var-decl-item>
| <enum-item>
| <assign-item>
| <constraint-item>
| <solve-item>
| <output-item>
| <predicate-item>
| <test-item>
| <function-item>
| <annotation-item>

<ti-expr-and-id> ::= <ti-expr> ":" <ident>

Include items provide a way of combining multiple files into a single instance. This allows a
model to be split into multiple files (Include Items (page 240)).
Variable declaration items introduce new global variables and possibly bind them to a value
(Variable Declaration Items (page 241)).
Assignment items bind values to global variables (Assignment Items (page 242)).
Constraint items describe model constraints (Constraint Items (page 243)).
Solve items are the “starting point” of a model, and specify exactly what kind of solution is being
looked for: plain satisfaction, or the minimization/maximization of an expression. Each model
must have exactly one solve item (Solve Items (page 243)).
Output items are used for nicely presenting the result of a model execution (Output Items
(page 244)).
Predicate items, test items (which are just a special type of predicate) and function items intro-
duce new user-defined predicates and functions which can be called in expressions (User-defined
Operations (page 244)). Predicates, functions, and built-in operators are described collectively
as operations.
Annotation items augment the ann type, values of which can specify non-declarative and/or
solver-specific information in a model.
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4.1.5.1 Model Instance Files

MiniZinc models can be constructed from multiple files using include items (see Include Items
(page 240)). MiniZinc has no module system as such; all the included files are simply concate-
nated and processed as a whole, exactly as if they had all been part of a single file. Rationale:
We have not found much need for one so far. If bigger models become common and the single global
namespace becomes a problem, this should be reconsidered.
Each model may be paired with one or more data files. Data files are more restricted than model
files. They may only contain variable assignments (see Assignment Items (page 242)).
Data files may not include calls to user-defined operations.
Models do not contain the names of data files; doing so would fix the data file used by the model
and defeat the purpose of allowing separate data files. Instead, an implementation must allow
one or more data files to be combined with a model for evaluation via a mechanism such as the
command-line.
When checking a model with data, all global variables with fixed type-insts must be assigned,
unless they are not used (in which case they can be removed from the model without effect).
A data file can only be checked for static errors in conjunction with a model, since the model
contains the declarations that include the types of the variables assigned in the data file.
A single data file may be shared between multiple models, so long as the definitions are com-
patible with all the models.

4.1.5.2 Namespaces

All names declared at the top-level belong to a single namespace. It includes the following
names.
1. All global variable names.
2. All function and predicate names, both built-in and user-defined.
3. All enumerated type names and enum case names.
4. All annotation names.

Because multi-file MiniZinc models are composed via concatenation (Model Instance Files
(page 217)), all files share this top-level namespace. Therefore a variable x declared in one
model file could not be declared with a different type in a different file, for example.
MiniZinc supports overloading of built-in and user-defined operations.

4.1.5.3 Scopes

Within the top-level namespace, there are several kinds of local scope that introduce local names:
• Comprehension expressions (Set Comprehensions (page 233)).
• Let expressions (Let Expressions (page 238)).
• Function and predicate argument lists and bodies (User-defined Operations (page 244)).

The listed sections specify these scopes in more detail. In each case, any names declared in the
local scope overshadow identical global names.
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4.1.6 Types and Type-insts

MiniZinc provides four scalar built-in types: Booleans, integers, floats, and strings; enumerated
types; two compound built-in types: sets and multi-dimensional arrays; and the user extensible
annotation type ann.
Each type has one or more possible instantiations. The instantiation of a variable or value in-
dicates if it is fixed to a known value or not. A pairing of a type and instantiation is called a
type-inst.
We begin by discussing some properties that apply to every type. We then introduce instanti-
ations in more detail. We then cover each type individually, giving: an overview of the type
and its possible instantiations, the syntax for its type-insts, whether it is a finite type (and if so,
its domain), whether it is varifiable, the ordering and equality operations, whether its variables
must be initialised at instance-time, and whether it can be involved in automatic coercions.

4.1.6.1 Proper es of Types

The following list introduces some general properties of MiniZinc types.
• Currently all types aremonotypes. In the future wemay allow types which are polymorphic
in other types and also the associated constraints.

• We distinguish types which are finite types. In MiniZinc, finite types include Booleans,
enums, types defined via set expression type-insts such as range types (see Set Expression
Type-insts (page 226)), as well as sets and arrays, composed of finite types. Types that are
not finite types are unconstrained integers, unconstrained floats, unconstrained strings,
and ann. Finite types are relevant to sets (spec-Sets) and array indices (spec-Arrays).
Every finite type has a domain, which is a set value that holds all the possible values
represented by the type.

• Every first-order type (this excludes ann) has a built-in total order and a built-in equality;
>, <, ==/=, !=, <= and >= comparison operators can be applied to any pair of values of the
same type. Rationale: This facilitates the specification of symmetry breaking and of polymor-
phic predicates and functions. Note that, as in most languages, using equality on floats or
types that contain floats is generally not reliable due to their inexact representation. An
implementation may choose to warn about the use of equality with floats or types that
contain floats.

4.1.6.2 Instan a ons

When a MiniZinc model is evaluated, the value of each variable may initially be unknown. As it
runs, each variable’s domain (the set of values it may take) may be reduced, possibly to a single
value.
An instantiation (sometimes abbreviated to inst) describes how fixed or unfixed a variable is at
instance-time. At the most basic level, the instantiation system distinguishes between two kinds
of variables:
1. Parameters, whose values are fixed at instance-time (usually written just as “fixed”).
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2. Decision variables (often abbreviated to variables), whose values may be completely un-
fixed at instance-time, but may become fixed at run-time (indeed, the fixing of decision
variables is the whole aim of constraint solving).

In MiniZinc decision variables can have the following types: Booleans, integers, floats, and sets
of integers, and enums. Arrays and ann can contain decision variables.

4.1.6.3 Type-insts

Because each variable has both a type and an inst, they are often combined into a single type-inst.
Type-insts are primarily what we deal with when writing models, rather than types.
A variable’s type-inst never changes. This means a decision variable whose value becomes fixed
during model evaluation still has its original type-inst (e.g. var int), because that was its type-
inst at instance-time.
Some type-insts can be automatically coerced to another type-inst. For example, if a par int
value is used in a context where a var int is expected, it is automatically coerced to a var int.
We write this par int

c→ var int. Also, any type-inst can be considered coercible to itself.
MiniZinc allows coercions between some types as well.
Some type-insts can be varified, i.e., made unfixed at the top-level. For example, par int is
varified to var int. We write this par int

v→ var int.
Type-insts that are varifiable include the type-insts of the types that can be decision variables
(Booleans, integers, floats, sets, enumerated types). Varification is relevant to type-inst syn-
onyms and array accesses.

4.1.6.4 Type-inst expression overview

This section partly describes how to write type-insts in MiniZinc models. Further details are
given for each type as they are described in the following sections.
A type-inst expression specifies a type-inst. Type-inst expressions may include type-inst con-
straints. Type-inst expressions appear in variable declarations (Variable Declaration Items
(page 241)) and user-defined operation items (User-defined Operations (page 244)).
Type-inst expressions have this syntax:

<ti-expr> ::= <base-ti-expr>
| <array-ti-expr>

<base-ti-expr> ::= <var-par> <opt-ti> <set-ti> <base-ti-expr-tail>

<var-par> ::= "var" | "par" | ϵ

<opt-ti> ::= "opt" | ϵ

<set-ti> ::= "set" "of" | ϵ

<base-type> ::= "bool"
| "int"
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| "float"
| "string"

<base-ti-expr-tail> ::= <ident>
| <base-type>
| <ti-variable-expr-tail>
| "ann"
| { <expr> "," ... }
| <num-expr> ".." <num-expr>

(The final alternative, for range types, uses the numeric-specific <num-expr> non-terminal, de-
fined in Expressions Overview (page 226), rather than the <expr> non-terminal. If this were not
the case, the rule would never match because the .. operator would always be matched by the
first <expr>.)
This fully covers the type-inst expressions for scalar types. The compound type-inst expression
syntax is covered in more detail in Built-in Compound Types and Type-insts (page 222).
The par and var keywords (or lack of them) determine the instantiation. The par annotation
can be omitted; the following two type-inst expressions are equivalent:

par int
int

Rationale: The use of the explicit var keyword allows an implementation to check that all parameters
are initialised in the model or the instance. It also clearly documents which variables are parameters,
and allows more precise type-inst checking.
A type-inst is fixed if it does not contain var, with the exception of ann.
Note that several type-inst expressions that are syntactically expressible represent illegal type-
insts. For example, although the grammar allows var in front of all these base type-inst expres-
sion tails, it is a type-inst error to have var in the front of a string or array expression.

4.1.6.5 Built-in Scalar Types and Type-insts

Booleans

Overview. Booleans represent truthhood or falsity. Rationale: Boolean values are not represented
by integers. Booleans can be explicit converted to integers with the bool2int function, which makes
the user’s intent clear.
Allowed Insts. Booleans can be fixed or unfixed.
Syntax. Fixed Booleans are written bool or par bool. Unfixed Booleans are written as var bool.
Finite? Yes. The domain of a Boolean is false, true.
Varifiable? par bool

v→ var bool, var bool
v→ var bool.

Ordering. The value false is considered smaller than true.
Initialisation. A fixed Boolean variable must be initialised at instance-time; an unfixed Boolean
variable need not be.
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Coercions. par bool
c→ var bool.

Also Booleans can be automatically coerced to integers; see Integers (page 221).

Integers

Overview. Integers represent integral numbers. Integer representations are implementation-
defined. This means that the representable range of integers is implementation-defined. How-
ever, an implementation should abort at run-time if an integer operation overflows.
Allowed Insts. Integers can be fixed or unfixed.
Syntax. Fixed integers are written int or par int. Unfixed integers are written as var int.
Finite? Not unless constrained by a set expression (see Set Expression Type-insts (page 226)).
Varifiable? par int

v→ var int, var int
v→ var int.

Ordering. The ordering on integers is the standard one.
Initialisation. A fixed integer variable must be initialised at instance-time; an unfixed integer
variable need not be.
Coercions. par int

c→ var int, par bool
c→ par int, par bool

c→ var int, var bool
c→ var int.

Also, integers can be automatically coerced to floats; see Floats (page 221).

Floats

Overview. Floats represent real numbers. Float representations are implementation-defined.
This means that the representable range and precision of floats is implementation-defined. How-
ever, an implementation should abort at run-time on exceptional float operations (e.g., those
that produce NaN, if using IEEE754 floats).
Allowed Insts. Floats can be fixed or unfixed.
Syntax. Fixed floats are written float or par float. Unfixed floats are written as var float.
Finite? Not unless constrained by a set expression (see Set Expression Type-insts (page 226)).
Varifiable? par float

v→ var float, var float
v→ var float.

Ordering. The ordering on floats is the standard one.
Initialisation. A fixed float variable must be initialised at instance-time; an unfixed float variable
need not be.
Coercions. par int

c→ par float, par int
c→ var float, var int

c→ var float, par float
c→

var float.

Enumerated Types

Overview. Enumerated types (or enums for short) provide a set of named alternatives. Each
alternative is identified by its case name. Enumerated types, like in many other languages, can
be used in the place of integer types to achieve stricter type checking.
Allowed Insts. Enums can be fixed or unfixed.
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Syntax. Variables of an enumerated type named X are represented by the term X or par X if fixed,
and var X if unfixed.
Finite? Yes.
The domain of an enum is the set containing all of its case names.
Varifiable? par X

v→ var X, var X
v→ var X.

Ordering. When two enum values with different case names are compared, the value with the
case name that is declared first is considered smaller than the value with the case name that is
declared second.
Initialisation. A fixed enum variable must be initialised at instance-time; an unfixed enum vari-
able need not be.
Coercions. par X

c→ par int, var X
c→ var int.

Strings

Overview. Strings are primitive, i.e., they are not lists of characters.
String expressions are used in assertions, output items and annotations, and string literals are
used in include items.
Allowed Insts. Strings must be fixed.
Syntax. Fixed strings are written string or par string.
Finite? Not unless constrained by a set expression (see Set Expression Type-insts (page 226)).
Varifiable? No.
Ordering. Strings are ordered lexicographically using the underlying character codes.
Initialisation. A string variable (which can only be fixed) must be initialised at instance-time.
Coercions. None automatic. However, any non-string value can be manually converted to a
string using the built-in show function or using string interpolation (see String Literals and String
Interpolation (page 232)).

4.1.6.6 Built-in Compound Types and Type-insts

Sets

Overview. A set is a collection with no duplicates.
Allowed Insts. The type-inst of a set’s elements must be fixed. Rationale: This is because current
solvers are not powerful enough to handle sets containing decision variables. Sets may contain any
type, and may be fixed or unfixed. If a set is unfixed, its elements must be finite, unless it occurs
in one of the following contexts:
• the argument of a predicate, function or annotation.
• the declaration of a variable or let local variable with an assigned value.

Syntax. A set base type-inst expression is a special case of the base type-inst rule:
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<base-ti-expr> ::= <var-par> <opt-ti> "set" "of" <base-ti-expr-tail>

Some example set type-inst expressions:

set of int
var set of bool

Finite? Yes, if the set elements are finite types. Otherwise, no.
The domain of a set type that is a finite type is the powerset of the domain of its element type.
For example, the domain of set of 1..2 is powerset(1..2), which is {}, {1}, {1,2}, {2}.
Varifiable? par set of TI

v→ var set of TI, var set of TI
v→ var set of TI.

Ordering. The pre-defined ordering on sets is a lexicographic ordering of the sorted set form,
where {1,2} is in sorted set form, for example, but {2,1} is not. This means, for instance,
{} < {1,3} < {2}.
Initialisation. A fixed set variable must be initialised at instance-time; an unfixed set variable
need not be.
Coercions. par set of TI

c→ par set of UI and par set of TI
c→ var set of UI and

var set of TI
c→ var set of UI, if TI c→ UI.

Arrays

Overview. MiniZinc arrays are maps from fixed integers to values. Values can be of any type.
The values can only have base type-insts. Arrays-of-arrays are not allowed. Arrays can be multi-
dimensional.
MiniZinc arrays can be declared in two different ways.
• Explicitly-indexed arrays have index types in the declaration that are finite types. For ex-
ample:

array[0..3] of int: a1;
array[1..5, 1..10] of var float: a5;

For such arrays, the index type specifies exactly the indices that will be in the array - the
array’s index set is the domain of the index type - and if the indices of the value assigned
do not match then it is a run-time error.
For example, the following assignments cause run-time errors:

a1 = [4,6,4,3,2]; % too many elements
a5 = []; % too few elements

• Implicitly-indexed arrays have index types in the declaration that are not finite types. For
example:

array[int,int] of int: a6;
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No checking of indices occurs when these variables are assigned.
In MiniZinc all index sets of an array must be contiguous ranges of integers, or enumerated
types. The expression used for initialisation of an array must have matching index sets. An
array expression with an enum index set can be assigned to an array declared with an integer
index set, but not the other way around. The exception are array literals, which can be assigned
to arrays declared with enum index sets.
For example:

enum X = {A,B,C};
enum Y = {D,E,F};
array[X] of int: x = array1d(X, [5,6,7]); % correct
array[Y] of int: y = x; % index set mismatch: Y != X
array[int] of int: z = x; % correct: assign X index set to␣
↪→int
array[X] of int: x2 = [10,11,12]; % correct: automatic coercion for␣
↪→array literals

The initialisation of an array can be done in a separate assignment statement, which may be
present in the model or a separate data file.
Arrays can be accessed. See Array Access Expressions (page 235) for details.
Allowed Insts. An array’s size must be fixed. Its indices must also have fixed type-insts. Its
elements may be fixed or unfixed.
Syntax. An array base type-inst expression tail has this syntax:

<array-ti-expr> ::= "array" [ <ti-expr> "," ... ] "of" <base-ti-expr>
| "list" "of" <base-ti-expr>

Some example array type-inst expressions:

array[1..10] of int
list of var int

Note that list of <T> is just syntactic sugar for array[int] of <T>. Rationale: Integer-indexed
arrays of this form are very common, and so worthy of special support to make things easier for
modellers. Implementing it using syntactic sugar avoids adding an extra type to the language, which
keeps things simple for implementers.
Because arrays must be fixed-size it is a type-inst error to precede an array type-inst expression
with var.
Finite? Yes, if the index types and element type are all finite types. Otherwise, no.
The domain of an array type that is a finite array is the set of all distinct arrays whose index set
equals the domain of the index type and whose elements are of the array element type.
Varifiable? No.
Ordering. Arrays are ordered lexicographically, taking absence of a value for a given key to
be before any value for that key. For example, [1, 1] is less than [1, 2], which is less than
[1, 2, 3] and array1d(2..4,[0, 0, 0]) is less than [1, 2, 3].
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Initialisation. An explicitly-indexed array variable must be initialised at instance-time only if
its elements must be initialised at instance time. An implicitly-indexed array variable must be
initialised at instance-time so that its length and index set is known.
Coercions. array[TI0] of TI

c→ array[UI0] of UI if TI0 c→ UI0 and TI
c→ UI.

Op on Types

Overview. Option types defined using the opt type constructor, define types that may or may not
be there. They are similar to Maybe types of Haskell implicitly adding a new value <> to the type.
Allowed Insts. The argument of an option type must be one of the base types bool, int or float.
Syntax. The option type is written opt <T> where <T> if one of the three base types, or one of
their constrained instances.
Finite? Yes if the underlying type is finite, otherwise no.
Varifiable? Yes.
Ordering. <> is always less than any other value in the type. But beware that overloading of
operators like < is different for option types.
Initialisation. An opt type variable does not need to be initialised at instance-time. An unini-
tialised opt type variable is automatically initialised to <>.
Coercions. TI c→ opt UI if TI c→ UI..

The Annota on Type

Overview. The annotation type, ann, can be used to represent arbitrary term structures. It is
augmented by annotation items (Annotation Items (page 244)).
Allowed Insts. ann is always considered unfixed, because it may contain unfixed elements. It
cannot be preceded by var.
Syntax. The annotation type is written ann.
Finite? No.
Varifiable? No.
Ordering. N/A. Annotation types do not have an ordering defined on them.
Initialisation. An ann variable must be initialised at instance-time.
Coercions. None.

4.1.6.7 Constrained Type-insts

One powerful feature of MiniZinc is constrained type-insts. A constrained type-inst is a restricted
version of a base type-inst, i.e., a type-inst with fewer values in its domain.
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Set Expression Type-insts

Three kinds of expressions can be used in type-insts.
1. Integer ranges: e.g. 1..3.
2. Set literals: e.g. var {1,3,5}.
3. Identifiers: the name of a set parameter (which can be global, let-local, the argument of a
predicate or function, or a generator value) can serve as a type-inst.

In each case the base type is that of the set’s elements, and the values within the set serve as the
domain. For example, whereas a variable with type-inst var int can take any integer value, a
variable with type-inst var 1..3 can only take the value 1, 2 or 3.
All set expression type-insts are finite types. Their domain is equal to the set itself.

Float Range Type-insts

Float ranges can be used as type-insts, e.g. 1.0 .. 3.0. These are treated similarly to integer
range type-insts, although 1.0 .. 3.0 is not a valid expression whereas 1 .. 3 is.
Float ranges are not finite types.

4.1.7 Expressions

4.1.7.1 Expressions Overview

Expressions represent values. They occur in various kinds of items. They have the following
syntax:

<expr> ::= <expr-atom> <expr-binop-tail>

<expr-atom> ::= <expr-atom-head> <expr-atom-tail> <annotations>

<expr-binop-tail> ::= [ <bin-op> <expr> ]

<expr-atom-head> ::= <builtin-un-op> <expr-atom>
| "(" <expr> ")"
| <ident-or-quoted-op>
| "_"
| <bool-literal>
| <int-literal>
| <float-literal>
| <string-literal>
| <set-literal>
| <set-comp>
| <array-literal>
| <array-literal-2d>
| <array-comp>
| <ann-literal>
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| <if-then-else-expr>
| <let-expr>
| <call-expr>
| <gen-call-expr>

<expr-atom-tail> ::= ϵ
| <array-access-tail> <expr-atom-tail>

Expressions can be composed from sub-expressions combined with operators. All operators
(binary and unary) are described in Operators (page 228), including the precedences of the
binary operators. All unary operators bind more tightly than all binary operators.
Expressions can have one or more annotations. Annotations bind more tightly than unary and
binary operator applications, but less tightly than access operations and non-operator applica-
tions. In some cases this binding is non-intuitive. For example, in the first three of the following
lines, the annotation a binds to the identifier expression x rather than the operator application.
However, the fourth line features a non-operator application (due to the single quotes around
the not) and so the annotation binds to the whole application.

not x::a;
not (x)::a;
not(x)::a;
'not'(x)::a;

Annotations (page 248) has more on annotations.
Expressions can be contained within parentheses.
The array access operations all bind more tightly than unary and binary operators and annota-
tions. They are described in more detail in Array Access Expressions (page 235).
The remaining kinds of expression atoms (from <ident> to <gen-call-expr>) are described in
Identifier Expressions and Quoted Operator Expressions (page 231) to Generator Call Expressions
(page 240).
We also distinguish syntactically valid numeric expressions. This allows range types to be parsed
correctly.

<num-expr> ::= <num-expr-atom> <num-expr-binop-tail>

<num-expr-atom> ::= <num-expr-atom-head> <expr-atom-tail> <annotations>

<num-expr-binop-tail> ::= [ <num-bin-op> <num-expr> ]

<num-expr-atom-head> ::= <builtin-num-un-op> <num-expr-atom>
| "(" <num-expr> ")"
| <ident-or-quoted-op>
| <int-literal>
| <float-literal>
| <if-then-else-expr>
| <let-expr>
| <call-expr>
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| <gen-call-expr>

4.1.7.2 Operators

Operators are functions that are distinguished by their syntax in one or two ways. First, some of
them contain non-alphanumeric characters that normal functions do not (e.g. +). Second, their
application is written in a manner different to normal functions.
We distinguish between binary operators, which can be applied in an infix manner (e.g. 3 + 4),
and unary operators, which can be applied in a prefix manner without parentheses (e.g. not x).
We also distinguish between built-in operators and user-defined operators. The syntax is the
following:

<builtin-op> ::= <builtin-bin-op> | <builtin-un-op>

<bin-op> ::= <builtin-bin-op> | ‘<ident>‘

<builtin-bin-op> ::= "<->" | "->" | "<-" | "\/" | "xor" | "/\" | "<" | ">" |
↪→"<=" | ">=" | "==" | "=" | "!="

| "in" | "subset" | "superset" | "union" | "diff" |
↪→"symdiff"

| ".." | "intersect" | "++" | <builtin-num-bin-op>

<builtin-un-op> ::= "not" | <builtin-num-un-op>

Again, we syntactically distinguish numeric operators.

<num-bin-op> ::= <builtin-num-bin-op> | ‘<ident>‘

<builtin-num-bin-op> ::= "+" | "-" | "*" | "/" | "div" | "mod"

<builtin-num-un-op> ::= "+" | "-"

Some operators can be written using their unicode symbols, which are listed in Table 4.1.7.2
(recall that MiniZinc input is UTF-8).
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Table 1.1: Unicode equivalents of binary operators
Operator Unicode symbol UTF-8 code
<-> ↔ E2 86 94
-> → E2 86 92
<- ← E2 86 90
not ¬ C2 AC
\/ ∨ E2 88 A8
/\ ∧ E2 88 A7
!= ̸= E2 89 A0
<= ≤ E2 89 A4
>= ≥ E2 89 A5
in ∈ E2 88 88
subset ⊆ E2 8A 86
superset ⊇ E2 8A 87
union ∪ E2 88 AA
intersect ∩ E2 88 A9

The binary operators are listed in Table 4.1.7.2. A lower precedence number means tighter
binding; for example, 1+2*3 is parsed as 1+(2*3) because * binds tighter than +. Associativity
indicates how chains of operators with equal precedences are handled; for example, 1+2+3 is
parsed as (1+2)+3 because + is left-associative, a++b++c is parsed as a++(b++c) because ++ is
right-associative, and 1<x<2 is a syntax error because < is non-associative.
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Table 1.2: Binary infix operators
Symbol(s) Assoc. Prec.
<-> left 1200
-> left 1100
<- left 1100
\/ left 1000
xor left 1000
/\ left 900
< none 800
> none 800
<= none 800
>= none 800
==,
= none 800
!= none 800
in none 700
subset none 700
superset none 700
union left 600
diff left 600
symdiff left 600
.. none 500
+ left 400
- left 400
* left 300
div left 300
mod left 300
/ left 300
intersect left 300
++ right 200
` <ident> ` left 100

A user-defined binary operator is created by backquoting a normal identifier, for example:

A `min2` B

This is a static error if the identifier is not the name of a binary function or predicate.
The unary operators are: +, - and not. User-defined unary operators are not possible.
As Identifiers (page 215) explains, any built-in operator can be used as a normal function iden-
tifier by quoting it, e.g: '+'(3, 4) is equivalent to 3 + 4.
The meaning of each operator is given in Built-in Operations (page 251).
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4.1.7.3 Expression Atoms

Iden fier Expressions and Quoted Operator Expressions

Identifier expressions and quoted operator expressions have the following syntax:

<ident-or-quoted-op> ::= <ident>
| ’<builtin-op>’

Examples of identifiers were given in Identifiers (page 215). The following are examples of
quoted operators:

'+'
'union'

In quoted operators, whitespace is not permitted between either quote and the operator. Oper-
ators (page 228) lists MiniZinc’s built-in operators.
Syntactically, any identifier or quoted operator can serve as an expression. However, in a valid
model any identifier or quoted operator serving as an expression must be the name of a variable.

Anonymous Decision Variables

There is a special identifier, _, that represents an unfixed, anonymous decision variable. It can
take on any type that can be a decision variable. It is particularly useful for initialising decision
variables within compound types. For example, in the following array the first and third elements
are fixed to 1 and 3 respectively and the second and fourth elements are unfixed:

array[1..4] of var int: xs = [1, _, 3, _];

Any expression that does not contain _ and does not involve decision variables is fixed.

Boolean Literals

Boolean literals have this syntax:

<bool-literal> ::= "false" | "true"

Integer and Float Literals

There are three forms of integer literals - decimal, hexadecimal, and octal - with these respective
forms:

<int-literal> ::= [0-9]+
| 0x[0-9A-Fa-f]+
| 0o[0-7]+
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For example: 0, 005, 123, 0x1b7, 0o777; but not -1.
Float literals have the following form:

<float-literal> ::= [0-9]+"."[0-9]+
| [0-9]+"."[0-9]+[Ee][-+]?[0-9]+
| [0-9]+[Ee][-+]?[0-9]+
| 0[xX]([0-9a-fA-F]*"."[0-9a-fA-F]+|[0-9a-fA-F]+".

↪→")([pP][+-]?[0-9]+)
| (0[xX][0-9a-fA-F]+[pP][+-]?[0-9]+)

For example: 1.05, 1.3e-5, 1.3+e5; but not 1., .5, 1.e5, .1e5, -1.0, -1E05. A - symbol preceding
an integer or float literal is parsed as a unary minus (regardless of intervening whitespace), not
as part of the literal. This is because it is not possible in general to distinguish a - for a negative
integer or float literal from a binary minus when lexing.

String Literals and String Interpola on

String literals are written as in C:

<string-contents> ::= ([^"\n\] | \[^\n(])*

<string-literal> ::= """ <string-contents> """
| """ <string-contents> "\(" <string-interpolate-tail>

<string-interpolate-tail> ::= <expr> ")"<string-contents>"""
| <expr> ")"<string-contents>"\("␣

↪→<string-interpolate-tail>

This includes C-style escape sequences, such as \" for double quotes, \\ for backslash, and \n
for newline.
For example: "Hello, world!\n".
String literals must fit on a single line.
Long string literals can be split across multiple lines using string concatenation. For example:

string: s = "This is a string literal "
++ "split across two lines.";

A string expression can contain an arbitrary MiniZinc expression, which will be converted to a
string similar to the builtin show function and inserted into the string.
For example:

var set of 1..10: q;
solve satisfy;
output [show("The value of q is \(q), and it has \(card(q)) elements.")];
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Set Literals

Set literals have this syntax:

<set-literal> ::= "{" [ <expr> "," ... ] "}"

For example:

{ 1, 3, 5 }
{ }
{ 1, 2.0 }

The type-insts of all elements in a literal set must be the same, or coercible to the same type-inst
(as in the last example above, where the integer 1 will be coerced to a float).

Set Comprehensions

Set comprehensions have this syntax:

<set-comp> ::= "{" <expr> "|" <comp-tail> "}"

<comp-tail> ::= <generator> [ "where" <expr> ] "," ...

<generator> ::= <ident> "," ... "in" <expr>

For example (with the literal equivalent on the right):

{ 2*i | i in 1..5 } % { 2, 4, 6, 8, 10 }
{ 1 | i in 1..5 } % { 1 } (no duplicates in sets)

The expression before the | is the head expression. The expression after the in is a generator
expression. Generators can be restricted by a where-expression. For example:

{ i | i in 1..10 where (i mod 2 = 0) } % { 2, 4, 6, 8, 10 }

When multiple generators are present, the right-most generator acts as the inner-most one. For
example:

{ 3*i+j | i in 0..2, j in {0, 1} } % { 0, 1, 3, 4, 6, 7 }

The scope of local generator variables is given by the following rules:
• They are visible within the head expression (before the |).
• They are visible within the where-expression of their own generator.
• They are visible within generator expressions and where-expressions in any subsequent
generators.
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The last of these rules means that the following set comprehension is allowed:

{ i+j | i in 1..3, j in 1..i } % { 1+1, 2+1, 2+2, 3+1, 3+2, 3+3 }

Multiple where-expressions are allowed, as in the following example:

[f(i, j) | i in A1 where p(i), j in A2 where q(i,j)]

A generator expression must be an array or a fixed set.
Rationale: For set comprehensions, set generators would suffice, but for array comprehensions,
array generators are required for full expressivity (e.g., to provide control over the order of the
elements in the resulting array). Set comprehensions have array generators for consistency with
array comprehensions, which makes implementations simpler.
The where-expression (if present) must be Boolean. It can be var, in which case the type of the
comprehension is lifted to an optional type.

Array Literals

Array literals have this syntax:

<array-literal> ::= "[" [ <expr> "," ... ] "]"

For example:

[1, 2, 3, 4]
[]
[1, _]

In a array literal all elements must have the same type-inst, or be coercible to the same type-inst
(as in the last example above, where the fixed integer 1 will be coerced to a var int).
The indices of a array literal are implicitly 1..n, where n is the length of the literal.

2d Array Literals

Simple 2d array literals have this syntax:

<array-literal-2d> ::= "[|" [ (<expr> "," ...) "|" ... ] "|]"

For example:

[| 1, 2, 3
| 4, 5, 6
| 7, 8, 9 |] % array[1..3, 1..3]
[| x, y, z |] % array[1..1, 1..3]
[| 1 | _ | _ |] % array[1..3, 1..1]
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In a 2d array literal, every sub-array must have the same length.
In a 2d array literal all elements must have the same type-inst, or be coercible to the same
type-inst (as in the last example above, where the fixed integer 1 will be coerced to a var int).
The indices of a 2d array literal are implicitly (1,1)..(m,n), where m and n are determined by
the shape of the literal.

Array Comprehensions

Array comprehensions have this syntax:

<array-comp> ::= "[" <expr> "|" <comp-tail> "]"

For example (with the literal equivalents on the right):

[2*i | i in 1..5] % [2, 4, 6, 8, 10]

Array comprehensions have more flexible type and inst requirements than set comprehensions
(see Set Comprehensions (page 233)).
Array comprehensions are allowed over a variable set with finite type, the result is an array of
optional type, with length equal to the cardinality of the upper bound of the variable set. For
example:

var set of 1..5: x;
array[int] of var opt int: y = [ i * i | i in x ];

The length of array will be 5.
Array comprehensions are allowed where the where-expression is a var bool. Again the result-
ing array is of optional type, and of length equal to that given by the generator expressions. For
example:

var int x;
array[int] of var opt int: y = [ i | i in 1..10 where i != x ];

The length of the array will be 10.
The indices of an evaluated simple array comprehension are implicitly 1..n, where n is the length
of the evaluated comprehension.

Array Access Expressions

Array elements are accessed using square brackets after an expression:

<array-access-tail> ::= "[" <expr> "," ... "]"

For example:
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int: x = a1[1];

If all the indices used in an array access are fixed, the type-inst of the result is the same as the
element type-inst. However, if any indices are not fixed, the type-inst of the result is the varified
element type-inst. For example, if we have:

array[1..2] of int: a2 = [1, 2];
var int: i;

then the type-inst of a2[i] is var int. If the element type-inst is not varifiable, such an access
causes a static error.
Multi dimensional arrays are accessed using comma separated indices.

array[1..3,1..3] of int: a3;
int: y = a3[1, 2];

Indices must match the index set type of the array. For example, an array declared with an enum
index set can only be accessed using indices from that enum.

enum X = {A,B,C};
array[X] of int: a4 = [1,2,3];
int: y = a4[1]; % wrong index type
int: z = a4[B]; % correct

Array Slice Expressions

Arrays can be sliced in order to extract individual rows, columns or blocks. The syntax is that
of an array access expression (see above), but where one or more of the expressions inside the
square brackets are set-valued.
For example, the following extracts row 2 from a two-dimensional array:

array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,4..8];

Note that the resulting array row_2_of_x will have index set 4..8.
A short-hand for all indices of a particular dimension is to use just dots:

array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,..];

You can also restrict the index set by giving a sub-set of the original index set as the slice:

array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,5..6];
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The resulting array row_2_of_x will now have length 2 and index set 5..6.
The dots notation also allows for partial bounds, for example:

array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,..6];

The resulting array will have length 3 and index set 4..6. Of course 6.. would also be allowed
and result in an array with index set 6..8.

Annota on Literals

Literals of the ann type have this syntax:

<ann-literal> ::= <ident> [ "(" <expr> "," ... ")" ]

For example:

foo
cons(1, cons(2, cons(3, nil)))

There is no way to inspect or deconstruct annotation literals in a MiniZinc model; they are
intended to be inspected only by an implementation, e.g., to direct compilation.

If-then-else Expressions

MiniZinc provides if-then-else expressions, which provide selection from two alternatives based
on a condition. They have this syntax:

<if-then-else-expr> ::= "if" <expr> "then" <expr> [ "elseif" <expr> "then"␣
↪→<expr> ]* "else" <expr> "endif"

For example:

if x <= y then x else y endif
if x < 0 then -1 elseif x > 0 then 1 else 0 endif

The presence of the endif avoids possible ambiguity when an if-then-else expression is part of
a larger expression.
The type-inst of the if expression must be par bool or var bool. The then and else expressions
must have the same type-inst, or be coercible to the same type-inst, which is also the type-inst
of the whole expression.
If the if expression is var bool then the type-inst of the then and else expressions must be
varifiable.
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If the if expression is par bool then evaluation of if-then-else expressions is lazy: the condition
is evaluated, and then only one of the then and else branches are evaluated, depending on
whether the condition succeeded or failed. This is not the case if it is var bool.

Let Expressions

Let expressions provide a way of introducing local names for one or more expressions and local
constraints that can be used within another expression. They are particularly useful in user-
defined operations.
Let expressions have this syntax:

<let-expr> ::= "let" "{" <let-item> ";" ... "}" "in" <expr>

<let-item> ::= <var-decl-item>
| <constraint-item>

For example:

let { int: x = 3; int: y = 4; } in x + y;
let { var int: x;

constraint x >= y /\ x >= -y /\ (x = y \/ x = -y); }
in x

The scope of a let local variable covers:
• The type-inst and initialisation expressions of any subsequent variables within the let ex-
pression (but not the variable’s own initialisation expression).

• The expression after the in, which is parsed as greedily as possible.
A variable can only be declared once in a let expression.
Thus in the following examples the first is acceptable but the rest are not:

let { int: x = 3; int: y = x; } in x + y; % ok
let { int: y = x; int: x = 3; } in x + y; % x not visible in y's defn.
let { int: x = x; } in x; % x not visible in x's defn.
let { int: x = 3; int: x = 4; } in x; % x declared twice

The initialiser for a let local variable can be omitted only if the variable is a decision variable.
For example:

let { var int: x; } in ...; % ok
let { int: x; } in ...; % illegal

The type-inst of the entire let expression is the type-inst of the expression after the in keyword.
There is a complication involving let expressions in negative contexts. A let expression occurs
in a negative context if it occurs in an expression of the form not X, X <-> Y} or in the sub-
expression X in X -> Y or Y <- X, or in a subexpression bool2int(X).
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If a let expression is used in a negative context, then any let-local decision variables must be
defined only in terms of non-local variables and parameters. This is because local variables
are implicitly existentially quantified, and if the let expression occurred in a negative context
then the local variables would be effectively universally quantified which is not supported by
MiniZinc.
Constraints in let expressions float to the nearest enclosing Boolean context. For example

constraint b -> x + let { var 0..2: y; constraint y != -1;} in y >= 4;

is equivalent to

var 0..2: y;
constraint b -> (x + y >= 4 /\ y != 1);

For backwards compatibility with older versions of MiniZinc, items inside the let can also be
separated by commas instead of semicolons.

Call Expressions

Call expressions are used to call predicates and functions.
Call expressions have this syntax:

<call-expr> ::= <ident-or-quoted-op> [ "(" <expr> "," ... ")" ]

For example:

x = min(3, 5);

The type-insts of the expressions passed as arguments must match the argument types of the
called predicate/function. The return type of the predicate/function must also be appropriate
for the calling context.
Note that a call to a function or predicate with no arguments is syntactically indistinguishable
from the use of a variable, and so must be determined during type-inst checking.
Evaluation of the arguments in call expressions is strict: all arguments are evaluated before the
call itself is evaluated. Note that this includes Boolean operations such as /\, \/, -> and <-
which could be lazy in one argument. The one exception is assert, which is lazy in its third
argument (Other Operations (page 258)).
Rationale: Boolean operations are strict because: (a) this minimises exceptional cases; (b) in an
expression like A -> B where A is not fixed and B causes an abort, the appropriate behaviour is
unclear if laziness is present; and (c) if a user needs laziness, an if-then-else can be used.
The order of argument evaluation is not specified. Rationale: Because MiniZinc is declarative,
there is no obvious need to specify an evaluation order, and leaving it unspecified gives implementors
some freedom.
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Generator Call Expressions

MiniZinc has special syntax for certain kinds of call expressions which makes models much more
readable.
Generator call expressions have this syntax:

<gen-call-expr> ::= <ident-or-quoted-op> "(" <comp-tail> ")" "(" <expr> ")"

A generator call expression P(Gs)(E) is equivalent to the call expression P([E | Gs]). For ex-
ample, the expression:

forall(i,j in Domain where i<j)
(noattack(i, j, queens[i], queens[j]));

(in a model specifying the N-queens problem) is equivalent to:

forall( [ noattack(i, j, queens[i], queens[j])
| i,j in Domain where i<j ] );

The parentheses around the latter expression are mandatory; this avoids possible confusion
when the generator call expression is part of a larger expression.
The identifier must be the name of a unary predicate or function that takes an array argument.
The generators and where-expression (if present) have the same requirements as those in array
comprehensions (Array Comprehensions (page 235)).

4.1.8 Items

This section describes the top-level program items.

4.1.8.1 Include Items

Include items allow a model to be split across multiple files. They have this syntax:

<include-item> ::= "include" <string-literal>

For example:

include "foo.mzn";

includes the file foo.mzn.
Include items are particularly useful for accessing libraries or breaking up large models into
small pieces. They are not, as Model Instance Files (page 217) explains, used for specifying data
files.
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If the given name is not a complete path then the file is searched for in an implementation-
defined set of directories. The search directories must be able to be altered with a command
line option.

4.1.8.2 Variable Declara on Items

Variable declarations have this syntax:

<var-decl-item> ::= <ti-expr-and-id> <annotations> [ "=" <expr> ]

For example:

int: A = 10;

It is a type-inst error if a variable is declared and/or defined more than once in a model.
A variable whose declaration does not include an assignment can be initialised by a separate
assignment item (Assignment Items (page 242)). For example, the above item can be separated
into the following two items:

int: A;
...
A = 10;

All variables that contain a parameter component must be defined at instance-time.
Variables can have one or more annotations. Annotations (page 248) has more on annotations.

4.1.8.3 Enum Items

Enumerated type items have this syntax:

<enum-item> ::= "enum" <ident> <annotations> [ "=" <enum-cases> ]

<enum-cases> ::= "{" <ident> "," ... "}"

An example of an enum:

enum country = {Australia, Canada, China, England, USA};

Each alternative is called an enum case. The identifier used to name each case (e.g. Australia)
is called the enum case name.
Because enum case names all reside in the top-level namespace (Namespaces (page 217)), case
names in different enums must be distinct.
An enum can be declared but not defined, in which case it must be defined elsewhere within
the model, or in a data file. For example, a model file could contain this:
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enum Workers;
enum Shifts;

and the data file could contain this:

Workers = { welder, driller, stamper };
Shifts = { idle, day, night };

Sometimes it is useful to be able to refer to one of the enum case names within the model. This
can be achieved by using a variable. The model would read:

enum Shifts;
Shifts: idle; % Variable representing the idle constant.

and the data file:

enum Shifts = { idle_const, day, night };
idle = idle_const; % Assignment to the variable.

Although the constant idle_const cannot be mentioned in the model, the variable idle can be.
All enums must be defined at instance-time.
Enum items can be annotated. Annotations (page 248) has more details on annotations.
Each case name can be coerced automatically to the integer corresponding to its index in the
type.

int: oz = Australia; % oz = 1

For each enumerated type T, the following functions exist:

% Return next greater enum value of x in enum type X
function T: enum_next(set of T: X, T: x);
function var T: enum_next(set of T: X, var T: x);

% Return next smaller enum value of x in enum type X
function T: enum_prev(set of T: X, T: x);
function var T: enum_prev(set of T: X, var T: x);

% Convert x to enum type X
function T: to_enum(set of T: X, int: x);
function var T: to_enum(set of T: X, var int: x);

4.1.8.4 Assignment Items

Assignments have this syntax:
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<assign-item> ::= <ident> "=" <expr>

For example:

A = 10;

4.1.8.5 Constraint Items

Constraint items form the heart of a model. Any solutions found for a model will satisfy all of
its constraints.
Constraint items have this syntax:

<constraint-item> ::= "constraint" <string-annotation> <expr>

For example:

constraint a*x < b;

The expression in a constraint item must have type-inst par bool or var bool; note however
that constraints with fixed expressions are not very useful.

4.1.8.6 Solve Items

Every model must have exactly one or no solve item. Solve items have the following syntax:

<solve-item> ::= "solve" <annotations> "satisfy"
| "solve" <annotations> "minimize" <expr>
| "solve" <annotations> "maximize" <expr>

Example solve items:

solve satisfy;
solve maximize a*x + y - 3*z;

The solve item determines whether the model represents a constraint satisfaction problem or an
optimisation problem. If there is no solve item, the model is assumed to be a satisfaction prob-
lem. For optimisation problems, the given expression is the one to be minimized/maximized.
The expression in a minimize/maximize solve item can have integer or float type.
Rationale: This is possible because all type-insts have a defined order. Note that having an expres-
sion with a fixed type-inst in a solve item is not very useful as it means that the model requires
no optimisation.
Solve items can be annotated. Annotations (page 248) has more details on annotations.
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4.1.8.7 Output Items

Output items are used to present the solutions of a model instance. They have the following
syntax:

<output-item> ::= "output" <expr>

For example:

output ["The value of x is ", show(x), "!\n"];

The expression must have type-inst array[int] of par string. It can be composed using the
built-in operator ++ and the built-in functions show, show_int, and show_float (Built-in Op-
erations (page 251)), as well as string interpolations (String Literals and String Interpolation
(page 232)). The output is the concatenation of the elements of the array. If multiple output
items exist, the output is the concatenation of all of their outputs, in the order in which they
appear in the model.
If no output item is present, the implementation should print all the global variables and their
values in a readable format.

4.1.8.8 Annota on Items

Annotation items are used to augment the ann type. They have the following syntax:

<annotation-item> ::= "annotation" <ident> <params>

For example:

annotation solver(int: kind);

It is a type-inst error if an annotation is declared and/or defined more than once in a model.
The use of annotations is described in Annotations (page 248).

4.1.8.9 User-defined Opera ons

MiniZinc models can contain user-defined operations. They have this syntax:

<predicate-item> ::= "predicate" <operation-item-tail>

<test-item> ::= "test" <operation-item-tail>

<function-item> ::= "function" <ti-expr> ":" <operation-item-tail>

<operation-item-tail> ::= <ident> <params> <annotations> [ "=" <expr> ]
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<params> ::= [ ( <ti-expr-and-id> "," ... ) ]

The type-inst expressions can include type-inst variables in the function and predicate declara-
tion.
For example, predicate even checks that its argument is an even number.

predicate even(var int: x) =
x mod 2 = 0;

A predicate supported natively by the target solver can be declared as follows:

predicate alldifferent(array [int] of var int: xs);

Predicate declarations that are natively supported in MiniZinc are restricted to using FlatZinc
types (for instance, multi-dimensional and non-1-based arrays are forbidden). .. % pjs{need to
fix this if we allow2d arrays in FlatZinc!}
Declarations for user-defined operations can be annotated. Annotations (page 248) has more
details on annotations.

Basic Proper es

The term “predicate” is generally used to refer to both test items and predicate items. When the
two kinds must be distinguished, the terms “test item” and “predicate item” can be used.
The return type-inst of a test item is implicitly par bool. The return type-inst of a predicate item
is implicitly var bool.
Predicates and functions are allowed to be recursive. Termination of a recursive function call
depends solely on its fixed arguments, i.e., recursive functions and predicates cannot be used
to define recursively constrained variables. .. % Rationale{This ensures that the satisfiability of
models is decidable.}
Predicates and functions introduce their own local names, being those of the formal arguments.
The scope of these names covers the predicate/function body. Argument names cannot be re-
peated within a predicate/function declaration.

Ad-hoc polymorphism

MiniZinc supports ad-hoc polymorphism via overloading. Functions and predicates (both built-
in and user-defined) can be overloaded. A name can be overloaded as both a function and a
predicate.
It is a type-inst error if a single version of an overloaded operation with a particular type-inst
signature is defined more than once in a model. For example:

predicate p(1..5: x);
predicate p(1..5: x) = false; % ok: first definition
predicate p(1..5: x) = true; % error: repeated definition
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The combination of overloading and coercions can cause problems. Two overloadings of an
operation are said to overlap if they couldmatch the same arguments. For example, the following
overloadings of p overlap, as they both match the call p(3).

predicate p(par int: x);
predicate p(var int: x);

However, the following two predicates do not overlap because they cannot match the same
argument:

predicate q(int: x);
predicate q(set of int: x);

We avoid two potential overloading problems by placing some restrictions on overlapping over-
loadings of operations.
1. The first problem is ambiguity. Different placement of coercions in operation arguments
may allow different choices for the overloaded function. For instance, if a MiniZinc func-
tion f is overloaded like this:

function int: f(int: x, float: y) = 0;
function int: f(float: x, int: y) = 1;

then f(3,3) could be either 0 or 1 depending on coercion/overloading choices.
To avoid this problem, any overlapping overloadings of an operation must be semantically
equivalent with respect to coercion. For example, the two overloadings of the predicate p
above must have bodies that are semantically equivalent with respect to overloading.
Currently, this requirement is not checked and the modeller must satisfy it manually. In
the future, we may require the sharing of bodies among different versions of overloaded
operations, which would provide automatic satisfaction of this requirement.

2. The second problem is that certain combinations of overloadings could require a MiniZinc
implementation to perform combinatorial search in order to explore different choices of
coercions and overloading. For example, if function g is overloaded like this:

function float: g(int: t1, float: t2) = t2;
function int : g(float: t1, int: t2) = t1;

then how the overloading of g(3,4) is resolved depends upon its context:

float: s = g(3,4);
int: t = g(3,4);

In the definition of s the first overloaded definition must be used while in the definition
of t the second must be used.
To avoid this problem, all overlapping overloadings of an operation must be closed under
intersection of their input type-insts. That is, if overloaded versions have input type-inst

246 Chapter 4.1. Specifica on of MiniZinc



MiniZinc Handbook, Release 2.4.3

(S1, ...., Sn) and (T1, ..., Tn) then there must be another overloaded version with input type-
inst (R1, ..., Rn) where each Ri is the greatest lower bound (glb) of Si and Ti.
Also, all overlapping overloadings of an operation must be monotonic. That is, if there are
overloaded versions with input type-insts (S1, ...., Sn) and (T1, ..., Tn) and output type-inst
S and T , respectively, then Si ⪯ Ti for all i, implies S ⪯ T . At call sites, the matching
overloading that is lowest on the type-inst lattice is always used.
For g above, the type-inst intersection (or glb) of (int,float) and (float,int) is
(int,int). Thus, the overloaded versions are not closed under intersection and the user
needs to provide another overloading for g with input type-inst (int,int). The natural
definition is:

function int: g(int: t1, int: t2) = t1;

Once g has been augmented with the third overloading, it satisfies the monotonicity re-
quirement because the output type-inst of the third overloading is int which is less than
the output type-inst of the original overloadings.
Monotonicity and closure under type-inst conjunction ensure that whenever an overloaded
function or predicate is reached during type-inst checking, there is always a unique and
safe “minimal” version to choose, and so the complexity of type-inst checking remains
linear. Thus in our example g(3,4) is always resolved by choosing the new overloaded
definition.

Local Variables

Local variables in operation bodies are introduced using let expressions. For example, the pred-
icate have_common_divisor takes two integer values and checks whether they have a common
divisor greater than one:

predicate have_common_divisor(int: A, int: B) =
let {

var 2..min(A,B): C;
} in

A mod C = 0 /\
B mod C = 0;

However, as Let Expressions (page 238) explained, because C is not defined, this predicate cannot
be called in a negative context. The following is a version that could be called in a negative
context:

predicate have_common_divisor(int: A, int: B) =
exists(C in 2..min(A,B))

(A mod C = 0 /\ B mod C = 0);
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4.1.9 Annota ons

Annotations allow a modeller to specify non-declarative and solver-specific information that is
beyond the core language. Annotations do not change the meaning of a model, however, only
how it is solved.
Annotations can be attached to variables (on their declarations), constraints, expressions, type-
inst synonyms, enum items, solve items and on user defined operations. They have the following
syntax:

<annotations> ::= [ "::" <annotation> ]*

<annotation> ::= <expr-atom-head> <expr-atom-tail>

<string-annotation> ::= "::" <string-literal>

For example:

int: x::foo;
x = (3 + 4)::bar("a", 9)::baz("b");
solve :: blah(4)

minimize x;

The types of the argument expressions must match the argument types of the declared annota-
tion. Like user-defined predicates and functions, annotations can be overloaded.
Annotation signatures can contain type-inst variables.
The order and nesting of annotations do not matter. For the expression case it can be helpful to
view the annotation connector :: as an overloaded operator:

ann: '::'(var $T: e, ann: a); % associative
ann: '::'(ann: a, ann: b); % associative + commutative

Both operators are associative, the second is commutative. This means that the following ex-
pressions are all equivalent:

e :: a :: b
e :: b :: a
(e :: a) :: b
(e :: b) :: a
e :: (a :: b)
e :: (b :: a)

This property also applies to annotations on solve items and variable declaration items. Ratio-
nale: This property make things simple, as it allows all nested combinations of annotations to be
treated as if they are flat, thus avoiding the need to determine what is the meaning of an anno-
tated annotation. It also makes the MiniZinc abstract syntax tree simpler by avoiding the need to
represent nesting.
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Annotations have to be values of the ann type or string literals. The latter are used for naming
constraints and expressions, for example

constraint ::"first constraint" alldifferent(x);
constraint ::"second constraint" alldifferent(y);
constraint forall (i in 1..n) (my_constraint(x[i],y[i])::"constraint \(i)");

Note that constraint items can only be annotated with string literals.
Rationale: Allowing arbitrary annotations on constraint items makes the grammar ambiguous, and
seems unnecessary since we can just as well annotate the constraint expression.

4.1.10 Par ality

The presence of constrained type-insts in MiniZinc means that various operations are potentially
partial, i.e., not clearly defined for all possible inputs. For example, what happens if a function
expecting a positive argument is passed a negative argument? What happens if a variable is
assigned a value that does not satisfy its type-inst constraints? What happens if an array index
is out of bounds? This section describes what happens in all these cases.
In general, cases involving fixed values that do not satisfy constraints lead to run-time aborts.
Rationale: Our experience shows that if a fixed value fails a constraint, it is almost certainly due to
a programming error. Furthermore, these cases are easy for an implementation to check.
But cases involving unfixed values vary, as we will see. Rationale: The best thing to do for unfixed
values varies from case to case. Also, it is difficult to check constraints on unfixed values, particularly
because during search a decision variable might become fixed and then backtracking will cause this
value to be reverted, in which case aborting is a bad idea.

4.1.10.1 Par al Assignments

The first operation involving partiality is assignment. There are four distinct cases for assign-
ments.
• A value assigned to a fixed, constrained global variable is checked at run-time; if the as-
signed value does not satisfy its constraints, it is a run-time error. In other words, this:

1..5: x = 3;

is equivalent to this:

int: x = 3;
constraint assert(x in 1..5,

"assignment to global parameter 'x' failed")

• A value assigned to an unfixed, constrained global variable makes the assignment act like
a constraint; if the assigned value does not satisfy the variable’s constraints, it causes a
run-time model failure. In other words, this:
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var 1..5: x = 3;

is equivalent to this:

var int: x = 3;
constraint x in 1..5;

Rationale: This behaviour is easy to understand and easy to implement.
• A value assigned to a fixed, constrained let-local variable is checked at run-time; if the
assigned value does not satisfy its constraints, it is a run-time error. In other words, this:

let { 1..5: x = 3; } in x+1

is equivalent to this:

let { int: x = 3; } in
assert(x in 1..5,

"assignment to let parameter 'x' failed", x+1)

• A value assigned to an unfixed, constrained let-local variable makes the assignment act
like a constraint; if the constraint fails at run-time, the failure “bubbles up” to the nearest
enclosing Boolean scope, where it is interpreted as false.
Rationale: This behaviour is consistent with assignments to global variables.

Note that in cases where a value is partly fixed and partly unfixed, e.g., some arrays, the different
elements are checked according to the different cases, and fixed elements are checked before
unfixed elements. For example:

u = [ let { var 1..5: x = 6} in x, let { par 1..5: y = 6; } in y) ];

This causes a run-time abort, because the second, fixed element is checked before the first,
unfixed element. This ordering is true for the cases in the following sections as well. Rationale:
This ensures that failures cannot mask aborts, which seems desirable.

4.1.10.2 Par al Predicate/Func on and Annota on Arguments

The second kind of operation involving partiality is calls and annotations.
The semantics is similar to assignments: fixed arguments that fail their constraints will cause
aborts, and unfixed arguments that fail their constraints will cause failure, which bubbles up to
the nearest enclosing Boolean scope.

4.1.10.3 Par al Array Accesses

The third kind of operation involving partiality is array access. There are two distinct cases.
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• A fixed value used as an array index is checked at run-time; if the index value is not in the
index set of the array, it is a run-time error.

• An unfixed value used as an array index makes the access act like a constraint; if the access
fails at run-time, the failure “bubbles up” to the nearest enclosing Boolean scope, where it
is interpreted as false. For example:

array[1..3] of int: a = [1,2,3];
var int: i;
constraint (a[i] + 3) > 10 \/ i = 99;

Here the array access fails, so the failure bubbles up to the disjunction, and i is constrained
to be 99. Rationale: Unlike predicate/function calls, modellers in practice sometimes do use
array accesses that can fail. In such cases, the “bubbling up” behaviour is a reasonable one.

4.1.11 Built-in Opera ons

This appendix lists built-in operators, functions and predicates. They may be implemented as
true built-ins, or in libraries that are automatically imported for all models. Many of them are
overloaded.
Operator names are written within single quotes when used in type signatures, e.g.
bool: '\/'(bool, bool).
We use the syntax TI: f(TI1,...,TIn) to represent an operation named f that takes arguments
with type-insts TI,...,TIn and returns a value with type-inst TI. This is slightly more compact
than the usual MiniZinc syntax, in that it omits argument names.

4.1.11.1 Comparison Opera ons

Less than. Other comparisons are similar: greater than (>), less than or equal (<=), greater than
or equal (>=), equality (==, =), and disequality (!=).

bool: '<'( $T, $T)
var bool: '<'(var $T, var $T)

4.1.11.2 Arithme c Opera ons

Addition. Other numeric operations are similar: subtraction (-), and multiplication (*).

int: '+'( int, int)
var int: '+'(var int, var int)

float: '+'( float, float)
var float: '+'(var float, var float)

Unary minus. Unary plus (+) is similar.
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int: '-'( int)
var int: '-'(var int)

float: '-'( float)
var float: '-'(var float)

Integer and floating-point division and modulo.

int: 'div'( int, int)
var int: 'div'(var int, var int)

int: 'mod'( int, int)
var int: 'mod'(var int, var int)

float: '/' ( float, float)
var float: '/' (var float, var float)

The result of the modulo operation, if non-zero, always has the same sign as its first operand.
The integer division and modulo operations are connected by the following identity:

x = (x div y) * y + (x mod y)

Some illustrative examples:

7 div 4 = 1 7 mod 4 = 3
-7 div 4 = -1 -7 mod 4 = -3
7 div -4 = -1 7 mod -4 = 3
-7 div -4 = 1 -7 mod -4 = -3

Sum multiple numbers. Product (product) is similar. Note that the sum of an empty array is 0,
and the product of an empty array is 1.

int: sum(array[$T] of int )
var int: sum(array[$T] of var int )

float: sum(array[$T] of float)
var float: sum(array[$T] of var float)

Minimum of two values; maximum (max) is similar.

$T: min( $T, $T)
var $T: min(var $T, var $T)

Minimum of an array of values; maximum (max) is similar. Aborts if the array is empty.

$U: min(array[$T] of $U)
var $U: min(array[$T] of var $U)

Minimum of a fixed set; maximum (max) is similar. Aborts if the set is empty.
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$T: min(set of $T)

Absolute value of a number.

int: abs( int)
var int: abs(var int)

float: abs( float)
var float: abs(var float)

Square root of a float. Aborts if argument is negative.

float: sqrt( float)
var float: sqrt(var float)

Power operator. E.g. pow(2, 5) gives 32.

int: pow(int, int)
float: pow(float, float)

Natural exponent.

float: exp(float)
var float: exp(var float)

Natural logarithm. Logarithm to base 10 (log10) and logarithm to base 2 (log2) are similar.

float: ln(float)
var float: ln(var float)

General logarithm; the first argument is the base.

float: log(float, float)

Sine. Cosine (cos), tangent (tan), inverse sine (asin), inverse cosine (acos), inverse tangent
(atan), hyperbolic sine (sinh), hyperbolic cosine (cosh), hyperbolic tangent (tanh), inverse hy-
perbolic sine (asinh), inverse hyperbolic cosine (acosh) and inverse hyperbolic tangent (atanh)
are similar.

float: sin(float)
var float: sin(var float)

4.1.11.3 Logical Opera ons

Conjunction. Other logical operations are similar: disjunction (\/) reverse implication (<-), for-
ward implication (->), bi-implication (<->), exclusive disjunction (xor), logical negation (not).
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Note that the implication operators are not written using =>, <= and <=> as is the case in some
languages. This allows <= to instead represent “less than or equal”.

bool: '/\'( bool, bool)
var bool: '/\'(var bool, var bool)

Universal quantification. Existential quantification (exists) is similar. Note that, when applied
to an empty list, forall returns true, and exists returns false.

bool: forall(array[$T] of bool)
var bool: forall(array[$T] of var bool)

N-ary exclusive disjunction. N-ary bi-implication (iffall) is similar, with true instead of false.

bool: xorall(array[$T] of bool: bs) = foldl('xor', false, bs)
var bool: xorall(array[$T] of var bool: bs) = foldl('xor', false, bs)

4.1.11.4 Set Opera ons

Set membership.

bool: 'in'( $T, set of $T )
var bool: 'in'(var int, var set of int)

Non-strict subset. Non-strict superset (superset) is similar.

bool: 'subset'( set of $T , set of $T )
var bool: 'subset'(var set of int, var set of int)

Set union. Other set operations are similar: intersection (intersect), difference (diff), sym-
metric difference (symdiff).

set of $T: 'union'( set of $T, set of $T )
var set of int: 'union'(var set of int, var set of int )

Set range. If the first argument is larger than the second (e.g. 1..0), it returns the empty set.

set of int: '..'(int, int)

Cardinality of a set.

int: card( set of $T)
var int: card(var set of int)

Union of an array of sets. Intersection of multiple sets (array_intersect) is similar.

254 Chapter 4.1. Specifica on of MiniZinc



MiniZinc Handbook, Release 2.4.3

set of $U: array_union(array[$T] of set of $U)
var set of int: array_union(array[$T] of var set of int)

4.1.11.5 Array Opera ons

Length of an array.

int: length(array[$T] of $U)

List concatenation. Returns the list (integer-indexed array) containing all elements of the first
argument followed by all elements of the second argument, with elements occurring in the same
order as in the arguments. The resulting indices are in the range 1..n, where n is the sum of
the lengths of the arguments. Rationale: This allows list-like arrays to be concatenated naturally
and avoids problems with overlapping indices. The resulting indices are consistent with those of
implicitly indexed array literals. Note that '++' also performs string concatenation.

array[int] of $T: '++'(array[int] of $T, array[int] of $T)

Index sets of arrays. If the argument is a literal, returns 1..n where n is the (sub-)array length.
Otherwise, returns the declared or inferred index set. This list is only partial, it extends in the
obvious way, for arrays of higher dimensions.

set of $T: index_set (array[$T] of $V)
set of $T: index_set_1of2(array[$T, $U] of $V)
set of $U: index_set_2of2(array[$T, $U] of $V)
...

Replace the indices of the array given by the last argument with the Cartesian product of the
sets given by the previous arguments. Similar versions exist for arrays up to 6 dimensions.

array[$T1] of $V: array1d(set of $T1, array[$U] of $V)
array[$T1,$T2] of $V:

array2d(set of $T1, set of $T2, array[$U] of $V)
array[$T1,$T2,$T3] of $V:

array3d(set of $T1, set of $T2, set of $T3, array[$U] of $V)

4.1.11.6 Coercion Opera ons

Round a float towards +∞, −∞, and the nearest integer, respectively.

int: ceil (float)
int: floor(float)
int: round(float)

Explicit casts from one type-inst to another.
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int: bool2int( bool)
var int: bool2int(var bool)

float: int2float( int)
var float: int2float(var int)
array[int] of $T: set2array(set of $T)

4.1.11.7 String Opera ons

To-string conversion. Converts any value to a string for output purposes. The exact form of the
resulting string is implementation-dependent.

string: show($T)

Formatted to-string conversion for integers. Converts the integer given by the second argument
into a string right justified by the number of characters given by the first argument, or left
justified if that argument is negative. If the second argument is not fixed, the form of the string
is implementation-dependent.

string: show_int(int, var int);

Formatted to-string conversion for floats. Converts the float given by the third argument into a
string right justified by the number of characters given by the first argument, or left justified if
that argument is negative. The number of digits to appear after the decimal point is given by
the second argument. It is a run-time error for the second argument to be negative. If the third
argument is not fixed, the form of the string is implementation-dependent.

string: show_float(int, int, var float)

String concatenation. Note that '++' also performs array concatenation.

string: '++'(string, string)

Concatenate an array of strings. Equivalent to folding '++' over the array, but may be imple-
mented more efficiently.

string: concat(array[$T] of string)

Concatenate an array of strings, putting a separator between adjacent strings. Returns the the
empty string if the array is empty.

string: join(string, array[$T] of string)
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4.1.11.8 Bound and Domain Opera ons

The bound operations lb and ub return fixed, correct lower/upper bounds to the expression.
For numeric types, they return a lower/upper bound value, e.g. the lowest/highest value the
expression can take. For set types, they return a subset/superset, e.g. the intersection/union of
all possible values of the set expression.
The bound operations abort on expressions that have no corresponding finite bound. For exam-
ple, this would be the case for a variable declared without bounds in an implementation that
does not assign default bounds. (Set expressions always have a finite lower bound of course,
namely {}, the empty set.)
Numeric lower/upper bound:

int: lb(var int)
float: lb(var float)
int: ub(var int)
float: ub(var float)

Set lower/upper bound:

set of int: lb(var set of int)
set of int: ub(var set of int)

Versions of the bound operations that operate on arrays are also available, they return a safe
lower bound or upper bound for all members of the array - they abort if the array is empty:

int: lb_array(array[$T] of var int)
float: lb_array(array[$T] of var float)
set of int: lb_array(array[$T] of var set of int)
int: ub_array(array[$T] of var int)
float: ub_array(array[$T] of var float)
set of int: ub_array(array[$T] of var set of int)

Integer domain:

set of int: dom(var int)

The domain operation dom returns a fixed superset of the possible values of the expression.
Integer array domain, returns a superset of all possible values that may appear in the array - this
aborts if the array is empty:

set of int: dom_array(array[$T] of var int)

Domain size for integers:

int: dom_size(var int)
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The domain size operation dom_size is equivalent to card(dom(x)).
Note that these operations can produce different results depending on when they are evaluated
and what form the argument takes. For example, consider the numeric lower bound operation.
• If the argument is a fixed expression, the result is the argument’s value.
• If the argument is a decision variable, then the result depends on the context.

– If the implementation can determine a lower bound for the variable, the result is that
lower bound. The lower bound may be from the variable’s declaration, or higher than
that due to preprocessing, or lower than that if an implementation-defined lower
bound is applied (e.g. if the variable was declared with no lower bound, but the
implementation imposes a lowest possible bound).

– If the implementation cannot determine a lower bound for the variable, the operation
aborts.

• If the argument is any other kind of unfixed expression, the lower bound depends on the
bounds of unfixed subexpressions and the connecting operators.

4.1.11.9 Op on Type Opera ons

The option type value (⊤) is written

opt $T: '<>';

One can determine if an option type variable actually occurs or not using occurs and absent

par bool: occurs(par opt $T);
var bool: occurs(var opt $T);
par bool: absent(par opt $T);
var bool: absent(var opt $T);

One can return the non-optional value of an option type variable using the function deopt

par $T: deopt{par opt $T);
var $T: deopt(var opt $T);

4.1.11.10 Other Opera ons

Check a Boolean expression is true, and abort if not, printing the second argument as the error
message. The first one returns the third argument, and is particularly useful for sanity-checking
arguments to predicates and functions; importantly, its third argument is lazy, i.e. it is only
evaluated if the condition succeeds. The second one returns true and is useful for global sanity-
checks (e.g. of instance data) in constraint items.

$T: assert(bool, string, s$T)
par bool: assert(bool, string)
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Abort evaluation, printing the given string.

$T: abort(string)

Return true. As a side-effect, an implementation may print the first argument.

bool: trace(string)

Return the second argument. As a side-effect, an implementation may print the first argument.

$T: trace(string, $T)

Check if the argument’s value is fixed at this point in evaluation. If not, abort; if so, return its
value. This is most useful in output items when decision variables should be fixed: it allows
them to be used in places where a fixed value is needed, such as if-then-else conditions.

$T: fix(var $T)

As above, but return false if the argument’s value is not fixed.

par bool: is_fixed(var $T)

4.1.12 Content-types

The content-type application/x-zinc-output defines a text output format for Zinc. The for-
mat extends the abstract syntax and semantics given in Run-time Outcomes (page 213), and is
discussed in detail in Output (page 214).
The full syntax is as follows:

% Output
<output> ::= <no-solutions> [ <warnings> ] <free-text>

| ( <solution> )* [ <complete> ] [ <warnings> ] <free-text>

% Solutions
<solution> ::= <solution-text> [ \n ] "----------" \n

% Unsatisfiable
<no-solutions> ::= "=====UNSATISFIABLE=====" \n

% Complete
<complete> ::= "==========" \n

% Messages
<warnings> ::= ( <message> )+
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<message> ::= ( <line> )+
<line> ::= "%" [^\n]* \n

The solution text for each solution must be as described in Output Items (page 244). A newline
must be appended if the solution text does not end with a newline.

4.1.13 JSON support

MiniZinc can support reading input parameters and providing output formatted as JSON objects.
A JSON input file needs to have the following structure:
• Consist of a single top-level object
• The members of the object (the key-value pairs) represent model parameters
• Each member key must be a valid MiniZinc identifier (and it supplies the value for the
corresponding parameter of the model)

• Each member value can be one of the following:
– A string (assigned to a MiniZinc string parameter)
– A number (assigned to a MiniZinc int or float parameter)
– The values true or false (assigned to a MiniZinc bool parameter)
– An array of values. Arrays of arrays are supported only if all inner arrays are of the
same length, so that they can be mapped to multi-dimensional MiniZinc arrays.

– A set of values encoded as an object with a single member with key "set" and a list
of values (the elements of the set).

– A value of an enumerated type encoded as an object with a single member with key
"e" and a string value (the identifier of the enumerated value).

Assume a MiniZinc model declaring the following parameters:

int: n;
enum Customers;
array[1..n,Customers] of int: distances;
array[1..n] of set of int: patterns;

Here is an example of a JSON parameter file using all of the above features:

{
"n" : 2,
"Customers" : [ {"e" : "Customer A"}, {"e" : "Customer B"}, {"e" :

↪→"Customer C"} ],
"distances" : [ [1,2,3],

[4,5,6]],
"patterns" : [ {"set" : [1,3,5]}, {"set" : [2,4,6]} ]

}
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The first parameter declares a simple integer n. The Customers parameter defines the members
of an enumerated type. The distances parameter is a two-dimensional array; note that all inner
arrays must be of the same size in order to map to a (rectangular) MiniZinc two-dimensional
array. The patterns parameter is an array of sets of integers.

4.1.14 Full grammar

4.1.14.1 Items

% A MiniZinc model
<model> ::= [ <item> ";" ... ]

% Items
<item> ::= <include-item>

| <var-decl-item>
| <enum-item>
| <assign-item>
| <constraint-item>
| <solve-item>
| <output-item>
| <predicate-item>
| <test-item>
| <function-item>
| <annotation-item>

<ti-expr-and-id> ::= <ti-expr> ":" <ident>

% Include items
<include-item> ::= "include" <string-literal>

% Variable declaration items
<var-decl-item> ::= <ti-expr-and-id> <annotations> [ "=" <expr> ]

% Enum items
<enum-item> ::= "enum" <ident> <annotations> [ "=" <enum-cases> ]

<enum-cases> ::= "{" <ident> "," ... "}"

% Assign items
<assign-item> ::= <ident> "=" <expr>

% Constraint items
<constraint-item> ::= "constraint" <string-annotation> <expr>

% Solve item
<solve-item> ::= "solve" <annotations> "satisfy"

| "solve" <annotations> "minimize" <expr>
| "solve" <annotations> "maximize" <expr>
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% Output items
<output-item> ::= "output" <expr>

% Annotation items
<annotation-item> ::= "annotation" <ident> <params>

% Predicate, test and function items
<predicate-item> ::= "predicate" <operation-item-tail>

<test-item> ::= "test" <operation-item-tail>

<function-item> ::= "function" <ti-expr> ":" <operation-item-tail>

<operation-item-tail> ::= <ident> <params> <annotations> [ "=" <expr> ]

<params> ::= [ ( <ti-expr-and-id> "," ... ) ]

4.1.14.2 Type-Inst Expressions

<ti-expr> ::= <base-ti-expr>
| <array-ti-expr>

<base-ti-expr> ::= <var-par> <opt-ti> <set-ti> <base-ti-expr-tail>

<var-par> ::= "var" | "par" | ϵ

<opt-ti> ::= "opt" | ϵ

<set-ti> ::= "set" "of" | ϵ

<base-type> ::= "bool"
| "int"
| "float"
| "string"

<base-ti-expr-tail> ::= <ident>
| <base-type>
| <ti-variable-expr-tail>
| "ann"
| { <expr> "," ... }
| <num-expr> ".." <num-expr>

% Type-inst variables
<ti-variable-expr-tail> ::= $[A-Za-z][A-Za-z0-9_]*

% Array type-inst expressions
<array-ti-expr> ::= "array" [ <ti-expr> "," ... ] "of" <base-ti-expr>
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| "list" "of" <base-ti-expr>

4.1.14.3 Expressions

<expr> ::= <expr-atom> <expr-binop-tail>

<expr-atom> ::= <expr-atom-head> <expr-atom-tail> <annotations>

<expr-binop-tail> ::= [ <bin-op> <expr> ]

<expr-atom-head> ::= <builtin-un-op> <expr-atom>
| "(" <expr> ")"
| <ident-or-quoted-op>
| "_"
| <bool-literal>
| <int-literal>
| <float-literal>
| <string-literal>
| <set-literal>
| <set-comp>
| <array-literal>
| <array-literal-2d>
| <array-comp>
| <ann-literal>
| <if-then-else-expr>
| <let-expr>
| <call-expr>
| <gen-call-expr>

<expr-atom-tail> ::= ϵ
| <array-access-tail> <expr-atom-tail>

% Numeric expressions
<num-expr> ::= <num-expr-atom> <num-expr-binop-tail>

<num-expr-atom> ::= <num-expr-atom-head> <expr-atom-tail> <annotations>

<num-expr-binop-tail> ::= [ <num-bin-op> <num-expr> ]

<num-expr-atom-head> ::= <builtin-num-un-op> <num-expr-atom>
| "(" <num-expr> ")"
| <ident-or-quoted-op>
| <int-literal>
| <float-literal>
| <if-then-else-expr>
| <let-expr>
| <call-expr>
| <gen-call-expr>
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% Built-in operators
<builtin-op> ::= <builtin-bin-op> | <builtin-un-op>

<bin-op> ::= <builtin-bin-op> | ‘<ident>‘

<builtin-bin-op> ::= "<->" | "->" | "<-" | "\/" | "xor" | "/\" | "<" | ">" |
↪→"<=" | ">=" | "==" | "=" | "!="

| "in" | "subset" | "superset" | "union" | "diff" |
↪→"symdiff"

| ".." | "intersect" | "++" | <builtin-num-bin-op>

<builtin-un-op> ::= "not" | <builtin-num-un-op>

% Built-in numeric operators
<num-bin-op> ::= <builtin-num-bin-op> | ‘<ident>‘

<builtin-num-bin-op> ::= "+" | "-" | "*" | "/" | "div" | "mod"

<builtin-num-un-op> ::= "+" | "-"

% Boolean literals
<bool-literal> ::= "false" | "true"

% Integer literals
<int-literal> ::= [0-9]+

| 0x[0-9A-Fa-f]+
| 0o[0-7]+

% Float literals
<float-literal> ::= [0-9]+"."[0-9]+

| [0-9]+"."[0-9]+[Ee][-+]?[0-9]+
| [0-9]+[Ee][-+]?[0-9]+
| 0[xX]([0-9a-fA-F]*"."[0-9a-fA-F]+|[0-9a-fA-F]+".

↪→")([pP][+-]?[0-9]+)
| (0[xX][0-9a-fA-F]+[pP][+-]?[0-9]+)

% String literals
<string-contents> ::= ([^"\n\] | \[^\n(])*

<string-literal> ::= """ <string-contents> """
| """ <string-contents> "\(" <string-interpolate-tail>

<string-interpolate-tail> ::= <expr> ")"<string-contents>"""
| <expr> ")"<string-contents>"\("␣

↪→<string-interpolate-tail>

% Set literals
<set-literal> ::= "{" [ <expr> "," ... ] "}"
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% Set comprehensions
<set-comp> ::= "{" <expr> "|" <comp-tail> "}"

<comp-tail> ::= <generator> [ "where" <expr> ] "," ...

<generator> ::= <ident> "," ... "in" <expr>

% Array literals
<array-literal> ::= "[" [ <expr> "," ... ] "]"

% 2D Array literals
<array-literal-2d> ::= "[|" [ (<expr> "," ...) "|" ... ] "|]"

% Array comprehensions
<array-comp> ::= "[" <expr> "|" <comp-tail> "]"

% Array access
<array-access-tail> ::= "[" <expr> "," ... "]"

% Annotation literals
<ann-literal> ::= <ident> [ "(" <expr> "," ... ")" ]

% If-then-else expressions
<if-then-else-expr> ::= "if" <expr> "then" <expr> [ "elseif" <expr> "then"␣
↪→<expr> ]* "else" <expr> "endif"

% Call expressions
<call-expr> ::= <ident-or-quoted-op> [ "(" <expr> "," ... ")" ]

% Let expressions
<let-expr> ::= "let" "{" <let-item> ";" ... "}" "in" <expr>

<let-item> ::= <var-decl-item>
| <constraint-item>

% Generator call expressions
<gen-call-expr> ::= <ident-or-quoted-op> "(" <comp-tail> ")" "(" <expr> ")"

4.1.14.4 Miscellaneous Elements

% Identifiers
<ident> ::= [A-Za-z][A-Za-z0-9_]* | ’[^’\xa\xd\x0]*’

% Identifiers and quoted operators
<ident-or-quoted-op> ::= <ident>

| ’<builtin-op>’

% Annotations
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<annotations> ::= [ "::" <annotation> ]*

<annotation> ::= <expr-atom-head> <expr-atom-tail>

<string-annotation> ::= "::" <string-literal>
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The MiniZinc library

4.2.1 Annota ons

These annotations control evaluation and solving behaviour.

4.2.1.1 General annota ons

Parameters

annotation add_to_output

Declare that the annotated variable should be added to the output of the model. This annotation
only has an effect when the model does not have an output item.

annotation domain_change_constraint

Marks a constraint as a recorded domain changing constraint (when mzn2fzn called with -g flag

annotation is_defined_var

Declare the annotated variable as being functionally defined. This annotation is introduced into
FlatZinc code by the compiler.

annotation is_reverse_map

Declare that the annotated expression is used to map an expression back from FlatZinc to MiniZ-
inc.

267



MiniZinc Handbook, Release 2.4.3

annotation maybe_partial

Declare that expression may have undefined result (to avoid warnings)

annotation mzn_break_here

With debug build of mzn2fzn, call MiniZinc::mzn_break_here when flattening this expression
to make debugging easier. This annotation is ignored by the release build.

annotation mzn_check_var

Declare that the annotated variable is required for checking solutions.

annotation mzn_rhs_from_assignment

Used internally by the compiler

annotation output_only

Declare that the annotated variable should be only used for output. This annotation can be used
to define variables that are required for solution checkers, or that are necessary for the output
item. The annotated variable must be par.

annotation output_var

Declare that the annotated variable should be printed by the solver. This annotation is introduced
into FlatZinc code by the compiler.

annotation promise_total

Declare function as total, i.e. it does not put any constraints on its arguments.

annotation var_is_introduced

Declare a variable as being introduced by the compiler.

Func ons and Predicates

annotation constraint_name(string: s)

Used to attach a name s to a constraint and its decomposition. String annotations on constraint
keywords are re-written as constraint_name annotations
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annotation defines_var(var $t: c)

Declare variable: c as being functionally defined by the annotated constraint. This annotation
is introduced into FlatZinc code by the compiler.

annotation doc_comment(string: s)

Document the function or variable declaration item with the string s .

annotation expression_name(string: s)

Used to attach a name s to an expression, this should also propagate to any sub-expressions or
decomposition of the annotated expression. String annotations on expressions are re-written as
expression_name annotations

annotation mzn_check_enum_var(array [int] of set of int)

Declare that the annotated variable is required for checking solutions and has an enum type.

annotation mzn_constraint_name(string)

Declare a name for the annotated constraint.

annotation mzn_deprecated(string: version, string: explanation)

State that a function is deprecated.

annotation mzn_expression_name(string)

Declare a name for the annotated expression.

annotation mzn_path(string: s)

Representation of the call-stack when the annotated item was introduced, as a string s . Can be
used to uniquely identify variables and constraints across different compilations of a model that
may have different names. This annotations is introduced into FlatZinc code by the compiler
and is retained if –keep-paths argument is used.

annotation output_array(array [$u] of set of int: a)

Declare that the annotated array should be printed by the solver with the given index sets a .
This annotation is introduced into FlatZinc code by the compiler.
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4.2.1.2 Propaga on strength annota ons

annotation bounds

Annotate a constraint to use bounds propagation

annotation domain

Annotate a constraint to use domain propagation

4.2.1.3 Search annota ons

Variable selec on annota ons

annotation anti_first_fail

Choose the variable with the largest domain

annotation dom_w_deg

Choose the variable with largest domain, divided by the number of attached constraints weighted
by how often they have caused failure

annotation first_fail

Choose the variable with the smallest domain

annotation impact

Choose the variable with the highest impact so far during the search

annotation input_order

Search variables in the given order

annotation largest

Choose the variable with the largest value in its domain

annotation max_regret

Choose the variable with largest difference between the two smallest values in its domain
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annotation most_constrained

Choose the variable with the smallest domain, breaking ties using the number of attached con-
straints

annotation occurrence

Choose the variable with the largest number of attached constraints

annotation smallest

Choose the variable with the smallest value in its domain

Value choice annota ons

annotation indomain

Assign values in ascending order

annotation indomain_interval

If the domain consists of several contiguous intervals, reduce the domain to the first interval.
Otherwise bisect the domain.

annotation indomain_max

Assign the largest value in the domain

annotation indomain_median

Assign the middle value in the domain

annotation indomain_middle

Assign the value in the domain closest to the mean of its current bounds

annotation indomain_min

Assign the smallest value in the domain
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annotation indomain_random

Assign a random value from the domain

annotation indomain_reverse_split

Bisect the domain, excluding the lower half first

annotation indomain_split

Bisect the domain, excluding the upper half first

annotation indomain_split_random

Bisect the domain, randomly selecting which half to exclude first

annotation outdomain_max

Exclude the largest value from the domain

annotation outdomain_median

Exclude the middle value from the domain

annotation outdomain_min

Exclude the smallest value from the domain

annotation outdomain_random

Exclude a random value from the domain

Explora on strategy annota ons

annotation complete

Perform a complete search

Restart annota ons

Parameters
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annotation restart_none

Do not restart

Func ons and Predicates

annotation restart_constant(int: scale)

Restart after constant number of nodes scale

annotation restart_geometric(float: base, int: scale)

Restart with geometric sequence with parameters base and scale

annotation restart_linear(int: scale)

Restart with linear sequence scaled by scale

annotation restart_luby(int: scale)

Restart with Luby sequence scaled by scale

Other declara ons

annotation bool_search(array [$X] of var bool: x,
ann: select,
ann: choice,
ann: explore)

Specify search on variables x , with variable selection strategy select , value choice strategy
choice , and exploration strategy explore . If x is a multi-dimensional array, it is coerced to
one-dimensional in row-major order (as with the array1d function).

annotation bool_search(array [$X] of var bool: x,
ann: select,
ann: choice)

Specify search on variables x , with variable selection strategy select , and value choice strategy
choice . If x is a multi-dimensional array, it is coerced to one-dimensional in row-major order
(as with the array1d function).
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annotation float_search(array [$X] of var float: x,
float: prec,
ann: select,
ann: choice,
ann: explore)

Specify search on variables x , with precision prec , variable selection strategy select , value
choice strategy choice , and exploration strategy explore . If x is a multi-dimensional array, it
is coerced to one-dimensional in row-major order (as with the array1d function).

annotation float_search(array [$X] of var float: x,
float: prec,
ann: select,
ann: choice)

Specify search on variables x , with precision prec , variable selection strategy select , and
value choice strategy choice . If x is a multi-dimensional array, it is coerced to one-dimensional
in row-major order (as with the array1d function).

annotation int_search(array [$X] of var int: x,
ann: select,
ann: choice,
ann: explore)

Specify search on variables x , with variable selection strategy select , value choice strategy
choice , and exploration strategy explore . If x is a multi-dimensional array, it is coerced to
one-dimensional in row-major order (as with the array1d function).

annotation int_search(array [$X] of var int: x,
ann: select,
ann: choice)

Specify search on variables x , with variable selection strategy select , and value choice strategy
choice . If x is a multi-dimensional array, it is coerced to one-dimensional in row-major order
(as with the array1d function).

annotation seq_search(array [int] of ann: s)

Sequentially perform the searches specified in array s

annotation set_search(array [$X] of var set of int: x,
ann: select,
ann: choice,
ann: explore)
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Specify search on variables x , with variable selection strategy select , value choice strategy
choice , and exploration strategy explore . If x is a multi-dimensional array, it is coerced to
one-dimensional in row-major order (as with the array1d function).

annotation set_search(array [$X] of var set of int: x,
ann: select,
ann: choice)

Specify search on variables x , with variable selection strategy select , and value choice strategy
choice . If x is a multi-dimensional array, it is coerced to one-dimensional in row-major order
(as with the array1d function).

4.2.1.4 Warm start annota ons

To be put on the solve item, similar to search annotations. A variable can be mentioned several
times and in different annotations but only one of the values is taken

Warm start annota ons with op onal values

The value arrays can contain <> elements (absent values). The following decompositions elim-
inate those elements because FlatZinc 1.6 does not support optionals.

annotation warm_start(array [int] of var bool: x,
array [int] of opt bool: v)

Specify warm start values v for an array of booleans x

annotation warm_start(array [int] of var int: x,
array [int] of opt int: v)

Specify warm start values v for an array of integers x

annotation warm_start(array [int] of var float: x,
array [int] of opt float: v)

Specify warm start values v for an array of floats x

annotation warm_start(array [int] of var set of int: x,
array [int] of opt set of int: v)

Specify warm start values v for an array of sets x

Other declara ons
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annotation warm_start(array [int] of var bool: x,

array [int] of bool: v)

Specify warm start values v for an array of booleans x

annotation warm_start(array [int] of var int: x, array [int] of int: v)

Specify warm start values v for an array of integers x

annotation warm_start(array [int] of var float: x,
array [int] of float: v)

Specify warm start values v for an array of floats x

annotation warm_start(array [int] of var set of int: x,
array [int] of set of int: v)

Specify warm start values v for an array of sets x

annotation warm_start_array(array [int] of ann: w)

Specify an array w of warm_start annotations or other warm_start_array annotations. Can be
useful to keep the annotation order in FlatZinc for manual updating.
Note: if you have search annotations as well, put warm_starts into seq_search in order to have
precedence between both, which may matter.

4.2.2 Op on type support

These functions and predicates implement the standard library for working with option types.
Note that option type support is still incomplete.

4.2.2.1 Op on type support for Booleans

predicate 'not'(var opt bool: x)

Usage: not x

True iff x is absent or false

predicate absent(var opt bool: x)

True iff x is absent
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predicate bool_eq(var opt bool: b0, var opt bool: b1)

True iff both b0 and b1 are absent or both are present and have the same value.

predicate bool_eq(var opt bool: b0, var bool: b1)

True iff b0 occurs and is equal to b1

predicate bool_eq(var bool: b0, var opt bool: b1)

True iff b1 occurs and is equal to b0

annotation bool_search(array [int] of var opt bool: x,
ann: a1,
ann: a2,
ann: a3)

Search annotation for optional Boolean variables

annotation bool_search(array [int] of var opt bool: x,
ann: a1,
ann: a2)

Search annotation for optional Boolean variables

predicate deopt(var opt bool: x)

Return value of x (assumes that x is not absent)

function var opt bool: element(var opt int: idx,
array [int] of var bool: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt bool: element(var opt int: idx1,
var opt int: idx2,
array [int,int] of var bool: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

function var opt bool: element(var int: idx,
array [int] of var opt bool: x)

Return x [ idx ]

4.2.2. Op on type support 277



MiniZinc Handbook, Release 2.4.3

function var opt bool: element(var int: idx1,
var int: idx2,
array [int,int] of var opt bool: x)

Return x [ idx1 , idx2 ]

function var opt bool: element(var opt int: idx,
array [int] of var opt bool: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt bool: element(var opt int: idx1,
var opt int: idx2,
array [int,int] of var opt bool: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

predicate exists(array [int] of var opt bool: x)

True iff for at least one i , x [i] occurs and is true

predicate forall(array [int] of var opt bool: x)

True iff for any i , x [i] is absent or true

predicate occurs(var opt bool: x)

True iff x is not absent

4.2.2.2 Op on type support for integers

function var int: '*'(var opt int: x, var opt int: y)

Usage: x * y

Optional multiplication. Return product of x and y , with absent replaced by 1.

function int: '*'(opt int: x, opt int: y)

Usage: x * y

Optional multiplication. Return product of x and y , with absent replaced by 1.
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function var int: '+'(var opt int: x, var opt int: y)

Usage: x + y

Optional addition. Return sum of x and y , with absent replaced by 0.

function int: '+'(opt int: x, opt int: y)

Usage: x + y

Optional addition. Return sum of x and y , with absent replaced by 0.

function var opt int: '-'(var opt int: x, var opt int: y)

Usage: x - y

Optional subtraction. Return absent if x is absent, x if y is absent, difference of x and y if both
are present.

function opt int: '-'(opt int: x, opt int: y)

Usage: x - y

Optional subtraction. Return absent if x is absent, x if y is absent, difference of x and y if both
are present.

predicate '<'(var opt int: x, var opt int: y)

Usage: x < y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than
the value of y .

test '<'(opt int: x, opt int: y)

Usage: x < y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than
the value of y .

predicate '<='(var opt int: x, var opt int: y)

Usage: x <= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than or
equal to the value of y .
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test '<='(opt int: x, opt int: y)

Usage: x <= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than or
equal to the value of y .

predicate '>'(var opt int: x, var opt int: y)

Usage: x > y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
the value of y .

test '>'(opt int: x, opt int: y)

Usage: x > y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
the value of y .

predicate '>='(var opt int: x, var opt int: y)

Usage: x >= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
or equal to the value of y .

test '>='(opt int: x, opt int: y)

Usage: x >= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
or equal to the value of y .

function var opt int: 'div'(var opt int: x, var opt int: y)

Usage: x div y

Optional division. Return absent if x is absent, x if y is absent, x divided by y if both are present.

function opt int: 'div'(opt int: x, opt int: y)

Usage: x div y

Optional division. Return absent if x is absent, x if y is absent, x divided by y if both are present.
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function var opt int: 'mod'(var opt int: x, var opt int: y)

Usage: x mod y

Optional modulo. Return absent if x or y is absent, x modulo y if both are present.

function opt int: 'mod'(opt int: x, opt int: y)

Usage: x mod y

Optional modulo. Return absent if x or y is absent, x modulo y if both are present.

predicate absent(var opt int: x)

True iff x is absent

function var opt int: bool2int(var opt bool: x)

Return optional 0/1 integer that is absent iff x is absent, and 1 iff x occurs and is true.

function var $$E: deopt(var opt $$E: x)

Return value of x (assumes that x is not absent)

function var opt int: element(var opt int: idx,
array [int] of var int: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt int: element(var opt int: idx1,
var opt int: idx2,
array [int,int] of var int: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

function var opt int: element(var int: idx,
array [int] of var opt int: x)

Return x [ idx ]

function var opt int: element(var int: idx1,
var int: idx2,
array [int,int] of var opt int: x)

Return x [ idx1 , idx2 ]
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function var opt int: element(var opt int: idx,
array [int] of var opt int: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt int: element(var opt int: idx1,
var opt int: idx2,
array [int,int] of var opt int: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

function var opt float: int2float(var opt int: x)

Return optional 0/1 integer that is absent iff x is absent, and 1 iff x occurs and is true.

predicate int_eq(var opt int: x, var opt int: y)

True iff both x and y are absent or both are present and have the same value.

predicate int_ne(var opt int: x, var opt int: y)

True iff only one of x and y is absent or both are present and have different values.

annotation int_search(array [int] of var opt int: x,
ann: a1,
ann: a2,
ann: a3)

Search annotation for optional integer variables

annotation int_search(array [int] of var opt int: x, ann: a1, ann: a2)

Search annotation for optional integer variables

function var opt int: max(array [int] of var opt int: x)

Return maximum of elements in x that are not absent, or absent if all elements in x are absent.

function var opt int: min(array [int] of var opt int: x)

Return minimum of elements in x that are not absent, or absent if all elements in x are absent.
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predicate occurs(var opt int: x)

True iff x is not absent

function var int: product(array [int] of var opt int: x)

Return product of non-absent elements of x .

function int: product(array [int] of opt int: x)

Return product of non-absent elements of x .

function var int: sum(array [int] of var opt int: x)

Return sum of non-absent elements of x .

function int: sum(array [int] of opt int: x)

Return sum of non-absent elements of x .

function var opt int: ~*(var opt int: x, var opt int: y)

Weak multiplication. Return product of x and y if both are present, otherwise return absent.

function var opt int: ~+(var opt int: x, var opt int: y)

Weak addition. Return sum of x and y if both are present, otherwise return absent.

function var opt int: ~-(var opt int: x, var opt int: y)

Weak subtraction. Return difference of x and y if both are present, otherwise return absent.

predicate ~=(var opt int: x, var opt int: y)

Weak equality. True if either x or y are absent, or present and equal.

4.2.2.3 Op on type support for floats

function var float: '*'(var opt float: x, var opt float: y)

Usage: x * y

Optional multiplication. Return product of x and y , with absent replaced by 1.
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function float: '*'(opt float: x, opt float: y)

Usage: x * y

Optional multiplication. Return product of x and y , with absent replaced by 1.

function var float: '+'(var opt float: x, var opt float: y)

Usage: x + y

Optional addition. Return sum of x and y , with absent replaced by 0.

function float: '+'(opt float: x, opt float: y)

Usage: x + y

Optional addition. Return sum of x and y , with absent replaced by 0.

function var opt float: '-'(var opt float: x, var opt float: y)

Usage: x - y

Optional subtraction. Return absent if x is absent, x if y is absent, difference of x and y if both
are present.

function opt float: '-'(opt float: x, opt float: y)

Usage: x - y

Optional subtraction. Return absent if x is absent, x if y is absent, difference of x and y if both
are present.

function var opt float: '/'(var opt float: x, var opt float: y)

Usage: x / y

Optional division. Return absent if x is absent, x if y is absent, x divided by y if both are present.

function opt float: '/'(opt float: x, opt float: y)

Usage: x / y

Optional division. Return absent if x is absent, x if y is absent, x divided by y if both are present.

predicate '<'(var opt float: x, var opt float: y)

Usage: x < y
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Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than
the value of y .

test '<'(opt float: x, opt float: y)

Usage: x < y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than
the value of y .

predicate '<='(var opt float: x, var opt float: y)

Usage: x <= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than or
equal to the value of y .

test '<='(opt float: x, opt float: y)

Usage: x <= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than or
equal to the value of y .

predicate '>'(var opt float: x, var opt float: y)

Usage: x > y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
the value of y .

test '>'(opt float: x, opt float: y)

Usage: x > y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
the value of y .

predicate '>='(var opt float: x, var opt float: y)

Usage: x >= y

Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
or equal to the value of y .

test '>='(opt float: x, opt float: y)

Usage: x >= y
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Weak comparison: true iff either x or y is absent, or both occur and the value of x is greater than
or equal to the value of y .

predicate absent(var opt float: x)

True iff x is absent

function var opt float: bool2float(var opt bool: x)

Return optional 0/1 float that is absent iff x is absent, and 1 iff x occurs and is true.

function var float: deopt(var opt float: x)

Return value of x (assumes that x is not absent)

function var opt float: element(var opt int: idx,
array [int] of var float: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt float: element(var opt int: idx1,
var opt int: idx2,
array [int,int] of var float: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

function var opt float: element(var int: idx,
array [int] of var opt float: x)

Return x [ idx ]

function var opt float: element(var int: idx1,
var int: idx2,
array [int,int] of var opt float: x)

Return x [ idx1 , idx2 ]

function var opt float: element(var opt int: idx,
array [int] of var opt float: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt float: element(var opt int: idx1,
var opt int: idx2,
array [int,int] of var opt float: x)
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Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

predicate float_eq(var opt float: x, var opt float: y)

True iff both x and y are absent or both are present and have the same value.

predicate float_ne(var opt float: x, var opt float: y)

True iff only one of x and y is absent or both are present and have different values.

annotation float_search(array [int] of var opt float: x,
ann: a1,
ann: a2,
ann: a3)

Search annotation for optional float variables

annotation float_search(array [int] of var opt float: x,
ann: a1,
ann: a2)

Search annotation for optional float variables

function var opt float: max(array [int] of var opt float: x)

Return maximum of elements in x that are not absent, or absent if all elements in x are absent.

function var opt float: min(array [int] of var opt float: x)

Return minimum of elements in x that are not absent, or absent if all elements in x are absent.

predicate occurs(var opt float: x)

True iff x is not absent

function var float: product(array [int] of var opt float: x)

Return product of non-absent elements of x .

function float: product(array [int] of opt float: x)

Return product of non-absent elements of x .
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function var float: sum(array [int] of var opt float: x)

Return sum of non-absent elements of x .

function float: sum(array [int] of opt float: x)

Return sum of non-absent elements of x .

function var opt float: ~*(var opt float: x, var opt float: y)

Weak multiplication. Return product of x and y if both are present, otherwise return absent.

function var opt float: ~+(var opt float: x, var opt float: y)

Weak addition. Return sum of x and y if both are present, otherwise return absent.

function var opt float: ~-(var opt float: x, var opt float: y)

Weak subtraction. Return difference of x and y if both are present, otherwise return absent.

predicate ~=(var opt float: x, var opt float: y)

Weak equality. True if either x or y are absent, or present and equal.

4.2.2.4 Other declara ons

test absent(var $T: x)

Test if x is absent (always returns false)

test absent(opt $T: x)

Test if x is absent

function $T: deopt(opt $T: x)

Return value of x if x is not absent. Aborts when evaluated on absent value.

function var $T: deopt(var $T: x)

Return value x unchanged (since x is guaranteed to be non-optional).
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test occurs(var $T: x)

Test if x is not absent (always returns true)

test occurs(opt $T: x)

Test if x is not absent

4.2.3 Compiler op ons

4.2.3.1 Parameters

opt bool: mzn_opt_only_range_domains

Whether to only generate domains that are contiguous ranges

opt int: mzn_min_version_required

If defined, this can be used to check that the MiniZinc compiler supports all the features used in
the model.

4.2.3.2 Func ons and Predicates

test mzn_check_only_range_domains()

Check whether to only generate domains that are contiguous ranges

4.2.4 Buil ns

These functions and predicates define built-in operations of the MiniZinc language.

4.2.4.1 Comparison Buil ns

These builtins implement comparison operations.

test '!='($T: x, $T: y)

Usage: x != y

Return if x is not equal to y
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predicate '!='(var $T: x, var $T: y)

Usage: x != y

Return if x is not equal to y

test '!='(array [$T] of int: x, array [$T] of int: y)

Usage: x != y

Return if array x is not equal to array y

predicate '!='(array [$T] of var int: x, array [$T] of var int: y)

Usage: x != y

Return if array x is not equal to array y

test '!='(array [$T] of bool: x, array [$T] of bool: y)

Usage: x != y

Return if array x is not equal to array y

predicate '!='(array [$T] of var bool: x, array [$T] of var bool: y)

Usage: x != y

Return if array x is not equal to array y

test '!='(array [$T] of set of int: x, array [$T] of set of int: y)

Usage: x != y

Return if array x is not equal to array y

predicate '!='(array [$T] of var set of int: x,
array [$T] of var set of int: y)

Usage: x != y

Return if array x is not equal to array y

test '!='(array [$T] of float: x, array [$T] of float: y)

Usage: x != y

Return if array x is not equal to array y
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predicate '!='(array [$T] of var float: x, array [$T] of var float: y)

Usage: x != y

Return if array x is not equal to array y

test '<'($T: x, $T: y)

Usage: x < y

Return if x is less than y

predicate '<'(var $T: x, var $T: y)

Usage: x < y

Return if x is less than y

test '<'(array [$U] of $T: x, array [$U] of $T: y)

Usage: x < y

Return if array x is lexicographically smaller than array y

predicate '<'(array [$U] of var $T: x, array [$U] of var $T: y)

Usage: x < y

Return if array x is lexicographically smaller than array y

test '<='($T: x, $T: y)

Usage: x <= y

Return if x is less than or equal to y

predicate '<='(var $T: x, var $T: y)

Usage: x <= y

Return if x is less than or equal to y

test '<='(array [$U] of $T: x, array [$U] of $T: y)

Usage: x <= y

Return if array x is lexicographically smaller than or equal to array y
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predicate '<='(array [$U] of var $T: x, array [$U] of var $T: y)

Usage: x <= y

Return if array x is lexicographically smaller than or equal to array y

test '='($T: x, $T: y)

Usage: x = y

Return if x is equal to y

test '='(opt $T: x, opt $T: y)

Usage: x = y

Return if x is equal to y

predicate '='(var $T: x, var $T: y)

Usage: x = y

Return if x is equal to y

predicate '='(var opt $T: x, var opt $T: y)

Usage: x = y

Return if x is equal to y

test '='(array [$T] of int: x, array [$T] of int: y)

Usage: x = y

Return if array x is equal to array y

predicate '='(array [$T] of var int: x, array [$T] of var int: y)

Usage: x = y

Return if array x is equal to array y

test '='(array [$T] of bool: x, array [$T] of bool: y)

Usage: x = y

Return if array x is equal to array y
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predicate '='(array [$T] of var bool: x, array [$T] of var bool: y)

Usage: x = y

Return if array x is equal to array y

test '='(array [$T] of set of int: x, array [$T] of set of int: y)

Usage: x = y

Return if array x is equal to array y

predicate '='(array [$T] of var set of int: x,
array [$T] of var set of int: y)

Usage: x = y

Return if array x is equal to array y

test '='(array [$T] of float: x, array [$T] of float: y)

Usage: x = y

Return if array x is equal to array y

predicate '='(array [$T] of var float: x, array [$T] of var float: y)

Usage: x = y

Return if array x is equal to array y

test '>'($T: x, $T: y)

Usage: x > y

Return if x is greater than y

predicate '>'(var $T: x, var $T: y)

Usage: x > y

Return if x is greater than y

test '>'(array [$U] of $T: x, array [$U] of $T: y)

Usage: x > y

Return if array x is lexicographically greater than array y
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predicate '>'(array [$U] of var $T: x, array [$U] of var $T: y)

Usage: x > y

Return if array x is lexicographically greater than array y

test '>='($T: x, $T: y)

Usage: x >= y

Return if x is greater than or equal to y

predicate '>='(var $T: x, var $T: y)

Usage: x >= y

Return if x is greater than or equal to y

test '>='(array [$U] of $T: x, array [$U] of $T: y)

Usage: x >= y

Return if array x is lexicographically greater than or equal to array y

4.2.4.2 Arithme c Buil ns

These builtins implement arithmetic operations.

function int: '*'(int: x, int: y)

Usage: x * y

Return x * y

function var int: '*'(var int: x, var int: y)

Usage: x * y

Return x * y

function float: '*'(float: x, float: y)

Usage: x * y

Return x * y
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function var float: '*'(var float: x, var float: y)

Usage: x * y

Return x * y

function int: '+'(int: x, int: y)

Usage: x + y

Return x + y

function var int: '+'(var int: x, var int: y)

Usage: x + y

Return x + y

function float: '+'(float: x, float: y)

Usage: x + y

Return x + y

function var float: '+'(var float: x, var float: y)

Usage: x + y

Return x + y

function int: '-'(int: x, int: y)

Usage: x - y

Return x - y

function var int: '-'(var int: x, var int: y)

Usage: x - y

Return x - y

function float: '-'(float: x, float: y)

Usage: x - y

Return x - y
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function var float: '-'(var float: x, var float: y)

Usage: x - y

Return x - y

function int: '-'(int: x)

Usage: - x

Return negative x

function var int: '-'(var int: x)

Usage: - x

Return negative x

function float: '-'(float: x)

Usage: - x

Return negative x

function var float: '-'(var float: x)

Usage: - x

Return negative x

function float: '/'(float: x, float: y)

Usage: x / y

Return result of floating point division x / y

function var float: '/'(var float: x, var float: y)

Usage: x / y

Return result of floating point division x / y

function int: '^'(int: x, int: y)

Usage: x ^ y

Return xy
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function var int: '^'(var int: x, var int: y)

Usage: x ^ y

Return xy

function float: '^'(float: x, float: y)

Usage: x ^ y

Return xy

function var float: '^'(var float: x, var float: y)

Usage: x ^ y

Return xy

function int: 'div'(int: x, int: y)

Usage: x div y

Return result of integer division x / y

function var int: 'div'(var int: x, var int: y)

Usage: x div y

Return result of integer division x / y

function int: 'mod'(int: x, int: y)

Usage: x mod y

Return remainder of integer division x % y

function var int: 'mod'(var int: x, var int: y)

Usage: x mod y

Return remainder of integer division x % y

function int: abs(int: x)

Return absolute value of x
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function var int: abs(var int: x)

Return absolute value of x

function float: abs(float: x)

Return absolute value of x

function var float: abs(var float: x)

Return absolute value of x

function $$E: arg_max(array [$$E] of int: x)

Returns the index of the maximum value in the array x . When breaking ties the least index is
returned.

function $$E: arg_max(array [$$E] of float: x)

Returns the index of the maximum value in the array x . When breaking ties the least index is
returned.

function $$E: arg_min(array [$$E] of int: x)

Returns the index of the minimum value in the array x . When breaking ties the least index is
returned.

function $$E: arg_min(array [$$E] of float: x)

Returns the index of the minimum value in the array x . When breaking ties the least index is
returned.

function int: count(array [$T] of bool: x)

Return number of true elments in array x

function var int: count(array [$T] of var bool: x)

Return number of true elments in array x

function $T: max($T: x, $T: y)

Return maximum of x and y
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function $T: max(array [$U] of $T: x)

Return maximum of elements in array x

function $$E: max(set of $$E: x)

Return maximum of elements in set x

function var int: max(var int: x, var int: y)

Return maximum of x and y

function var int: max(array [$U] of var int: x)

Return maximum of elements in array x

function var float: max(var float: x, var float: y)

Return maximum of x and y

function var float: max(array [$U] of var float: x)

Return maximum of elements in array x

function $T: min($T: x, $T: y)

Return minimum of x and y

function $T: min(array [$U] of $T: x)

Return minimum of elements in array x

function $$E: min(set of $$E: x)

Return minimum of elements in set x

function var int: min(var int: x, var int: y)

Return minimum of x and y

function var int: min(array [$U] of var int: x)

Return minimum of elements in array x
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function var float: min(var float: x, var float: y)

Return minimum of x and y

function var float: min(array [$U] of var float: x)

Return minimum of elements in array x

function int: pow(int: x, int: y)

Return xy

function var int: pow(var int: x, var int: y)

Return xy

function float: pow(float: x, float: y)

Return xy

function var float: pow(var float: x, var float: y)

Return xy

function int: product(array [$T] of int: x)

Return product of elements in array x

function var int: product(array [$T] of var int: x)

Return product of elements in array x

function float: product(array [$T] of float: x)

Return product of elements in array x

function var float: product(array [$T] of var float: x)

Return product of elements in array x

function float: sqrt(float: x)

Return √x
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function var float: sqrt(var float: x)

Return √x

function int: sum(array [$T] of bool: x)

Return sum of elements in array x

function var int: sum(array [$T] of var bool: x)

Return sum of elements in array x

function int: sum(array [$T] of int: x)

Return sum of elements in array x

function var int: sum(array [$T] of var int: x)

Return sum of elements in array x

function float: sum(array [$T] of float: x)

Return sum of elements in array x

function var float: sum(array [$T] of var float: x)

Return sum of elements in array x

4.2.4.3 Exponen al and logarithmic buil ns

These builtins implement exponential and logarithmic functions.

function float: exp(float: x)

Return ex

function var float: exp(var float: x)

Return ex

function float: ln(float: x)

Return ln x
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function var float: ln(var float: x)

Return ln x

function float: log(float: x, float: y)

Return logx y

function float: log10(float: x)

Return log10 x

function var float: log10(var float: x)

Return log10 x

function float: log2(float: x)

Return log2 x

function var float: log2(var float: x)

Return log2 x

4.2.4.4 Trigonometric func ons

These builtins implement the standard trigonometric functions.

function float: acos(float: x)

Return acos x

function var float: acos(var float: x)

Return acos x

function float: acosh(float: x)

Return acosh x

function var float: acosh(var float: x)

Return acosh x
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function float: asin(float: x)

Return asin x

function var float: asin(var float: x)

Return asin x

function float: asinh(float: x)

Return asinh x

function var float: asinh(var float: x)

Return asinh x

function float: atan(float: x)

Return atan x

function var float: atan(var float: x)

Return atan x

function float: atanh(float: x)

Return atanh x

function var float: atanh(var float: x)

Return atanh x

function float: cos(float: x)

Return cos x

function var float: cos(var float: x)

Return cos x

function float: cosh(float: x)

Return cosh x
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function var float: cosh(var float: x)

Return cosh x

function float: sin(float: x)

Return sin x

function var float: sin(var float: x)

Return sin x

function float: sinh(float: x)

Return sinh x

function var float: sinh(var float: x)

Return sinh x

function float: tan(float: x)

Return tan x

function var float: tan(var float: x)

Return tan x

function float: tanh(float: x)

Return tanh x

function var float: tanh(var float: x)

Return tanh x

4.2.4.5 Logical opera ons

Logical operations are the standard operators of Boolean logic.

test '->'(bool: x, bool: y)
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Usage: x -> y

Return truth value of x implies y

predicate '->'(var bool: x, var bool: y)

Usage: x -> y

Return truth value of x implies y

test '/\'(bool: x, bool: y)

Usage: x /\ y

Return truth value of x &and; y

predicate '/\'(var bool: x, var bool: y)

Usage: x /\ y

Return truth value of x &and; y

test '<-'(bool: x, bool: y)

Usage: x <- y

Return truth value of y implies x

predicate '<-'(var bool: x, var bool: y)

Usage: x <- y

Return truth value of y implies x

test '<->'(bool: x, bool: y)

Usage: x <-> y

Return truth value of x if-and-only-if y

predicate '<->'(var bool: x, var bool: y)

Usage: x <-> y

Return truth value of x if-and-only-if y

test '\/'(bool: x, bool: y)
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Usage: x \/ y

Return truth value of x &or; y

predicate '\/'(var bool: x, var bool: y)

Usage: x \/ y

Return truth value of x &or; y

test 'not'(bool: x)

Usage: not x

Return truth value of the negation of x

predicate 'not'(var bool: x)

Usage: not x

Return truth value of the negation of x

test 'xor'(bool: x, bool: y)

Usage: x xor y

Return truth value of x xor y

predicate 'xor'(var bool: x, var bool: y)

Usage: x xor y

Return truth value of x xor y

predicate clause(array [$T] of var bool: x, array [$T] of var bool: y)

Return truth value of (∨i x[i]) ∨ (
∨

j ¬y[j])

predicate clause(array [$T] of bool: x, array [$T] of bool: y)

Return truth value of (∨i x[i]) ∨ (
∨

j ¬y[j])

test exists(array [$T] of bool: x)

Return truth value of ∨i x[i]
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predicate exists(array [$T] of var bool: x)

Return truth value of ∨i x[i]

test forall(array [$T] of bool: x)

Return truth value of ∧i x[i]

predicate forall(array [$T] of var bool: x)

Return truth value of ∧i x[i]

test iffall(array [$T] of bool: x)

Return truth value of true⊕ (⊕ix[i])

predicate iffall(array [$T] of var bool: x)

Return truth value of true⊕ (⊕ix[i])

test xorall(array [$T] of bool: x)

Return truth value of ⊕ix[i]

predicate xorall(array [$T] of var bool: x)

Return truth value of ⊕ix[i]

4.2.4.6 Set opera ons

These functions implement the basic operations on sets.

function set of $$E: '..'($$E: a, $$E: b)

Usage: a .. b

Return the set {a, . . . ,b}

function set of float: '..'(float: a, float: b)

Usage: a .. b

Return the set {a, . . . ,b}
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function set of bool: '..'(bool: a, bool: b)

Usage: a .. b

Return the set {a, . . . ,b}

function set of $T: 'diff'(set of $T: x, set of $T: y)

Usage: x diff y

Return the set difference of sets x \ y

function var set of $$T: 'diff'(var set of $$T: x, var set of $$T: y)

Usage: x diff y

Return the set difference of sets x \ y

test 'in'(int: x, set of int: y)

Usage: x in y

Test if x is an element of the set y

predicate 'in'(var int: x, var set of int: y)

Usage: x in y

x is an element of the set y

test 'in'(float: x, set of float: y)

Usage: x in y

Test if x is an element of the set y

predicate 'in'(var float: x, set of float: y)

Usage: x in y

Test if x is an element of the set y

function set of $T: 'intersect'(set of $T: x, set of $T: y)

Usage: x intersect y

Return the intersection of sets x and y
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function var set of $$T: 'intersect'(var set of $$T: x,
var set of $$T: y)

Usage: x intersect y

Return the intersection of sets x and y

test 'subset'(set of $T: x, set of $T: y)

Usage: x subset y

Test if x is a subset of y

predicate 'subset'(var set of int: x, var set of int: y)

Usage: x subset y

x is a subset of y

test 'superset'(set of $T: x, set of $T: y)

Usage: x superset y

Test if x is a superset of y

predicate 'superset'(var set of int: x, var set of int: y)

Usage: x superset y

x is a superset of y

function set of $T: 'symdiff'(set of $T: x, set of $T: y)

Usage: x symdiff y

Return the symmetric set difference of sets x and y

function var set of $$T: 'symdiff'(var set of $$T: x,
var set of $$T: y)

Usage: x symdiff y

Return the symmetric set difference of sets x and y

function set of $T: 'union'(set of $T: x, set of $T: y)

Usage: x union y

Return the union of sets x and y
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function var set of $$T: 'union'(var set of $$T: x, var set of $$T: y)

Usage: x union y

Return the union of sets x and y

function set of $U: array_intersect(array [$T] of set of $U: x)

Return the intersection of the sets in array x

function var set of int: array_intersect(array [int] of var set of int: x)

Return the intersection of the sets in array x

function set of $U: array_union(array [$T] of set of $U: x)

Return the union of the sets in array x

function var set of int: array_union(array [int] of var set of int: x)

Return the union of the sets in array x

function int: card(set of $T: x)

Return the cardinality of the set x

function var int: card(var set of int: x)

Return the cardinality of the set x

function var $$E: max(var set of $$E: s)

Return the maximum of the set s

function var $$E: min(var set of $$E: s)

Return the minimum of the set s

function array [int] of int: set_to_ranges(set of int: S)

Return a sorted list of the non-overlapping ranges in S
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function array [int] of float: set_to_ranges(set of float: S)

Return a sorted list of the non-overlapping ranges in S

function array [int] of bool: set_to_ranges(set of bool: S)

Return a sorted list of the non-overlapping ranges in S

4.2.4.7 Condi onals

These functions implement conditional (if-then-else-endif) constraints.

predicate if_then_else(array [int] of var bool: c,
array [int] of int: x,
var int: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of var int: x,
var int: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of opt int: x,
var opt int: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of var opt int: x,
var opt int: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.
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predicate if_then_else(array [int] of var bool: c,
array [int] of bool: x,
var bool: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of var bool: x,
var bool: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of opt bool: x,
var opt bool: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of var opt bool: x,
var opt bool: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of float: x,
var float: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of var float: x,
var float: y)
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Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of opt float: x,
var opt float: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of set of int: x,
var set of int: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c,
array [int] of var set of int: x,
var set of int: y)

Conditional constraint {c[i]∧ ̸ ∃c[1..i− 1] → y = x[i]}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c
array is always the constant true, corresponding to the else case.

predicate if_then_else_partiality(array [int] of var bool: c,
array [int] of var bool: d,
var bool: b)

Conditional partiality constraint
This constraint is generated by the compiler for if-then-else expressions with potentially unde-
fined cases. The last entry in the c array is always the constant true, corresponding to the else
case. The d [i] variable represents whether case i is defined. Constrains that if b is defined,
then the selected case must be defined, and if the selected case is undefined, then b must be
undefined.

4.2.4.8 Array opera ons

These functions implement the basic operations on arrays.
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function array [int] of $T: '++'(array [int] of $T: x,
array [int] of $T: y)

Usage: x ++ y

Return the concatenation of arrays x and y

function array [int] of opt $T: '++'(array [int] of opt $T: x,
array [int] of opt $T: y)

Usage: x ++ y

Return the concatenation of arrays x and y

function array [int] of var $T: '++'(array [int] of var $T: x,
array [int] of var $T: y)

Usage: x ++ y

Return the concatenation of arrays x and y

function array [int] of var opt $T: '++'(array [int] of var opt $T: x,
array [int] of var opt $T: y)

Usage: x ++ y

Return the concatenation of arrays x and y

function array [int] of $V: array1d(array [$U] of $V: x)

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the
array x in row-major order.

function array [int] of opt $V: array1d(array [$U] of opt $V: x)

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the
array x in row-major order.

function array [int] of var $V: array1d(array [$U] of var $V: x)

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the
array x in row-major order.

function array [int] of var opt $V: array1d(array [$U] of var opt $V: x)

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the
array x in row-major order.
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function array [$$E] of $V: array1d(set of $$E: S, array [$U] of $V: x)

Return array x coerced to one-dimensional array with index set S . Coercions are performed by
considering the array x in row-major order.

function array [$$E] of opt $V: array1d(set of $$E: S,
array [$U] of opt $V: x)

Return array x coerced to one-dimensional array with index set S . Coercions are performed by
considering the array x in row-major order.

function array [$$E] of var $V: array1d(set of $$E: S,
array [$U] of var $V: x)

Return array x coerced to one-dimensional array with index set S . Coercions are performed by
considering the array x in row-major order.

function array [$$E] of var opt $V: array1d(set of $$E: S,
array [$U] of var opt $V: x)

Return array x coerced to one-dimensional array with index set S . Coercions are performed by
considering the array x in row-major order.

function array [$$E,$$F] of $V: array2d(set of $$E: S1,
set of $$F: S2,
array [$U] of $V: x)

Return array x coerced to two-dimensional array with index sets S1 and S2 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F] of opt $V: array2d(set of $$E: S1,
set of $$F: S2,
array [$U] of opt $V: x)

Return array x coerced to two-dimensional array with index sets S1 and S2 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F] of var $V: array2d(set of $$E: S1,
set of $$F: S2,
array [$U] of var $V: x)

Return array x coerced to two-dimensional array with index sets S1 and S2 . Coercions are
performed by considering the array x in row-major order.
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function array [$$E,$$F] of var opt $V: array2d(set of $$E: S1,
set of $$F: S2,
array [$U] of var opt $V: x)

Return array x coerced to two-dimensional array with index sets S1 and S2 . Coercions are
performed by considering the array x in row-major order.

function var set of $$T: array2set(array [int] of var $$T: x)

Return the set containing the elements of x

function set of $$T: array2set(array [int] of $$T: x)

Return the set containing the elements of x

function set of bool: array2set(array [int] of bool: x)

Return the set containing the elements of x

function set of float: array2set(array [int] of float: x)

Return the set containing the elements of x

function array [$$E,$$F,$$G] of $V: array3d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
array [$U] of $V: x)

Return array x coerced to three-dimensional array with index sets S1 , S2 and S3 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G] of opt $V: array3d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
array [$U] of opt $V: x)

Return array x coerced to three-dimensional array with index sets S1 , S2 and S3 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G] of var $V: array3d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
array [$U] of var $V: x)
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Return array x coerced to three-dimensional array with index sets S1 , S2 and S3 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G] of var opt $V: array3d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
array [$U] of var opt

↪→$V: x)

Return array x coerced to three-dimensional array with index sets S1 , S2 and S3 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H] of $V: array4d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
array [$U] of $V: x)

Return array x coerced to 4-dimensional array with index sets S1 , S2 , S3 and S4 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H] of opt $V: array4d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
array [$U] of opt $V: x)

Return array x coerced to 4-dimensional array with index sets S1 , S2 , S3 and S4 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H] of var $V: array4d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
array [$U] of var $V: x)

Return array x coerced to 4-dimensional array with index sets S1 , S2 , S3 and S4 . Coercions are
performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H] of var opt $V: array4d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
array [$U] of var␣

↪→opt $V: x)

Return array x coerced to 4-dimensional array with index sets S1 , S2 , S3 and S4 . Coercions are
performed by considering the array x in row-major order.
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function array [$$E,$$F,$$G,$$H,$$I] of $V: array5d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
set of $$I: S5,
array [$U] of $V: x)

Return array x coerced to 5-dimensional array with index sets S1 , S2 , S3 , S4 and S5 . Coercions
are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I] of opt $V: array5d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
set of $$I: S5,
array [$U] of opt

↪→$V: x)

Return array x coerced to 5-dimensional array with index sets S1 , S2 , S3 , S4 and S5 . Coercions
are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I] of var $V: array5d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
set of $$I: S5,
array [$U] of var

↪→$V: x)

Return array x coerced to 5-dimensional array with index sets S1 , S2 , S3 , S4 and S5 . Coercions
are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I] of var opt $V: array5d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
set of $$I: S5,
array [$U] of␣

↪→var opt $V: x)

Return array x coerced to 5-dimensional array with index sets S1 , S2 , S3 , S4 and S5 . Coercions
are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I,$$J] of $V: array6d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
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set of $$I: S5,
set of $$J: S6,
array [$U] of $V: x)

Return array x coerced to 6-dimensional array with index sets S1 , S2 , S3 , S4 , S5 and S6 .
Coercions are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I,$$J] of opt $V: array6d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
set of $$I: S5,
set of $$J: S6,
array [$U] of␣

↪→opt $V: x)

Return array x coerced to 6-dimensional array with index sets S1 , S2 , S3 , S4 , S5 and S6 .
Coercions are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I,$$J] of var $V: array6d(set of $$E: S1,
set of $$F: S2,
set of $$G: S3,
set of $$H: S4,
set of $$I: S5,
set of $$J: S6,
array [$U] of␣

↪→var $V: x)

Return array x coerced to 6-dimensional array with index sets S1 , S2 , S3 , S4 , S5 and S6 .
Coercions are performed by considering the array x in row-major order.

function array [$$E,$$F,$$G,$$H,$$I,$$J] of var opt $V: array6d(set of $$E:␣
↪→S1,

set of $$F:␣
↪→S2,

set of $$G:␣
↪→S3,

set of $$H:␣
↪→S4,

set of $$I:␣
↪→S5,

set of $$J:␣
↪→S6,

array [$U]␣
↪→of var opt $V: x)

Return array x coerced to 6-dimensional array with index sets S1 , S2 , S3 , S4 , S5 and S6 .
Coercions are performed by considering the array x in row-major order.
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function array [$T] of $V: arrayXd(array [$T] of var opt $X: x,
array [$U] of $V: y)

Return array y coerced to array with same number of dimensions and same index sets as array
x . Coercions are performed by considering the array y in row-major order.

function array [$T] of opt $V: arrayXd(array [$T] of var opt $X: x,
array [$U] of opt $V: y)

Return array y coerced to array with same number of dimensions and same index sets as array
x . Coercions are performed by considering the array y in row-major order.

function array [$T] of var $V: arrayXd(array [$T] of var opt $X: x,
array [$U] of var $V: y)

Return array y coerced to array with same number of dimensions and same index sets as array
x . Coercions are performed by considering the array y in row-major order.

function array [$T] of var opt $V: arrayXd(array [$T] of var opt $X: x,
array [$U] of var opt $V: y)

Return array y coerced to array with same number of dimensions and same index sets as array
x . Coercions are performed by considering the array y in row-major order.

function array [$$E] of $T: col(array [$$E,int] of $T: x, int: c)

Return column c of array x

function array [$$E] of opt $T: col(array [$$E,int] of opt $T: x,
int: c)

Return column c of array x

function array [$$E] of var $T: col(array [$$E,int] of var $T: x,
int: c)

Return column c of array x

function array [$$E] of var opt $T: col(array [$$E,int] of var opt $T: x,
int: c)

Return column c of array x
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test has_element($T: e, array [int] of $T: x)

Test if e is an element of array x

test has_element($T: e, array [int] of opt $T: x)

Test if e is an element of array x

predicate has_element($T: e, array [$$E] of var opt $T: x)

Test if e is an element of array x

test has_index(int: i, array [int] of var opt $T: x)

Test if i is in the index set of x

function set of $$E: index_set(array [$$E] of var opt $U: x)

Return index set of one-dimensional array x

function set of $$E: index_set_1of2(array [$$E,int] of var opt $U: x)

Return index set of first dimension of two-dimensional array x

function set of $$E: index_set_1of3(array [$$E,int,int] of var opt $U: x)

Return index set of first dimension of 3-dimensional array x

function set of $$E: index_set_1of4(array [$$E,int,int,int] of var opt $U: x)

Return index set of first dimension of 4-dimensional array x

function set of $$E: index_set_1of5(array [$$E,int,int,int,int] of var opt
↪→$U: x)

Return index set of first dimension of 5-dimensional array x

function set of $$E: index_set_1of6(array [$$E,int,int,int,int,int] of var␣
↪→opt $U: x)

Return index set of first dimension of 6-dimensional array x
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function set of $$E: index_set_2of2(array [int,$$E] of var opt $U: x)

Return index set of second dimension of two-dimensional array x

function set of $$E: index_set_2of3(array [int,$$E,int] of var opt $U: x)

Return index set of second dimension of 3-dimensional array x

function set of $$E: index_set_2of4(array [int,$$E,int,int] of var opt $U: x)

Return index set of second dimension of 4-dimensional array x

function set of $$E: index_set_2of5(array [int,$$E,int,int,int] of var opt
↪→$U: x)

Return index set of second dimension of 5-dimensional array x

function set of $$E: index_set_2of6(array [int,$$E,int,int,int,int] of var␣
↪→opt $U: x)

Return index set of second dimension of 6-dimensional array x

function set of $$E: index_set_3of3(array [int,int,$$E] of var opt $U: x)

Return index set of third dimension of 3-dimensional array x

function set of $$E: index_set_3of4(array [int,int,$$E,int] of var opt $U: x)

Return index set of third dimension of 4-dimensional array x

function set of $$E: index_set_3of5(array [int,int,$$E,int,int] of var opt
↪→$U: x)

Return index set of third dimension of 5-dimensional array x

function set of $$E: index_set_3of6(array [int,int,$$E,int,int,int] of var␣
↪→opt $U: x)

Return index set of third dimension of 6-dimensional array x

function set of $$E: index_set_4of4(array [int,int,int,$$E] of var opt $U: x)

Return index set of fourth dimension of 4-dimensional array x
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function set of $$E: index_set_4of5(array [int,int,int,$$E,int] of var opt
↪→$U: x)

Return index set of fourth dimension of 5-dimensional array x

function set of $$E: index_set_4of6(array [int,int,int,$$E,int,int] of var␣
↪→opt $U: x)

Return index set of fourth dimension of 6-dimensional array x

function set of $$E: index_set_5of5(array [int,int,int,int,$$E] of var opt
↪→$U: x)

Return index set of fifth dimension of 5-dimensional array x

function set of $$E: index_set_5of6(array [int,int,int,int,$$E,int] of var␣
↪→opt $U: x)

Return index set of fifth dimension of 6-dimensional array x

function set of $$E: index_set_6of6(array [int,int,int,int,int,$$E] of var␣
↪→opt $U: x)

Return index set of sixth dimension of 6-dimensional array x

test index_sets_agree(array [$T] of var opt $U: x,
array [$T] of var opt $W: y)

Test if x and y have the same index sets

function int: length(array [$T] of var opt $U: x)

Return the length of array x
Note that the length is defined as the number of elements in the array, regardless of its dimen-
sionality.

function array [$$E] of $T: reverse(array [$$E] of $T: x)

Return the array x in reverse order
The resulting array has the same index set as x .

function array [$$E] of opt $T: reverse(array [$$E] of opt $T: x)
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Return the array x in reverse order
The resulting array has the same index set as x .

function array [$$E] of var $T: reverse(array [$$E] of var $T: x)

Return the array x in reverse order
The resulting array has the same index set as x .

function array [$$E] of var opt $T: reverse(array [$$E] of var opt $T: x)

Return the array x in reverse order
The resulting array has the same index set as x .

function array [$$E] of $T: row(array [int,$$E] of $T: x, int: r)

Return row r of array x

function array [$$E] of opt $T: row(array [int,$$E] of opt $T: x,
int: r)

Return row r of array x

function array [$$E] of var $T: row(array [int,$$E] of var $T: x,
int: r)

Return row r of array x

function array [$$E] of var opt $T: row(array [int,$$E] of var opt $T: x,
int: r)

Return row r of array x

function array [int] of $T: slice_1d(array [$E] of $T: x,
array [int] of set of int: s,
set of int: dims1)

Return slice of array x specified by sets s , coerced to new 1d array with index set dims1

function array [int] of opt $T: slice_1d(array [$E] of opt $T: x,
array [int] of set of int: s,
set of int: dims1)

Return slice of array x specified by sets s , coerced to new 1d array with index set dims1
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function array [int] of var $T: slice_1d(array [$E] of var $T: x,
array [int] of set of int: s,
set of int: dims1)

Return slice of array x specified by sets s , coerced to new 1d array with index set dims1

function array [int] of var opt $T: slice_1d(array [$E] of var opt $T: x,
array [int] of set of int: s,
set of int: dims1)

Return slice of array x specified by sets s , coerced to new 1d array with index set dims1

function array [int,int] of $T: slice_2d(array [$E] of $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2)

Return slice of array x specified by sets s , coerced to new 2d array with index sets dims1 and
dims2

function array [int,int] of opt $T: slice_2d(array [$E] of opt $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2)

Return slice of array x specified by sets s , coerced to new 2d array with index sets dims1 and
dims2

function array [int,int] of var $T: slice_2d(array [$E] of var $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2)

Return slice of array x specified by sets s , coerced to new 2d array with index sets dims1 and
dims2

function array [int,int] of var opt $T: slice_2d(array [$E] of var opt $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2)

Return slice of array x specified by sets s , coerced to new 2d array with index sets dims1 and
dims2
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function array [int,int,int] of $T: slice_3d(array [$E] of $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2,
set of int: dims3)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
and dims3

function array [int,int,int] of opt $T: slice_3d(array [$E] of opt $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
and dims3

function array [int,int,int] of var $T: slice_3d(array [$E] of var $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
and dims3

function array [int,int,int] of var opt $T: slice_3d(array [$E] of var opt
↪→$T: x,

array [int] of set of␣
↪→int: s,

set of int: dims1,
set of int: dims2,
set of int: dims3)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
and dims3

function array [int,int,int] of $T: slice_4d(array [$E] of $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4)
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Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4

function array [int,int,int] of opt $T: slice_4d(array [$E] of opt $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4

function array [int,int,int] of var $T: slice_4d(array [$E] of var $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4

function array [int,int,int] of var opt $T: slice_4d(array [$E] of var opt
↪→$T: x,

array [int] of set of␣
↪→int: s,

set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4

function array [int,int,int] of $T: slice_5d(array [$E] of $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5
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function array [int,int,int] of opt $T: slice_5d(array [$E] of opt $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5

function array [int,int,int] of var $T: slice_5d(array [$E] of var $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5

function array [int,int,int] of var opt $T: slice_5d(array [$E] of var opt
↪→$T: x,

array [int] of set of␣
↪→int: s,

set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5

function array [int,int,int] of $T: slice_6d(array [$E] of $T: x,
array [int] of set of int: s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5,
set of int: dims6)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5 , dims6
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function array [int,int,int] of opt $T: slice_6d(array [$E] of opt $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5,
set of int: dims6)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5 , dims6

function array [int,int,int] of var $T: slice_6d(array [$E] of var $T: x,
array [int] of set of int:␣

↪→s,
set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5,
set of int: dims6)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5 , dims6

function array [int,int,int] of var opt $T: slice_6d(array [$E] of var opt
↪→$T: x,

array [int] of set of␣
↪→int: s,

set of int: dims1,
set of int: dims2,
set of int: dims3,
set of int: dims4,
set of int: dims5,
set of int: dims6)

Return slice of array x specified by sets s , coerced to new 3d array with index sets dims1 , dims2
, dims3 , dims4 , dims5 , dims6

4.2.4.9 Array sor ng opera ons

function array [int] of $$E: arg_sort(array [$$E] of int: x)

Returns the permutation p which causes x to be in sorted order hence x [ p [ i ]] <= x [ p [ i
+1]].
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The permutation is the stable sort hence x [ p [ i ]] = x [ p [ i +1]]→ p [ i ] < p [ i +1].

function array [int] of $$E: arg_sort(array [$$E] of float: x)

Returns the permutation p which causes x to be in sorted order hence x [ p [ i ]] <= x [ p [ i
+1]].
The permutation is the stable sort hence x [ p [ i ]] = x [ p [ i +1]]→ p [ i ] < p [ i +1].

function array [$$E] of int: sort(array [$$E] of int: x)

Return values from array x sorted in non-decreasing order

function array [$$E] of float: sort(array [$$E] of float: x)

Return values from array x sorted in non-decreasing order

function array [$$E] of bool: sort(array [$$E] of bool: x)

Return values from array x sorted in non-decreasing order

function array [$$E] of var opt $T: sort_by(array [$$E] of var opt $T: x,
array [$$E] of int: y)

Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if y [ i ] = y [ j ] with i < j , then x [ i ] will appear in the output before
x [ j ].

function array [$$E] of var $T: sort_by(array [$$E] of var $T: x,
array [$$E] of int: y)

Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if y [ i ] = y [ j ] with i < j , then x [ i ] will appear in the output before
x [ j ].

function array [$$E] of $T: sort_by(array [$$E] of $T: x,
array [$$E] of int: y)

Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if y [ i ] = y [ j ] with i < j , then x [ i ] will appear in the output before
x [ j ].

function array [$$E] of var opt $T: sort_by(array [$$E] of var opt $T: x,
array [$$E] of float: y)
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Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if y [ i ] = y [ j ] with i < j , then x [ i ] will appear in the output before
x [ j ].

function array [$$E] of var $T: sort_by(array [$$E] of var $T: x,
array [$$E] of float: y)

Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if y [ i ] = y [ j ] with i < j , then x [ i ] will appear in the output before
x [ j ].

function array [$$E] of $T: sort_by(array [$$E] of $T: x,
array [$$E] of float: y)

Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if y [ i ] = y [ j ] with i < j , then x [ i ] will appear in the output before
x [ j ].

4.2.4.10 Coercions

These functions implement coercions, or channeling, between different types.

function float: bool2float(bool: b)

Return Boolean b coerced to a float

function array [$T] of float: bool2float(array [$T] of bool: x)

Return array of Booleans x coerced to an array of floats

function array [$T] of var float: bool2float(array [$T] of var bool: x)

Return array of Booleans x coerced to an array of floats

function var float: bool2float(var bool: b)

Return Boolean b coerced to a float

function array [$T] of var opt float: bool2float(array [$T] of var opt bool:␣
↪→x)

Return array of Booleans x coerced to an array of floats
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function int: bool2int(bool: b)

Return Boolean b coerced to an integer

function var int: bool2int(var bool: b)

Return Boolean b coerced to an integer

function array [$T] of var int: bool2int(array [$T] of var bool: b)

Return array of Booleans b coerced to an array of integers

function array [$T] of int: bool2int(array [$T] of bool: x)

Return array of Booleans x coerced to an array of integers

function array [$T] of set of int: bool2int(array [$T] of set of bool: x)

Return array of sets of Booleans x coerced to an array of sets of integers

function array [$T] of var int: bool2int(array [$T] of var bool: x)

Return array of Booleans x coerced to an array of integers

function array [$T] of var opt int: bool2int(array [$T] of var opt bool: x)

Return array of Booleans x coerced to an array of integers

function int: ceil(float: x)

Return ⌈x⌉

function int: floor(float: x)

Return ⌊x⌋

function float: int2float(int: x)

Return integer x coerced to a float

function var float: int2float(var int: x)

Return integer x coerced to a float
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function array [$T] of float: int2float(array [$T] of int: x)

Return array of integers x coerced to an array of floats

function array [$T] of var float: int2float(array [$T] of var int: x)

Return array of integers x coerced to an array of floats

function array [$T] of var opt float: int2float(array [$T] of var opt int: x)

Return array of optional integers x coerced to an array of optional floats

function int: round(float: x)

Return x rounded to nearest integer

function array [int] of $$E: set2array(set of $$E: x)

Return a set of integers x coerced to an array of integers

4.2.4.11 String opera ons

These functions implement operations on strings.

function string: '++'(string: s1, string: s2)

Usage: s1 ++ s2

Return concatenation of s1 and s2

function string: concat(array [$T] of string: s)

Return concatenation of strings in array s

function string: file_path()

Return path of file where this function is called

function string: format(var opt $T: x)

Convert x into a string
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function string: format(var opt set of $T: x)

Convert x into a string

function string: format(array [$U] of var opt $T: x)

Convert x into a string

function string: format(int: w, int: p, var opt $T: x)

Formatted to-string conversion
Converts the value x into a string right justified by the number of characters given by w , or left
justified if w is negative.
The maximum length of the string representation of x is given by p , or the maximum number
of digits after the decimal point for floating point numbers. It is a run-time error for p to be
negative.

function string: format(int: w, int: p, var opt set of $T: x)

Formatted to-string conversion
Converts the value x into a string right justified by the number of characters given by w , or left
justified if w is negative.
The maximum length of the string representation of x is given by p . It is a run-time error for p
to be negative.

function string: format(int: w, int: p, array [$U] of var opt $T: x)

Formatted to-string conversion
Converts the value x into a string right justified by the number of characters given by w , or left
justified if w is negative.
The maximum length of the string representation of x is given by p . It is a run-time error for p
to be negative.

function string: format(int: w, var opt $T: x)

Formatted to-string conversion
Converts the value x into a string right justified by the number of characters given by w , or left
justified if w is negative.

function string: format(int: w, var opt set of $T: x)
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Formatted to-string conversion
Converts the value x into a string right justified by the number of characters given by w , or left
justified if w is negative.

function string: format(int: w, array [$U] of var opt $T: x)

Formatted to-string conversion
Converts the value x into a string right justified by the number of characters given by w , or left
justified if w is negative.

function string: format_justify_string(int: w, string: x)

String justification
Returns the string x right justified by the number of characters given by w , or left justified if w
is negative.

function string: join(string: d, array [$T] of string: s)

Join string in array s using delimiter d

function array [int] of string: outputJSON()

Return array for output of all variables in JSON format

function array [int] of string: outputJSON(bool: b)

Return array for output of all variables in JSON format, including objective if b is true

function array [int] of string: outputJSONParameters()

Return array for output of all parameters in JSON format

function string: show(var opt set of $T: x)

Convert x into a string

function string: show(var opt $T: x)

Convert x into a string

function string: show(array [$U] of var opt $T: x)

Convert x into a string
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function string: show2d(array [int,int] of var opt $T: x)

Convert two-dimensional array x into a string

function string: show3d(array [int,int,int] of var opt $T: x)

Convert three-dimensional array x into a string

function string: showJSON(var opt $T: x)

Convert x into JSON string

function string: showJSON(array [$U] of var opt $T: x)

Convert x into JSON string

function string: show_float(int: w, int: p, var float: x)

Formatted to-string conversion for floats.
Converts the float x into a string right justified by the number of characters given by w , or left
justified if w is negative. The number of digits to appear after the decimal point is given by p .
It is a run-time error for p to be negative.

function string: show_int(int: w, var int: x)

Formatted to-string conversion for integers
Converts the integer x into a string right justified by the number of characters given by w , or left
justified if w is negative.

function int: string_length(string: s)

Return length of s

4.2.4.12 Reflec on opera ons

These functions return information about declared or inferred variable bounds and domains.

function set of int: dom(var int: x)

Return domain of x
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function set of int: dom_array(array [$T] of var int: x)

Return union of all domains of the elements in array x

function set of int: dom_bounds_array(array [$T] of var int: x)

Return approximation of union of all domains of the elements in array x

function int: dom_size(var int: x)

Return cardinality of the domain of x

function $T: fix(var opt $T: x)

Check if the value of x is fixed at this point in evaluation. If it is fixed, return its value, otherwise
abort.

function array [$U] of $T: fix(array [$U] of var opt $T: x)

Check if the value of every element of the array x is fixed at this point in evaluation. If all are
fixed, return an array of their values, otherwise abort.

test has_bounds(var int: x)

Test if variable x has declared, finite bounds

test has_bounds(var float: x)

Test if variable x has declared, finite bounds

test has_ub_set(var set of int: x)

Test if variable x has a declared, finite upper bound

test is_fixed(var opt $T: x)

Test if x is fixed

test is_fixed(set of $T: x)

Test if x is fixed
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test is_fixed(var set of int: x)

Test if x is fixed

test is_fixed(array [$U] of var opt $T: x)

Test if every element of array x is fixed

function int: lb(var int: x)

Return lower bound of x

function int: lb(var opt int: x)

Return lower bound of x

function float: lb(var float: x)

Return lower bound of x

function float: lb(var opt float: x)

Return lower bound of x

function set of int: lb(var set of int: x)

Return lower bound of x

function array [$U] of int: lb(array [$U] of var int: x)

Return array of lower bounds of the elements in array x

function array [$U] of float: lb(array [$U] of var float: x)

Return array of lower bounds of the elements in array x

function array [$U] of set of int: lb(array [$U] of var set of int: x)

Return array of lower bounds of the elements in array x

function int: lb_array(array [$U] of var opt int: x)

Return minimum of all lower bounds of the elements in array x
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function float: lb_array(array [$U] of var opt float: x)

Return minimum of all lower bounds of the elements in array x

function set of int: lb_array(array [$U] of var set of int: x)

Return intersection of all lower bounds of the elements in array x

function int: ub(var int: x)

Return upper bound of x

function int: ub(var opt int: x)

Return upper bound of x

function float: ub(var float: x)

Return upper bound of x

function float: ub(var opt float: x)

Return upper bound of x

function set of int: ub(var set of int: x)

Return upper bound of x

function array [$U] of int: ub(array [$U] of var int: x)

Return array of upper bounds of the elements in array x

function array [$U] of float: ub(array [$U] of var float: x)

Return array of upper bounds of the elements in array x

function array [$U] of set of int: ub(array [$U] of var set of int: x)

Return array of upper bounds of the elements in array x

function int: ub_array(array [$U] of var opt int: x)

Return maximum of all upper bounds of the elements in array x
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function float: ub_array(array [$U] of var opt float: x)

Return maximum of all upper bounds of the elements in array x

function set of int: ub_array(array [$U] of var set of int: x)

Return union of all upper bounds of the elements in array x

4.2.4.13 Asser ons and debugging func ons

These functions help debug models and check that input data conforms to the expectations.

test abort(string: msg)

Abort evaluation and print message msg .

function $T: assert(bool: b, string: msg, $T: x)

If b is true, return x , otherwise abort with message msg .

function var $T: assert(bool: b, string: msg, var $T: x)

If b is true, return x , otherwise abort with message msg .

function var opt $T: assert(bool: b, string: msg, var opt $T: x)

If b is true, return x , otherwise abort with message msg .

function array [$U] of $T: assert(bool: b,
string: msg,
array [$U] of $T: x)

If b is true, return x , otherwise abort with message msg .

function array [$U] of var $T: assert(bool: b,
string: msg,
array [$U] of var $T: x)

If b is true, return x , otherwise abort with message msg .

function array [$U] of var opt $T: assert(bool: b,
string: msg,
array [$U] of var opt $T: x)
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If b is true, return x , otherwise abort with message msg .

test assert(bool: b, string: msg)

If b is true, return true, otherwise abort with message msg .

function $T: trace(string: msg, $T: x)

Return x , and print message msg .

function var $T: trace(string: msg, var $T: x)

Return x , and print message msg .

function var opt $T: trace(string: msg, var opt $T: x)

Return x , and print message msg .

test trace(string: msg)

Return true, and print message msg .

function $T: trace_stdout(string: msg, $T: x)

Return x , and print message msg .

function var $T: trace_stdout(string: msg, var $T: x)

Return x , and print message msg .

function var opt $T: trace_stdout(string: msg, var opt $T: x)

Return x , and print message msg .

test trace_stdout(string: msg)

Return true, and print message msg .

4.2.4.14 Func ons for enums
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function $$E: enum_next(set of $$E: e, $$E: x)

Return next greater enum value of x in enum e

function var $$E: enum_next(set of $$E: e, var $$E: x)

Return next greater enum value of x in enum e

function $$E: enum_prev(set of $$E: e, $$E: x)

Return next smaller enum value of x in enum e

function var $$E: enum_prev(set of $$E: e, var $$E: x)

Return next smaller enum value of x in enum e

function $$E: to_enum(set of $$E: X, int: x)

Convert x to enum type X

function var $$E: to_enum(set of $$E: X, var int: x)

Convert x to enum type X

function array [$U] of $$E: to_enum(set of $$E: X,
array [$U] of int: x)

Convert x to enum type X

function array [$U] of var $$E: to_enum(set of $$E: X,
array [$U] of var int: x)

Convert x to enum type X

function set of $$E: to_enum(set of $$E: X, set of int: x)

Convert x to enum type X

4.2.4.15 Random Number Generator buil ns

These functions implement random number generators from different probability distributions.
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test bernoulli(float: p)

Return a boolean sample from the Bernoulli distribution defined by probability p

function int: binomial(int: t, float: p)

Return a sample from the binomial distribution defined by sample number t and probability p

function float: cauchy(float: mean, float: scale)

Return a sample from the cauchy distribution defined by mean, scale

function float: cauchy(int: mean, float: scale)

Return a sample from the cauchy distribution defined by mean, scale

function float: chisquared(int: n)

Return a sample from the chi-squared distribution defined by the degree of freedom n

function float: chisquared(float: n)

Return a sample from the chi-squared distribution defined by the degree of freedom n

function int: discrete_distribution(array [int] of int: weights)

Return a sample from the discrete distribution defined by the array of weights weights that
assigns a weight to each integer starting from zero

function float: exponential(int: lambda)

Return a sample from the exponential distribution defined by lambda

function float: exponential(float: lambda)

Return a sample from the exponential distribution defined by lambda

function float: fdistribution(float: d1, float: d2)

Return a sample from the Fisher-Snedecor F-distribution defined by the degrees of freedom
d1,d2
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function float: fdistribution(int: d1, int: d2)

Return a sample from the Fisher-Snedecor F-distribution defined by the degrees of freedom
d1,d2

function float: gamma(float: alpha, float: beta)

Return a sample from the gamma distribution defined by alpha,beta

function float: gamma(int: alpha, float: beta)

Return a sample from the gamma distribution defined by alpha,beta

function float: lognormal(float: mean, float: std)

Return a sample from the lognormal distribution defined by mean, std

function float: lognormal(int: mean, float: std)

Return a sample from the lognormal distribution defined by mean, std

function float: normal(float: mean, float: std)

Return a sample from the normal distribution defined by mean, std

function float: normal(int: mean, float: std)

Return a sample from the normal distribution defined by mean, std

function int: poisson(float: mean)

Return a sample from the poisson distribution defined by mean

function int: poisson(int: mean)

Return a sample from the poisson distribution defined by an integer mean

function float: tdistribution(float: n)

Return a sample from the student’s t-distribution defined by the sample size n
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function float: tdistribution(int: n)

Return a sample from the student’s t-distribution defined by the sample size n

function float: uniform(float: lowerbound, float: upperbound)

Return a sample from the uniform distribution defined by lowerbound,upperbound

function int: uniform(int: lowerbound, int: upperbound)

Return a sample from the uniform distribution defined by lowerbound,upperbound

function float: weibull(float: shape, float: scale)

Return a sample from the Weibull distribution defined by shape, scale

function float: weibull(int: shape, float: scale)

Return a sample from the Weibull distribution defined by shape, scale

4.2.4.16 Special constraints

These predicates allow users to mark constraints as e.g. symmetry breaking or redundant, so
that solvers can choose to implement them differently.
We cannot easily use annotations for this purpose, since annotations are propagated to all con-
straints in a decomposition, which may be incorrect for redundant or symmetry breaking con-
straints in the presence of common subexpression elimination (CSE).

predicate implied_constraint(var bool: b)

Mark b as an implied constraint (synonym for redundant_constraint)

predicate redundant_constraint(var bool: b)

Mark b as a redundant constraint

predicate symmetry_breaking_constraint(var bool: b)

Mark b as a symmetry breaking constraint

4.2.4.17 Language informa on

These functions return information about the MiniZinc system.
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function int: mzn_compiler_version()

Return MiniZinc version encoded as an integer (major*10000+minor*1000+patch).

function string: mzn_version_to_string(int: v)

Return string representation of v given an integer major*10000+minor*1000+patch

4.2.5 FlatZinc buil ns

These are the standard constraints that need to be supported by FlatZinc solvers (or redefined
in the redefinitions.mzn file).

4.2.5.1 Integer FlatZinc buil ns

predicate array_int_element(var int: b,
array [int] of int: as,
var int: c)

Constrains as [ b ] = c

predicate array_int_maximum(var int: m, array [int] of var int: x)

Constrains m to be the maximum value of the (non-empty) array x

predicate array_int_minimum(var int: m, array [int] of var int: x)

Constrains m to be the minimum value of the (non-empty) array x

predicate array_var_int_element(var int: b,
array [int] of var int: as,
var int: c)

Constrains as [ b ] = c

predicate int_abs(var int: a, var int: b)

Constrains b to be the absolute value of a

predicate int_div(var int: a, var int: b, var int: c)

Constrains a / b = c
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predicate int_eq(var int: a, var int: b)

Constrains a to be equal to b

predicate int_eq_reif(var int: a, var int: b, var bool: r)

Constrains ( a = b )↔ r

predicate int_le(var int: a, var int: b)

Constrains a to be less than or equal to b

predicate int_le_reif(var int: a, var int: b, var bool: r)

Constrains ( a ≤ b )↔ r

predicate int_lin_eq(array [int] of int: as,
array [int] of var int: bs,
int: c)

Constrains c = ∑
i as[i] ∗ bs[i]

predicate int_lin_eq_reif(array [int] of int: as,
array [int] of var int: bs,
int: c,
var bool: r)

Constrains r↔ (c = ∑
i as[i] ∗ bs[i])

predicate int_lin_le(array [int] of int: as,
array [int] of var int: bs,
int: c)

Constrains∑ as [ i ]* bs [ i ] ≤ c

predicate int_lin_le_reif(array [int] of int: as,
array [int] of var int: bs,
int: c,
var bool: r)

Constrains r↔ (∑ as [ i ]* bs [ i ] ≤ c )

predicate int_lin_ne(array [int] of int: as,
array [int] of var int: bs,
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int: c)

Constrains c ̸= ∑
i as[i] ∗ bs[i]

predicate int_lin_ne_reif(array [int] of int: as,
array [int] of var int: bs,
int: c,
var bool: r)

Constrains r↔ (c ̸= ∑
i as[i] ∗ bs[i])

predicate int_lt(var int: a, var int: b)

Constrains a < b

predicate int_lt_reif(var int: a, var int: b, var bool: r)

Constrains r↔ ( a < b )

predicate int_max(var int: a, var int: b, var int: c)

Constrains max( a , b ) = c

predicate int_min(var int: a, var int: b, var int: c)

Constrains min( a , b ) = c

predicate int_mod(var int: a, var int: b, var int: c)

Constrains a % b = c

predicate int_ne(var int: a, var int: b)

Constrains a ≠ b

predicate int_ne_reif(var int: a, var int: b, var bool: r)

r↔ ( a ≠ b )

predicate int_plus(var int: a, var int: b, var int: c)

Constrains a + b = c
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predicate int_pow(var int: x, var int: y, var int: z)

Constrains z = xy

predicate int_pow_fixed(var int: x, int: y, var int: z)

Constrains z = xy

predicate int_times(var int: a, var int: b, var int: c)

Constrains a * b = c

4.2.5.2 Bool FlatZinc buil ns

predicate array_bool_and(array [int] of var bool: as, var bool: r)

Constrains r↔ ∧
i as[i]

predicate array_bool_element(var int: b,
array [int] of bool: as,
var bool: c)

Constrains as [ b ] = c

predicate array_bool_or(array [int] of var bool: as, var bool: r)

Constrains r↔ ∨
i as[i]

predicate array_bool_xor(array [int] of var bool: as)

Constrains ⊕i as[i]

predicate array_var_bool_element(var int: b,
array [int] of var bool: as,
var bool: c)

Constrains as [ b ] = c

predicate bool2int(var bool: a, var int: b)

Constrains b ∈ {0, 1} and a↔ b = 1
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predicate bool_and(var bool: a, var bool: b, var bool: r)

Constrains r↔ a ∧ b

predicate bool_clause(array [int] of var bool: as,
array [int] of var bool: bs)

Constrains ∨i as[i] ∨
∨

j ¬bs[j]

predicate bool_eq(var bool: a, var bool: b)

Constrains a = b

predicate bool_eq_reif(var bool: a, var bool: b, var bool: r)

Constrains r↔ ( a = b )

predicate bool_le(var bool: a, var bool: b)

Constrains a ≤ b

predicate bool_le_reif(var bool: a, var bool: b, var bool: r)

Constrains r↔ ( a ≤ b )

predicate bool_lin_eq(array [int] of int: as,
array [int] of var bool: bs,
var int: c)

Constrains c = ∑
i as[i] ∗ bs[i]

predicate bool_lin_le(array [int] of int: as,
array [int] of var bool: bs,
int: c)

Constrains c ≤∑
i as[i] ∗ bs[i]

predicate bool_lt(var bool: a, var bool: b)

Constrains a < b

predicate bool_lt_reif(var bool: a, var bool: b, var bool: r)

Constrains r↔ ( a < b )
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predicate bool_not(var bool: a, var bool: b)

Constrains a ≠ b

predicate bool_or(var bool: a, var bool: b, var bool: r)

Constrains r↔ a ∨ b

predicate bool_xor(var bool: a, var bool: b, var bool: r)

Constrains r↔ a⊕ b

predicate bool_xor(var bool: a, var bool: b)

Constrains a ⊕ b

4.2.5.3 Set FlatZinc buil ns

predicate array_set_element(var int: b,
array [int] of set of int: as,
var set of int: c)

Constrains as [ b ] = c

predicate array_var_set_element(var int: b,
array [int] of var set of int: as,
var set of int: c)

Constrains as [ b ] = c

predicate set_card(var set of int: S, var int: x)

Constrains x = | S |

predicate set_diff(var set of int: x,
var set of int: y,
var set of int: r)

Constrains r = x \ y

predicate set_eq(var set of int: x, var set of int: y)

Constrains x = y
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predicate set_eq_reif(var set of int: x,
var set of int: y,
var bool: r)

Constrains r↔ ( x = y )

predicate set_in(var int: x, set of int: S)

Constrains x ∈ S

predicate set_in(var int: x, var set of int: S)

Constrains x ∈ S

predicate set_in_reif(var int: x, set of int: S, var bool: r)

Constrains r↔ (x ∈ S)

predicate set_in_reif(var int: x, var set of int: S, var bool: r)

Constrains r↔ (x ∈ S)

predicate set_intersect(var set of int: x,
var set of int: y,
var set of int: r)

Constrains r = x ∩ y

predicate set_le(var set of int: x, var set of int: y)

Constrains x ≤ y (lexicographic order of the sorted lists of elements)

predicate set_le_reif(var set of int: x,
var set of int: y,
var bool: r)

Constrains r↔ (x ≤ y) (lexicographic order of the sorted lists of elements)

predicate set_lt(var set of int: x, var set of int: y)

Constrains x < y (lexicographic order of the sorted lists of elements)

predicate set_lt_reif(var set of int: x,
var set of int: y,
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var bool: r)

Constrains r↔ (x < y) (lexicographic order of the sorted lists of elements)

predicate set_ne(var set of int: x, var set of int: y)

Constrains x ≠ y

predicate set_ne_reif(var set of int: x,
var set of int: y,
var bool: r)

Constrains r↔ ( x ≠ y )

predicate set_subset(var set of int: x, var set of int: y)

Constrains x ⊆ y

predicate set_subset_reif(var set of int: x,
var set of int: y,
var bool: r)

Constrains r↔ (x ⊆ y)

predicate set_superset(var set of int: x, var set of int: y)

Constrains x ⊇ y

predicate set_symdiff(var set of int: x,
var set of int: y,
var set of int: r)

Constrains r to be the symmetric difference of x and y

predicate set_union(var set of int: x,
var set of int: y,
var set of int: r)

Constrains r = x ∪ y

4.2.5.4 Float FlatZinc buil ns
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array [int] of float: as,
var float: c)

Constrains as [ b ] = c

predicate array_float_maximum(var int: m, array [int] of var int: x)

Constrains m to be the maximum value of the (non-empty) array x

predicate array_float_minimum(var int: m, array [int] of var int: x)

Constrains m to be the minimum value of the (non-empty) array x

predicate array_var_float_element(var int: b,
array [int] of var float: as,
var float: c)

Constrains as [ b ] = c

predicate float_abs(var float: a, var float: b)

Constrains b to be the absolute value of a

predicate float_acos(var float: a, var float: b)

Constrains b = acos( a )

predicate float_acosh(var float: a, var float: b)

Constrains b = acosh( a )

predicate float_asin(var float: a, var float: b)

Constrains b = asin( a )

predicate float_asinh(var float: a, var float: b)

Constrains b = asinh( a )

predicate float_atan(var float: a, var float: b)

Constrains b = atan( a )

predicate float_atanh(var float: a, var float: b)

Constrains b = atanh( a )
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predicate float_cos(var float: a, var float: b)

Constrains b = cos( a )

predicate float_cosh(var float: a, var float: b)

Constrains b = cosh( a )

predicate float_div(var float: a, var float: b, var float: c)

Constrains a / b = c

predicate float_dom(var float: x, array [int] of float: as)

Constrains the domain of x using the values in as , using each pair of values as [2* i -1].. as
[2* i ] for i in 1.. n /2 as a possible range

predicate float_eq(var float: a, var float: b)

Constrains a = b

predicate float_eq_reif(var float: a, var float: b, var bool: r)

Constrains r↔ ( a = b )

predicate float_exp(var float: a, var float: b)

Constrains b = exp( a )

predicate float_in(var float: a, float: b, float: c)

Constrains a ∈ [b, c]

predicate float_in_reif(var float: a, float: b, float: c, var bool: r)

Constrains r↔ a ∈ [b, c]

predicate float_le(var float: a, var float: b)

Constrains a ≤ b
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predicate float_le_reif(var float: a, var float: b, var bool: r)

Constrains r↔ ( a ≤ b )

predicate float_lin_eq(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c = ∑
i as[i] ∗ bs[i]

predicate float_lin_eq_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r↔ (c = ∑
i as[i] ∗ bs[i])

predicate float_lin_le(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c ≤∑
i as[i] ∗ bs[i]

predicate float_lin_le_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r↔ (c ≤∑
i as[i] ∗ bs[i])

predicate float_lin_lt(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c < ∑
i as[i] ∗ bs[i]

predicate float_lin_lt_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r↔ (c < ∑
i as[i] ∗ bs[i])
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predicate float_lin_ne(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c ̸= ∑
i as[i] ∗ bs[i]

predicate float_lin_ne_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r↔ (c ̸= ∑
i as[i] ∗ bs[i])

predicate float_ln(var float: a, var float: b)

Constrains b = ln( a )

predicate float_log10(var float: a, var float: b)

Constrains b = log<sub>10</sub>( a )

predicate float_log2(var float: a, var float: b)

Constrains b = log<sub>2</sub>( a )

predicate float_lt(var float: a, var float: b)

Constrains a < b

predicate float_lt_reif(var float: a, var float: b, var bool: r)

Constrains r↔ ( a < b )

predicate float_max(var float: a, var float: b, var float: c)

Constrains max( a , b ) = c

predicate float_min(var float: a, var float: b, var float: c)

Constrains min( a , b ) = c

predicate float_ne(var float: a, var float: b)

Constrains a ≠ b
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predicate float_ne_reif(var float: a, var float: b, var bool: r)

Constrains r↔ ( a ≠ b )

predicate float_plus(var float: a, var float: b, var float: c)

Constrains a + b = c

predicate float_pow(var float: x, var float: y, var float: z)

Constrains z = xy

predicate float_sin(var float: a, var float: b)

Constrains b = sin( a )

predicate float_sinh(var float: a, var float: b)

Constrains b = sinh( a )

predicate float_sqrt(var float: a, var float: b)

Constrains b =
√a

predicate float_tan(var float: a, var float: b)

Constrains b = tan( a )

predicate float_tanh(var float: a, var float: b)

Constrains b = tanh( a )

predicate float_times(var float: a, var float: b, var float: c)

Constrains a * b = c

predicate int2float(var int: x, var float: y)

Constrains y = x
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4.2.5.5 FlatZinc buil ns added in MiniZinc 2.0.0.

These functions and predicates define built-in operations of the MiniZinc language that have
been added in MiniZinc 2.0.0. Solvers that support these natively need to include a file called
redefinitions-2.0.mzn in their solver library that redefines these predicates as builtins.

predicate array_float_maximum(var float: m,
array [int] of var float: x)

Constrains m to be the maximum value in array x .

predicate array_float_minimum(var float: m,
array [int] of var float: x)

Constrains m to be the minimum value in array x .

predicate array_int_maximum(var int: m, array [int] of var int: x)

Constrains m to be the maximum value in array x .

predicate array_int_minimum(var int: m, array [int] of var int: x)

Constrains m to be the minimum value in array x .

predicate bool_clause_reif(array [int] of var bool: as,
array [int] of var bool: bs,
var bool: b)

Reified clause constraint. Constrains b↔ ∨
i as[i] ∨

∨
j ¬bs[j]

4.2.5.6 FlatZinc buil ns added in MiniZinc 2.0.2.

These functions and predicates define built-in operations of the MiniZinc language that have
been added in MiniZinc 2.0.2. Solvers that support these natively need to include a file called
redefinitions-2.0.2.mzn in their solver library that redefines these predicates as builtins.

predicate array_var_bool_element_nonshifted(var int: idx,
array [int] of var bool: x,
var bool: c)

Element constraint on array with MiniZinc index set, constrains x [ idx ] = c This can be over-
ridden in a solver that can perform the index calculation more efficiently than using a MiniZinc
decomposition.
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predicate array_var_float_element_nonshifted(var int: idx,
array [int] of var float: x,
var float: c)

Element constraint on array with MiniZinc index set, constrains x [ idx ] = c This can be over-
ridden in a solver that can perform the index calculation more efficiently than using a MiniZinc
decomposition.

predicate array_var_int_element_nonshifted(var int: idx,
array [int] of var int: x,
var int: c)

Element constraint on array with MiniZinc index set, constrains x [ idx ] = c This can be over-
ridden in a solver that can perform the index calculation more efficiently than using a MiniZinc
decomposition.

predicate array_var_set_element_nonshifted(var int: idx,
array [int] of var set of int: x,
var set of int: c)

Element constraint on array with MiniZinc index set, constrains x [ idx ] = c This can be over-
ridden in a solver that can perform the index calculation more efficiently than using a MiniZinc
decomposition.

4.2.5.7 FlatZinc buil ns added in MiniZinc 2.1.0.

These functions and predicates define built-in operations of the MiniZinc language that have
been added in MiniZinc 2.1.0. Solvers that support these natively need to include a file called
redefinitions-2.1.0.mzn in their solver library that redefines these predicates as builtins.

predicate float_dom(var float: x, array [int] of float: as)

Constrains x to take one of the values in as

predicate float_in(var float: x, float: a, float: b)

Constrains a ≤ x ≤ b

4.2.5.8 FlatZinc buil ns added in MiniZinc 2.1.1.

These functions and predicates define built-in operations of the MiniZinc language that have
been added in MiniZinc 2.1.1. Solvers that support these natively need to include a file called
redefinitions-2.1.1.mzn in their solver library that redefines these predicates as builtins.
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function var $$E: max(var set of $$E: s)

Returns variable constrained to be equal to the maximum of the set s . An alternative imple-
mentation can be found in the comments of the source code.

function var $$E: min(var set of $$E: s)

Returns variable constrained to be equal to the minimum of the set s . An alternative implemen-
tation can be found in the comments of the source code.

4.2.6 Global constraints

These constraints represent high-level modelling abstractions, for which many solvers imple-
ment special, efficient inference algorithms.

4.2.6.1 Coun ng constraints

These constraints count and restrict howmany times certain values occur in an array of variables.
MiniZinc will automatically generate the basic counting constraints below from expressions such
as count(i in x)(i=c) <= d, so you can write models in this much more readable style instead
of using these predicates. However, if your model contains multiple counting constraints over
the same array, constraints like distribute or global_cardinality below may be useful.

predicate among(var int: n, array [int] of var int: x, set of int: v)

Requires exactly n variables in x to take one of the values in v .

function var int: among(array [int] of var int: x, set of int: v)

Returns the number of variables in x that take one of the values in v .

predicate at_least(int: n,
array [int] of var set of int: x,
set of int: v)

Requires at least n variables in x to take the value v .

predicate at_most(int: n,
array [int] of var set of int: x,
set of int: v)

Requires at most n variables in x to take the value v .
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predicate at_most1(array [int] of var set of int: s)

Requires that each pair of sets in s overlap in at most one element.

function var int: count(array [int] of var int: x, var int: y)

Returns the number of occurrences of y in x .

predicate count(array [int] of var int: x, var int: y, var int: c)

Constrains c to be the number of occurrences of y in x .

predicate count_eq(array [int] of var int: x, var int: y, var int: c)

Constrains c to be the number of occurrences of y in x .

predicate count_eq(array [int] of var int: x, int: y, int: c)

Constrains c to be the number of occurrences of y in x .

function var int: count_eq(array [int] of var int: x, var int: y)

Returns the number of occurrences of y in x .

predicate count_geq(array [int] of var int: x, var int: y, var int: c)

Constrains c to be greater than or equal to the number of occurrences of y in x .

predicate count_geq(array [int] of var int: x, int: y, int: c)

Constrains c to be greater than or equal to the number of occurrences of y in x .

predicate count_gt(array [int] of var int: x, var int: y, var int: c)

Constrains c to be strictly greater than the number of occurrences of y in x .

predicate count_gt(array [int] of var int: x, int: y, int: c)

Constrains c to be strictly greater than the number of occurrences of y in x .

predicate count_leq(array [int] of var int: x, var int: y, var int: c)

Constrains c to be less than or equal to the number of occurrences of y in x .
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predicate count_leq(array [int] of var int: x, int: y, int: c)

Constrains c to be less than or equal to the number of occurrences of y in x .

predicate count_lt(array [int] of var int: x, var int: y, var int: c)

Constrains c to be strictly less than the number of occurrences of y in x .

predicate count_lt(array [int] of var int: x, int: y, int: c)

Constrains c to be strictly less than the number of occurrences of y in x .

predicate count_neq(array [int] of var int: x, var int: y, var int: c)

Constrains c to be not equal to the number of occurrences of y in x .

predicate count_neq(array [int] of var int: x, int: y, int: c)

Constrains c to be not equal to the number of occurrences of y in x .

predicate distribute(array [int] of var int: card,
array [int] of var int: value,
array [int] of var int: base)

Requires that card [ i ] is the number of occurrences of value [ i ] in base . The values in value
need not be distinct.

function array [int] of var int: distribute(array [int] of var int: value,
array [int] of var int: base)

Returns an array of the number of occurrences of value [ i ] in base . The values in value need
not be distinct.

predicate exactly(int: n,
array [int] of var set of int: x,
set of int: v)

Requires exactly n variables in x to take the value v .

predicate global_cardinality(array [int] of var int: x,
array [int] of int: cover,
array [int] of var int: counts)

Requires that the number of occurrences of cover [ i ] in x is counts [ i ].
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function array [int] of var int: global_cardinality(array [int] of var int:␣
↪→x,

array [int] of int:␣
↪→cover)

Returns the number of occurrences of cover [ i ] in x .

predicate global_cardinality_closed(array [int] of var int: x,
array [int] of int: cover,
array [int] of var int: counts)

Requires that the number of occurrences of i in x is counts [ i ].
The elements of x must take their values from cover .

function array [int] of var int: global_cardinality_closed(array [int] of␣
↪→var int: x,

array [int] of␣
↪→int: cover)

Returns an array with number of occurrences of i in x .
The elements of x must take their values from cover .

predicate global_cardinality_low_up(array [int] of var int: x,
array [int] of int: cover,
array [int] of int: lbound,
array [int] of int: ubound)

Requires that for all i , the value cover [ i ] appears at least lbound [ i ] and at most ubound [
i ] times in the array x .

predicate global_cardinality_low_up_closed(array [int] of var int: x,
array [int] of int: cover,
array [int] of int: lbound,
array [int] of int: ubound)

Requires that for all i , the value cover [ i ] appears at least lbound [ i ] and at most ubound [
i ] times in the array x .
The elements of x must take their values from cover .

4.2.6.2 All-Different and related constraints

predicate all_different(array [$X] of var int: x)

Constrain the array of integers x to be all different.
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predicate all_different(array [$X] of var set of int: x)

Constrain the array of sets of integers x to be all different.

predicate all_disjoint(array [$X] of var set of int: S)

Constrain the array of sets of integers S to be pairwise disjoint.

predicate all_equal(array [$X] of var int: x)

Constrain the array of integers x to be all equal

predicate all_equal(array [$X] of var set of int: x)

Constrain the array of sets of integers x to be all equal

predicate alldifferent_except_0(array [$X] of var int: vs)

Constrain the array of integers vs to be all different except those elements that are assigned the
value 0.

predicate nvalue(var int: n, array [int] of var int: x)

Requires that the number of distinct values in x is n .

function var int: nvalue(array [int] of var int: x)

Returns the number of distinct values in x .

predicate symmetric_all_different(array [int] of var int: x)

Requires the array of integers x to be all different, and for all i , x [ i ]=j→ x [ j ]= i .

4.2.6.3 Lexicographic constraints

predicate lex2(array [int,int] of var int: x)

Require adjacent rows and adjacent columns in the array x to be lexicographically ordered.
Adjacent rows and adjacent columns may be equal.
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predicate lex_greater(array [int] of var bool: x,
array [int] of var bool: y)

Requires that the array x is strictly lexicographically greater than array y . Compares them from
first to last element, regardless of indices.

predicate lex_greater(array [int] of var int: x,
array [int] of var int: y)

Requires that the array x is strictly lexicographically greater than array y . Compares them from
first to last element, regardless of indices.

predicate lex_greater(array [int] of var float: x,
array [int] of var float: y)

Requires that the array x is strictly lexicographically greater than array y . Compares them from
first to last element, regardless of indices.

predicate lex_greater(array [int] of var set of int: x,
array [int] of var set of int: y)

Requires that the array x is strictly lexicographically greater than array y . Compares them from
first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var bool: x,
array [int] of var bool: y)

Requires that the array x is lexicographically greater than or equal to array y . Compares them
from first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var int: x,
array [int] of var int: y)

Requires that the array x is lexicographically greater than or equal to array y . Compares them
from first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var float: x,
array [int] of var float: y)

Requires that the array x is lexicographically greater than or equal to array y . Compares them
from first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var set of int: x,
array [int] of var set of int: y)
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Requires that the array x is lexicographically greater than or equal to array y . Compares them
from first to last element, regardless of indices.

predicate lex_less(array [int] of var bool: x,
array [int] of var bool: y)

Requires that the array x is strictly lexicographically less than array y . Compares them from
first to last element, regardless of indices.

predicate lex_less(array [int] of var int: x,
array [int] of var int: y)

Requires that the array x is strictly lexicographically less than array y . Compares them from
first to last element, regardless of indices.

predicate lex_less(array [int] of var float: x,
array [int] of var float: y)

Requires that the array x is strictly lexicographically less than array y . Compares them from
first to last element, regardless of indices.

predicate lex_less(array [int] of var set of int: x,
array [int] of var set of int: y)

Requires that the array x is strictly lexicographically less than array y . Compares them from
first to last element, regardless of indices.

predicate lex_lesseq(array [int] of var bool: x,
array [int] of var bool: y)

Requires that the array x is lexicographically less than or equal to array y . Compares them from
first to last element, regardless of indices.

predicate lex_lesseq(array [int] of var float: x,
array [int] of var float: y)

Requires that the array x is lexicographically less than or equal to array y . Compares them from
first to last element, regardless of indices.

predicate lex_lesseq(array [int] of var int: x,
array [int] of var int: y)

Requires that the array x is lexicographically less than or equal to array y . Compares them from
first to last element, regardless of indices.
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predicate lex_lesseq(array [int] of var set of int: x,
array [int] of var set of int: y)

Requires that the array x is lexicographically less than or equal to array y . Compares them from
first to last element, regardless of indices.

predicate seq_precede_chain(array [int] of var int: x)

Requires that i precedes i +1 in the array x for all positive i .

predicate seq_precede_chain(array [int] of var set of int: x)

Requires that i appears in a set in array x before i +1 for all positive i

predicate strict_lex2(array [int,int] of var int: x)

Require adjacent rows and adjacent columns in the array x to be lexicographically ordered.
Adjacent rows and adjacent columns cannot be equal.

predicate value_precede(int: s, int: t, array [int] of var int: x)

Requires that s precede t in the array x .
Precedence means that if any element of x is equal to t , then another element of x with a lower
index is equal to s .

predicate value_precede(int: s,
int: t,
array [int] of var set of int: x)

Requires that s precede t in the array x .
Precedence means that if an element of x contains t but not s , then another element of x with
lower index contains s but not t .

predicate value_precede_chain(array [int] of int: c,
array [int] of var int: x)

Requires that c [ i ] precedes c [ i +1] in the array x .
Precedence means that if any element of x is equal to c [ i +1], then another element of x with
a lower index is equal to c [ i ].

predicate value_precede_chain(array [int] of int: c,
array [int] of var set of int: x)
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Requires that c [ i ] precedes c [ i +1] in the array x .
Precedence means that if an element of x contains c [ i+1] but not c [ i ], then another element
of x with lower index contains c [ i ] but not c [ i +1].

4.2.6.4 Sor ng constraints

function array [int] of var int: arg_sort(array [int] of var int: x)

Returns the permutation p which causes x to be in sorted order hence x [ p [ i ]] <= x [ p [ i
+1]].
The permutation is the stable sort hence x [ p [ i ]] = x [ p [ i +1]]→ p [ i ] < p [ i +1].

function array [int] of var int: arg_sort(array [int] of var float: x)

Returns the permutation p which causes x to be in sorted order hence x [ p [ i ]] <= x [ p [ i
+1]].
The permutation is the stable sort hence x [ p [ i ]] = x [ p [ i +1]]→ p [ i ] < p [ i +1].

predicate arg_sort(array [int] of var int: x,
array [int] of var int: p)

Constrains p to be the permutation which causes x to be in sorted order hence x [ p [ i ]] <= x
[ p [ i +1]].
The permutation is the stable sort hence x [ p [ i ]] = x [ p [ i +1]]→ p [ i ] < p [ i +1].

predicate arg_sort(array [int] of var float: x,
array [int] of var int: p)

Constrains p to be the permutation which causes x to be in sorted order hence x [ p [ i ]] <= x
[ p [ i +1]].
The permutation is the stable sort hence x [ p [ i ]] = x [ p [ i +1]]→ p [ i ] < p [ i +1].

predicate decreasing(array [int] of var bool: x)

Requires that the array x is in decreasing order (duplicates are allowed).

predicate decreasing(array [int] of var float: x)

Requires that the array x is in decreasing order (duplicates are allowed).
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predicate decreasing(array [int] of var int: x)

Requires that the array x is in decreasing order (duplicates are allowed).

predicate decreasing(array [int] of var set of int: x)

Requires that the array x is in decreasing order (duplicates are allowed).

predicate increasing(array [int] of var bool: x)

Requires that the array x is in increasing order (duplicates are allowed).

predicate increasing(array [int] of var float: x)

Requires that the array x is in increasing order (duplicates are allowed).

predicate increasing(array [int] of var int: x)

Requires that the array x is in increasing order (duplicates are allowed).

predicate increasing(array [int] of var set of int: x)

Requires that the array x is in increasing order (duplicates are allowed).

predicate sort(array [int] of var int: x, array [int] of var int: y)

Requires that the multiset of values in x are the same as the multiset of values in y but y is in
sorted order.

function array [int] of var int: sort(array [int] of var int: x)

Return a multiset of values that is the same as the multiset of values in x but in sorted order.

4.2.6.5 Channeling constraints

predicate int_set_channel(array [int] of var int: x,
array [int] of var set of int: y)

Requires that array of int variables x and array of set variables y are related such that ( x [ i ]
= j )↔ ( i in y [ j ]).
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predicate inverse(array [int] of var int: f,
array [int] of var int: invf)

Constrains two arrays of int variables, f and invf , to represent inverse functions. All the values
in each array must be within the index set of the other array.

function array [$$E] of var $$F: inverse(array [$$F] of var $$E: f)

Given a function f represented as an array, return the inverse function.

function array [$$E] of $$F: inverse(array [$$F] of $$E: f)

Given a function f represented as an array, return the inverse function.

predicate inverse_in_range(array [int] of var int: f,
array [int] of var int: invf)

If the i th variable of the collection X is assigned to j and if j is in the index set of Y then the j
th variable of the collection Y is assigned to i .
Conversely, if the j th variable of the collection Y is assigned to i and if i is in the index set of X
then the i th variable of the collection X is assigned to j .

predicate inverse_set(array [int] of var set of int: f,
array [int] of var set of int: invf)

Constrains two arrays of set of int variables, f and invf , so that a j in f[ i ] iff i in invf[ j ]. All
the values in each array’s sets must be within the index set of the other array.

predicate link_set_to_booleans(var set of int: s,
array [int] of var bool: b)

Constrain the array of Booleans b to be a representation of the set s : i in s↔ b [ i ].
The index set of b must be a superset of the possible values of s .

4.2.6.6 Packing constraints

predicate bin_packing(int: c,
array [int] of var int: bin,
array [int] of int: w)

Requires that each item i with weight w [ i ], be put into bin [ i ] such that the sum of the
weights of the items in each bin does not exceed the capacity c .
Assumptions:
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• forall i , w [ i ] >=0
• c >=0

predicate bin_packing_capa(array [int] of int: c,
array [int] of var int: bin,
array [int] of int: w)

Requires that each item i with weight w [ i ], be put into bin [ i ] such that the sum of the
weights of the items in each bin b does not exceed the capacity c [ b ].
Assumptions:
• forall i , w [ i ] >=0
• forall b , c [ b ] >=0

predicate bin_packing_load(array [int] of var int: load,
array [int] of var int: bin,
array [int] of int: w)

Requires that each item i with weight w [ i ], be put into bin [ i ] such that the sum of the
weights of the items in each bin b is equal to load [ b ].
Assumptions:
• forall i , w [ i ] >=0

function array [int] of var int: bin_packing_load(array [int] of var int:␣
↪→bin,

array [int] of int: w)

Returns the load of each bin resulting from packing each item i with weight w [ i ] into bin [ i
], where the load is defined as the sum of the weights of the items in each bin.
Assumptions:
• forall i , w [ i ] >=0

predicate diffn(array [int] of var int: x,
array [int] of var int: y,
array [int] of var int: dx,
array [int] of var int: dy)

Constrains rectangles i , given by their origins ( x [ i ], y [ i ]) and sizes ( dx [ i ], dy [ i ]), to
be non-overlapping. Zero-width rectangles can still not overlap with any other rectangle.

predicate diffn_k(array [int,int] of var int: box_posn,
array [int,int] of var int: box_size)

Constrains k -dimensional boxes to be non-overlapping. For each box i and dimension j ,
box_posn [ i , j ] is the base position of the box in dimension j , and box_size [ i , j ] is
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the size in that dimension. Boxes whose size is 0 in any dimension still cannot overlap with any
other box.

predicate diffn_nonstrict(array [int] of var int: x,
array [int] of var int: y,
array [int] of var int: dx,
array [int] of var int: dy)

Constrains rectangles i , given by their origins ( x [ i ], y [ i ]) and sizes ( dx [ i ], dy [ i ]), to
be non-overlapping. Zero-width rectangles can be packed anywhere.

predicate diffn_nonstrict_k(array [int,int] of var int: box_posn,
array [int,int] of var int: box_size)

Constrains k -dimensional boxes to be non-overlapping. For each box i and dimension j ,
box_posn [ i , j ] is the base position of the box in dimension j , and box_size [ i , j ] is the size
in that dimension. Boxes whose size is 0 in at least one dimension can be packed anywhere.

predicate geost(int: k,
array [int,int] of int: rect_size,
array [int,int] of int: rect_offset,
array [int] of set of int: shape,
array [int,int] of var int: x,
array [int] of var int: kind)

A global non-overlap constraint for k dimensional objects. It enforces that no two objects overlap.
Parameters:
• k: the number of dimensions
• rect_size: the size of each box in k dimensions
• rect_offset: the offset of each box from the base position in k dimensions
• shape: the set of rectangles defining the i -th shape.
• x: the base position of each object. x [ i , j ] is the position of object i in. dimension j .
• kind: the shape used by each object.

predicate geost_bb(int: k,
array [int,int] of int: rect_size,
array [int,int] of int: rect_offset,
array [int] of set of int: shape,
array [int,int] of var int: x,
array [int] of var int: kind,
array [int] of var int: l,
array [int] of var int: u)

A global non-overlap constraint for k dimensional objects. It enforces that no two objects overlap,
and that all objects fit within a global k dimensional bounding box.
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Parameters:
• k: the number of dimensions
• rect_size: the size of each box in k dimensions
• rect_offset: the offset of each box from the base position in k dimensions
• shape: the set of rectangles defining the i -th shape.
• x: the base position of each object. x [ i , j ] is the position of object i in dimension j .
• kind: the shape used by each object.
• l: is an array of lower bounds, l [ i ] is the minimum bounding box for all objects in
dimension i .

• u: is an array of upper bounds, u [ i ] is the maximum bounding box for all objects in
dimension i .

predicate geost_nonoverlap_k(array [int] of var int: x1,
array [int] of int: w1,
array [int] of var int: x2,
array [int] of int: w2)

A global non-overlap constraint for 2 dimensional objects. It enforces that no two objects overlap
and zero-length objects do not appear in the middle of other objects.
Parameters:
• x1: first coordinate of each object
• w2: width in first dimension for each object
• x2: second coordinate of each object
• w2: width in second dimension for each object

predicate geost_smallest_bb(int: k,
array [int,int] of int: rect_size,
array [int,int] of int: rect_offset,
array [int] of set of int: shape,
array [int,int] of var int: x,
array [int] of var int: kind,
array [int] of var int: l,
array [int] of var int: u)

A global non-overlap constraint for k dimensional objects. It enforces that no two objects overlap,
and that all objects fit within a global k dimensional bounding box. In addition, it enforces that
the bounding box is the smallest one containing all objects, i.e., each of the 2k boundaries is
touched by at least by one object.
Parameters:
• k: the number of dimensions
• rect_size: the size of each box in k dimensions
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• rect_offset: the offset of each box from the base position in k dimensions
• shape: the set of rectangles defining the i -th shape.
• x: the base position of each object. x [ i , j ] is the position of object i in dimension j .
• kind: the shape used by each object.
• l: is an array of lower bounds, l [ i ] is the minimum bounding box for all objects in
dimension i .

• u: is an array of upper bounds, u [ i ] is the maximum bounding box for all objects in
dimension i .

predicate knapsack(array [int] of int: w,
array [int] of int: p,
array [int] of var int: x,
var int: W,
var int: P)

Requires that items are packed in a knapsack with certain weight and profit restrictions.
Assumptions:
• Weights w and profits p must be non-negative
• w , p and x must have the same index sets

Parameters:
• w: weight of each type of item
• p: profit of each type of item
• x: number of items of each type that are packed
• W: sum of sizes of all items in the knapsack
• P: sum of profits of all items in the knapsack

4.2.6.7 Scheduling constraints

predicate alternative(var opt int: s0,
var int: d0,
array [int] of var opt int: s,
array [int] of var int: d)

Alternative constraint for optional tasks. Task ( s0 , d0 ) spans the optional tasks ( s [ i ], d [ i
]) in the array arguments and at most one can occur

predicate cumulative(array [int] of var int: s,
array [int] of var int: d,
array [int] of var int: r,
var int: b)
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Requires that a set of tasks given by start times s , durations d , and resource requirements r ,
never require more than a global resource bound b at any one time.
Assumptions:
• forall i , d [ i ] >= 0 and r [ i ] >= 0

predicate cumulative(array [int] of var opt int: s,
array [int] of var int: d,
array [int] of var int: r,
var int: b)

Requires that a set of tasks given by start times s , durations d , and resource requirements r
, never require more than a global resource bound b at any one time. Start times are optional
variables, so that absent tasks do not need to be scheduled.
Assumptions:
• forall i , d [ i ] >= 0 and r [ i ] >= 0

predicate disjunctive(array [int] of var int: s,
array [int] of var int: d)

Requires that a set of tasks given by start times s and durations d do not overlap in time. Tasks
with duration 0 can be scheduled at any time, even in the middle of other tasks.
Assumptions:
• forall i , d [ i ] >= 0

predicate disjunctive(array [int] of var opt int: s,
array [int] of var int: d)

Requires that a set of tasks given by start times s and durations d do not overlap in time. Tasks
with duration 0 can be scheduled at any time, even in the middle of other tasks. Start times are
optional variables, so that absent tasks do not need to be scheduled.
Assumptions:
• forall i , d [ i ] >= 0

predicate disjunctive_strict(array [int] of var int: s,
array [int] of var int: d)

Requires that a set of tasks given by start times s and durations d do not overlap in time. Tasks
with duration 0 CANNOT be scheduled at any time, but only when no other task is running.
Assumptions:
• forall i , d [ i ] >= 0
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predicate disjunctive_strict(array [int] of var opt int: s,
array [int] of var int: d)

Requires that a set of tasks given by start times s and durations d do not overlap in time. Tasks
with duration 0 CANNOT be scheduled at any time, but only when no other task is running.
Start times are optional variables, so that absent tasks do not need to be scheduled.
Assumptions:
• forall i , d [ i ] >= 0

predicate span(var opt int: s0,
var int: d0,
array [int] of var opt int: s,
array [int] of var int: d)

Span constraint for optional tasks. Task ( s0 , d0 ) spans the optional tasks ( s [ i ], d [ i ]) in
the array arguments.

4.2.6.8 Graph constraints

predicate bounded_dpath(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of int: w,
var int: s,
var int: t,
array [int] of var bool: ns,
array [int] of var bool: es,
var int: K)

Constrains the subgraph ns and es of a given directed graph to be a path from s to t of weight
K .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• w: the weight of each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
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• es: a Boolean for each edge whether it is in the subgraph
• K: the cost of the path

predicate bounded_dpath(array [int] of $$N: from,
array [int] of $$N: to,
array [int] of int: w,
var $$N: s,
var $$N: t,
array [$$N] of var bool: ns,
array [int] of var bool: es,
var int: K)

Constrains the subgraph ns and es of a given directed graph to be a path from s to t of weight
K .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• w: the weight of each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
• K: the cost of the path

predicate bounded_path(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of int: w,
var int: s,
var int: t,
array [int] of var bool: ns,
array [int] of var bool: es,
var int: K)

Constrains the subgraph ns and es of a given undirected graph to be a path from s to t of weight
K .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge

378 Chapter 4.2. The MiniZinc library



MiniZinc Handbook, Release 2.4.3

• w: the weight of each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
• K: the cost of the path

predicate bounded_path(array [int] of $$N: from,
array [int] of $$N: to,
array [int] of int: w,
var $$N: s,
var $$N: t,
array [$$N] of var bool: ns,
array [int] of var bool: es,
var int: K)

Constrains the subgraph ns and es of a given undirected graph to be a path from s to t of weight
K .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• w: the weight of each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
• K: the cost of the path

predicate connected(array [int] of $$N: from,
array [int] of $$N: to,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be connected.
Parameters:
• from: is the leaving node for each edge
• to: is the entering node for each edge
• ns: is a Boolean for each node whether it is in the subgraph
• es: is a Boolean for each edge whether it is in the subgraph
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predicate d_weighted_spanning_tree(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of int: w,
var int: r,
array [int] of var bool: es,
var int: K)

Constrains the set of edges es of a given directed graph to be a weighted spanning tree rooted
at r of weight W .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• w: the weight of each edge
• r: the root node (which may be variable)
• es: a Boolean for each edge whether it is in the subgraph
• K: the weight of the tree

predicate dag(array [int] of $$N: from,
array [int] of $$N: to,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be a DAG.
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate dconnected(array [int] of $$N: from,
array [int] of $$N: to,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be connected.
Parameters:
• from: the leaving node for each edge
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• to: the entering node for each edge
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate dpath(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
var int: s,
var int: t,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be a path from s to t .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate dpath(array [int] of $$N: from,
array [int] of $$N: to,
var $$N: s,
var $$N: t,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be a path from s to t .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
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predicate dreachable(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
var int: r,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be reachable from r .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate dreachable(array [int] of $$N: from,
array [int] of $$N: to,
var $$N: r,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be reachable from r .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate dsteiner(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of int: w,
var int: r,
array [int] of var bool: ns,
array [int] of var bool: es,
var int: K)
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Constrains the subgraph ns and es of a given directed graph to be a weighted spanning tree
rooted at r of weight W .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• w: the weight of each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
• K: the weight of the tree

predicate dtree(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
var int: r,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be a tree rooted at r .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate dtree(array [int] of $$N: from,
array [int] of $$N: to,
var $$N: r,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be at tree rooted at r .
Parameters:
• from: the leaving node for each edge
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• to: the entering node for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate path(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
var int: s,
var int: t,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be a path from s to t .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate path(array [int] of $$N: from,
array [int] of $$N: to,
var $$N: s,
var $$N: t,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be a path from s to t .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• s: the source node (which may be variable)
• t: the dest node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
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predicate reachable(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
var int: r,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be reachable from r .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate reachable(array [int] of $$N: from,
array [int] of $$N: to,
var $$N: r,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be reachable from r .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate steiner(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of int: w,
array [int] of var bool: ns,
array [int] of var bool: es,
var int: K)
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Constrains the set of edges es of a given undirected graph to be a weighted spanning tree of
weight W .
•

Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• w: the weight of each edge
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph
• K: the weight of the tree

predicate subgraph(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains that ns and es is a subgraph of a given directed graph.
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate subgraph(array [int] of $$N: from,
array [int] of $$N: to,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains that ns and es is a subgraph of a given directed graph.
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• ns: a Boolean for each node whether it is in the subgraph
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• es: a Boolean for each edge whether it is in the subgraph

predicate tree(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
var int: r,
array [int] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be a tree rooted at r .
Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate tree(array [int] of $$N: from,
array [int] of $$N: to,
var $$N: r,
array [$$N] of var bool: ns,
array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be at tree rooted at r .
Parameters:
• from: the leaving node for each edge
• to: the entering node for each edge
• r: the root node (which may be variable)
• ns: a Boolean for each node whether it is in the subgraph
• es: a Boolean for each edge whether it is in the subgraph

predicate weighted_spanning_tree(int: N,
int: E,
array [int] of int: from,
array [int] of int: to,
array [int] of int: w,
array [int] of var bool: es,
var int: K)
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Constrains the set of edges es of a given undirected graph to be a weighted spanning tree of
weight W .
•

Parameters:
• N: the number of nodes in the given graph
• E: the number of edges in the given graph
• from: the leaving node 1.. N for each edge
• to: the entering node 1.. N for each edge
• w: the weight of each edge
• es: a Boolean for each edge whether it is in the subgraph
• K: the weight of the tree

4.2.6.9 Extensional constraints (table, regular etc.)

predicate cost_mdd(array [int] of var int: x,
int: N,
array [int] of int: level,
int: E,
array [int] of int: from,
array [int] of set of int: label,
array [int] of int: cost,
array [int] of int: to,
var int: totalcost)

Requires that x defines a path in the cost MDD with total edge weight totalcost .
Parameters:
• N: the number of nodes, the root node is node 1
• level: the level of each node, the root is level 1, T is level length (x)+1
• E: the number of edges
• from: the leaving node (1.. N )for each edge
• label: the set of value of the x variable for each edge
• cost: the cost for each edge
• to: the entering node for each edge, where 0 = T node
• totalcost: the total cost of the path defined by x

predicate cost_regular(array [int] of var int: x,
int: Q,
int: S,
array [int,int] of int: d,
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int: q0,
set of int: F,
array [int,int] of int: c,
var int: C)

The sequence of values in array x (which must all be in the range 1.. S ) is accepted by the DFA
of Q states with input 1.. S and transition function d (which maps (1.. Q , 1.. S ) -> 0.. Q )) and
initial state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ). We
reserve state 0 to be an always failing state. Each edge has an associated cost c , and C is the
sum of costs taken on the accepting path for x .

predicate mdd(array [int] of var int: x,
int: N,
array [int] of int: level,
int: E,
array [int] of int: from,
array [int] of set of int: label,
array [int] of int: to)

Requires that x defines a path from root to true node T through the (deterministic) MDD defined
by
The MDD must be deterministic, i.e., there cannot be two edges with the same label leaving the
same node.
Parameters:
• N: the number of nodes, the root node is node 1
• level: the level of each node, the root is level 1, T is level length (x)+1
• E: the number of edges
• from: the leaving node (1.. N )for each edge
• label: the set of values of the x variable for each edge
• to: the entering node for each edge, where 0 = T node

predicate mdd_nondet(array [int] of var int: x,
int: N,
array [int] of int: level,
int: E,
array [int] of int: from,
array [int] of set of int: label,
array [int] of int: to)

Requires that x defines a path from root to true node T through the (nondeterministic) MDD
defined by
The MDD can be nondeterministic, i.e., there can be two edges with the same label leaving the
same node.
Parameters:
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• N: the number of nodes, the root node is node 1
• level: the level of each node, the root is level 1, T is level length (x)+1
• E: the number of edges
• from: the leaving node (1.. N )for each edge
• label: the set of values of the x variable for each edge
• to: the entering node for each edge, where 0 = T node

predicate regular(array [int] of var int: x,
int: Q,
int: S,
array [int,int] of int: d,
int: q0,
set of int: F)

The sequence of values in array x (which must all be in the range 1.. S ) is accepted by the DFA
of Q states with input 1.. S and transition function d (which maps (1.. Q , 1.. S ) -> 0.. Q )) and
initial state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ). We
reserve state 0 to be an always failing state.

predicate regular(array [int] of var int: x,
int: Q,
set of int: S,
array [int,int] of int: d,
int: q0,
set of int: F)

The sequence of values in array x (which must all be in the set S ) is accepted by the DFA of Q
states with input S and transition function d (which maps (1.. Q , S ) -> 0.. Q )) and initial state
q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ). We reserve state
0 to be an always failing state.

predicate regular(array [int] of var int: x, string: r)

The sequence of values in array x is accepted by the regular expression r . This constraint
generates it’s DFA equivalent.
Regular expressions can use the following syntax:
• Selection:

– Concatenation: “12 34”, 12 followed by 34. (Characters are assumed to be the part
of the same number unless split by syntax or whitespace.)

– Union: “7|11”, a 7 or 11.
– Groups: “7(6|8)”, a 7 followed by a 6 or an 8.
– Wildcard: “.”, any value within the domain.
– Classes: “[3-6 7]”, a 3,4,5,6, or 7.
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– Negated classes: “[^3 5]”, any value within the domain except for a 3 or a 5.
• Quantifiers:

– Asterisk: “12*”, 0 or more times a 12.
– Question mark: “5?”, 0 or 1 times a 5. (optional)
– Plus sign: “42+”, 1 or more time a 42.
– Exact: “1{3}”, exactly 3 times a 1.
– At least: “9{5,}”, 5 or more times a 9.
– Between: “7{3,5}”, at least 3 times, but at most 5 times a 7.

Members of enumerated types can be used in place of any integer (e.g., “A B”, A followed by B).
Enumerated identifiers still use whitespace for concatenation.

predicate regular_nfa(array [int] of var int: x,
int: Q,
int: S,
array [int,int] of set of int: d,
int: q0,
set of int: F)

The sequence of values in array x (which must all be in the range 1.. S ) is accepted by the NFA
of Q states with input 1.. S and transition function d (which maps (1.. Q , 1.. S ) -> set of 1.. Q
)) and initial state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1..
Q ).

predicate regular_nfa(array [int] of var int: x,
int: Q,
set of int: S,
array [int,int] of set of int: d,
int: q0,
set of int: F)

The sequence of values in array x (which must all be in the range S ) is accepted by the NFA of Q
states with input S and transition function d (which maps (1.. Q , S ) -> set of 1.. Q )) and initial
state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ).

predicate table(array [int] of var bool: x, array [int,int] of bool: t)

Represents the constraint x in t where we consider each row in t to be a tuple and t as a set of
tuples.

predicate table(array [int] of var int: x, array [int,int] of int: t)

Represents the constraint x in t where we consider each row in t to be a tuple and t as a set of
tuples.
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4.2.6.10 Machine learning constraints

predicate neural_net(array [int] of var float: inputs,
array [int] of int: input_ids,
array [int] of var float: outputs,
array [int] of int: output_ids,
array [int] of float: bias,
array [int] of float: edge_weight,
array [int] of int: edge_parent,
array [int] of int: first_edge,
NEURON_TYPE: neuron_type)

constrain the output layer of a neural net to take the value defined by the input layer. the
arguments are inputs : an array of float variables input_ids : array[int] of node outputs : an
array of float variables output_ids : array[int] of node bias : array[node] of float edge_weight :
array[edge] of float (dummy one at end!) edge_parent : array[edge] of neuron (start neuron for
edge) first_edge : array[node] of 1..m+1 neuron_type : { NT_RELU, NT_STEP, NT_LINEAR,
NT_SOFTPLUS }

4.2.6.11 Deprecated constraints

predicate at_least(int: n, array [int] of var int: x, int: v)

Requires at least n variables in x to take the value v .
This constraint is deprecated. Use count(i in x)(i=v) >= n instead.

predicate at_most(int: n, array [int] of var int: x, int: v)

Requires at most n variables in x to take the value v .
This constraint is deprecated. Use count(i in x)(i=v) <= n instead.

predicate exactly(int: n, array [int] of var int: x, int: v)

Requires exactly n variables in x to take the value v .
This constraint is deprecated. Use count(i in x)(i=v) = n instead.

4.2.6.12 Other declara ons

function var $$E: arg_max(array [$$E] of var int: x)

Returns the index of the maximum value in the array x . When breaking ties the least index is
returned.
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function var $$E: arg_max(array [$$E] of var bool: x)

Returns the index of the maximum value in the array x . When breaking ties the least index is
returned.

function var $$E: arg_max(array [$$E] of var float: x)

Returns the index of the maximum value in the array x . When breaking ties the least index is
returned.

function var $$E: arg_min(array [$$E] of var int: x)

Returns the index of the minimum value in the array x . When breaking ties the least index is
returned.

function var $$E: arg_min(array [$$E] of var bool: x)

Returns the index of the minimum value in the array x . When breaking ties the least index is
returned.

function var $$E: arg_min(array [$$E] of var float: x)

Returns the index of the minimum value in the array x . When breaking ties the least index is
returned.

predicate circuit(array [int] of var int: x)

Constrains the elements of x to define a circuit where x [ i ] = j means that j is the successor
of i .

predicate disjoint(var set of int: s1, var set of int: s2)

Requires that sets s1 and s2 do not intersect.

predicate maximum(var int: m, array [int] of var int: x)

Constrains m to be the maximum of the values in x .
Assumptions: | x | > 0.

predicate maximum(var float: m, array [int] of var float: x)

Constrains m to be the maximum of the values in x .
Assumptions: | x | > 0.
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predicate maximum_arg(array [int] of var int: x, var int: i)

Constrain i to be the index of the maximum value in the array x . When breaking ties the least
index is returned.
Assumption: | x | > 0

predicate maximum_arg(array [int] of var bool: x, var int: i)

Constrain i to be the index of the maximum value in the array x . When breaking ties the least
index is returned.
Assumption: | x | > 0

predicate maximum_arg(array [int] of var float: x, var int: i)

Constrain i to be the index of the maximum value in the array x . When breaking ties the least
index is returned.
Assumption: | x | > 0

predicate member(array [int] of var bool: x, var bool: y)

Requires that y occurs in the array x .

predicate member(array [int] of var float: x, var float: y)

Requires that y occurs in the array x .

predicate member(array [int] of var int: x, var int: y)

Requires that y occurs in the array x .

predicate member(array [int] of var set of int: x, var set of int: y)

Requires that y occurs in the array x .

predicate member(var set of int: x, var int: y)

Requires that y occurs in the set x .

predicate minimum(var float: m, array [int] of var float: x)

Constrains m to be the minimum of the values in x .
Assumptions: | x | > 0.
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predicate minimum(var int: m, array [int] of var int: x)

Constrains m to be the minimum of the values in x .
Assumptions: | x | > 0.

predicate minimum_arg(array [int] of var int: x, var int: i)

Constrain i to be the index of the minimum value in the array x . When breaking ties the least
index is returned.
Assumption: | x | > 0

predicate minimum_arg(array [int] of var bool: x, var int: i)

Constrain i to be the index of the minimum value in the array x . When breaking ties the least
index is returned.
Assumption: | x | > 0

predicate minimum_arg(array [int] of var float: x, var int: i)

Constrain i to be the index of the minimum value in the array x . When breaking ties the least
index is returned.
Assumption: | x | > 0

predicate network_flow(array [int,1..2] of int: arc,
array [int] of int: balance,
array [int] of var int: flow)

Defines a network flow constraint.
Parameters:
• arc: a directed arc of the flow network. Arc i connects node arc [ i ,1] to node arc [ i
,2].

• balance: the difference between input and output flow for each node.
• flow: the flow going through each arc.

predicate network_flow_cost(array [int,1..2] of int: arc,
array [int] of int: balance,
array [int] of int: weight,
array [int] of var int: flow,
var int: cost)

Defines a network flow constraint with cost.
Parameters:
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• arc: a directed arc of the flow network. Arc i connects node arc [ i ,1] to node arc [ i
,2].

• balance: the difference between input and output flow for each node.
• weight: the unit cost of the flow through the arc.
• flow: the flow going through each arc.
• cost: the overall cost of the flow.

predicate partition_set(array [int] of var set of int: S,
set of int: universe)

Constrains the sets in array S to partition the universe .

function var float: piecewise_linear(var float: x,
array [int] of float: xi,
array [int] of float: vi)

Return a piecewise-linear interpolation of the given point sequence as a function of x

predicate piecewise_linear(var float: x,
var float: y,
array [int] of float: xi,
array [int] of float: vi)

Constrains y ( x ) to be a piecewise-linear interpolation of the provided point sequence.

predicate range(array [int] of var int: x,
var set of int: s,
var set of int: t)

Requires that the image of function x (represented as an array) on set of values s is t . ub( s )
must be a subset of index_set( x ) otherwise an assertion failure will occur.

function var set of int: range(array [int] of var int: x,
var set of int: s)

Returns the image of function x (represented as an array) on set of values s . ub( s ) must be a
subset of index_set( x ) otherwise an assertion failure will occur.

predicate roots(array [int] of var int: x,
var set of int: s,
var set of int: t)

Requires that x [ i ] in t for all i in s
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function var set of int: roots(array [int] of var int: x,
var set of int: t)

Returns s such that x [ i ] in t for all i in s

predicate sliding_sum(int: low,
int: up,
int: seq,
array [int] of var int: vs)

Requires that in each subsequence vs [ i ], …, vs [ i + seq - 1] the sum of the values belongs
to the interval [ low , up ].

predicate subcircuit(array [int] of var int: x)

Constrains the elements of x to define a subcircuit where x [ i ] = jmeans that j is the successor
of i and x [ i ] = i means that i is not in the circuit.

predicate sum_pred(var int: i,
array [int] of set of int: sets,
array [int] of int: cs,
var int: s)

Requires that the sum of cs [ i1 ].. cs [ iN ] equals s , where i1 .. iN are the elements of the i
th set in sets .
Nb: not called ‘sum’ as in the constraints catalog because ‘sum’ is a MiniZinc built-in function.

predicate sum_set(array [int] of int: vs,
array [int] of int: ws,
var set of int: x,
var int: s)

Requires that the sum of the weights ws [ i1 ].. ws [ iN ] equals s , where vs [ i1 ].. vs [ iN ]
are the elements appearing in set x

4.2.7 Addi onal declara ons for Gecode

These annotations and predicates are available for the Gecode solver. In order to use them in a
model, include the file “gecode.mzn”.

4.2.7.1 Addi onal Gecode search annota ons

Parameters
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annotation activity_max

Select variable with largest activity count

annotation activity_min

Select variable with smallest activity count

annotation activity_size_max

Select variable with largest activity count divided by domain size

annotation activity_size_min

Select variable with smallest activity count divided by domain size

annotation afc_max

Select variable with largest accumulated failure count

annotation afc_min

Select variable with smallest accumulated failure count

annotation afc_size_max

Select variable with largest accumulated failure count divided by domain size

annotation afc_size_min

Select variable with smallest accumulated failure count divided by domain size

annotation random

Select random variable

Func ons and Predicates

annotation bool_default_search(ann: varsel, ann: valsel)

Specify default search strategy for Boolean variables to use variable selection strategy varsel ,
and value choice strategy valsel .
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annotation float_default_search(ann: varsel, ann: valsel)

Specify default search strategy for float variables to use variable selection strategy varsel , and
value choice strategy valsel .

annotation int_default_search(ann: varsel, ann: valsel)

Specify default search strategy for integer variables to use variable selection strategy varsel ,
and value choice strategy valsel .

annotation relax_and_reconstruct(array [int] of var int: x,
int: percentage)

Simple large neighbourhood search strategy: upon restart, for each variable in x , the probability
of it being fixed to the previous solution is percentage (out of 100).

annotation relax_and_reconstruct(array [int] of var int: x,
int: percentage,
array [int] of int: y)

Simple large neighbourhood search strategy: upon restart, for each variable in x , the probability
of it being fixed to the previous solution is percentage (out of 100). Start from an initial solution
y .

annotation set_default_search(ann: varsel, ann: valsel)

Specify default search strategy for set variables to use variable selection strategy varsel , and
value choice strategy valsel .

4.2.7.2 Addi onal Gecode constraints

predicate among_seq(array [int] of var int: x,
set of int: S,
int: l,
int: m,
int: n)

Every subsequence of x of length l has at least m and at most n occurrences of the values in S

predicate among_seq(array [int] of var bool: x,
bool: b,
int: l,
int: m,
int: n)
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Every subsequence of x of length l has at least m and at most n occurrences of the values in S

predicate circuit_cost(array [int] of int: c,
array [int] of var int: x,
var int: z)

Constrains the elements of x to define a circuit where x [ i ] = j means that j is the successor
of i . Additionally, constrain z to be the cost of the circuit. Each edge cost is defined by array c .

predicate circuit_cost_array(array [int] of int: c,
array [int] of var int: x,
array [int] of var int: y,
var int: z)

Constrains the elements of x to define a circuit where x [ i ] = j means that j is the successor
of i . Additionally, constrain z to be the cost of the circuit. Each edge cost is defined by array c
. The variables y [i] are constrained to be the edge cost of the node x [i].

predicate gecode_array_set_element_intersect(var set of int: x,
array [int] of var set of int:␣

↪→y,
var set of int: z)

Constrain z to be the intersection of all sets in y that are selected by x : i ∈ z↔ ∀j ∈ x : (i ∈ y[j])

predicate gecode_array_set_element_intersect_in(var set of int: x,
array [int] of var set of␣

↪→int: y,
var set of int: z,
set of int: u)

Constrain z to be a subset of u , and z to be the intersection of all sets in y that are selected by
x : i ∈ z↔ ∀j ∈ x : (i ∈ y[j])

predicate gecode_array_set_element_partition(var set of int: x,
array [int] of var set of int:␣

↪→y,
var set of int: z)

Constrain z to be the disjoint union of all sets in y that are selected by x : i ∈ z↔ ∃j ∈ x : (i ∈
y[j]) and i ∈ x ∧ j ∈ x ∧ i ̸= j → y[i] ∩ y[j] = ∅

4.2.8 Addi onal declara ons for Chuffed

These annotations and predicates are available for the Chuffed solver. In order to use them in a
model, include the file “chuffed.mzn”.
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4.2.8.1 Addi onal Chuffed search annota ons

Parameters

annotation largest_smallest

Choose the variable with the largest smallest value in its domain

annotation random_order

Choose a random variable

annotation smallest_largest

Choose the variable with the smallest largest value in its domain

Func ons and Predicates

annotation priority_search(array [int] of var int: x,
array [int] of ann: search,
ann: select,
ann: explore)

Specify search on a group of searches search , for which variables x act as delegates for the
search selection with variable selection strategy select , and exploration strategy explore .
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CHAPTER4.3

Interfacing Solvers to Flatzinc

This document describes the interface between the MiniZinc system and FlatZinc solvers.

4.3.1 Specifica on of FlatZinc

This document is the specification of the FlatZinc modelling language. It also includes a defi-
nition of the standard command line options a FlatZinc solver should support in order to work
with the minizinc driver program (and the MiniZinc IDE).
FlatZinc is the target constraint modelling language into which MiniZinc models are translated.
It is a very simple solver independent problem specification language, requiring minimal imple-
mentation effort to support.
Throughout this document: r1, r2 denote float literals; x1, x2, . . . , xk, i, j, k denote int literals;
y1, y2, . . . , yk, yi denote literal array elements.

4.3.1.1 Comments

Comments start with a percent sign % and extend to the end of the line. Comments can appear
anywhere in a model.

4.3.1.2 Types

There are three varieties of types in FlatZinc.
• Parameter types apply to fixed values that are specified directly in the model.
• Variable types apply to values computed by the solver during search. Every parameter type
has a corresponding variable type; the variable type being distinguished by a var keyword.
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• Annotations and strings: annotations can appear on variable declarations, constraints, and
on the solve goal. They provide information about how a variable or constraint should
be treated by the solver (e.g., whether a variable should be output as part of the result or
whether a particular constraint should implemented using domain consistency). Strings
may appear as arguments to annotations, but nowhere else.

Parameter types

Parameters are fixed quantities explicitly specified in the model (see rule <par-type> in Section
4.3.6).

Type Values
bool true or false
float float
int int
set of int subset of int
array [1.. n ] of bool array of bools
array [1.. n ] of float array of floats
array [1.. n ] of int array of ints
array [1.. n ] of set of int array of sets of ints

A parameter may be used where a variable is expected, but not vice versa.
In predicate declarations the following additional parameter types are allowed.

Type Values
ra .. rb bounded float
xa .. xb int in range
{ xa, xb, . . . , xk } int in set
set of xa .. xb subset of int range
set of { xa, xb, . . . , xk } subset of int set
array [1.. n ] of ra .. rb array of floats in range
array [1.. n ] of xa .. xb array of ints in range
array [1.. n ] of set of xa .. xb array of sets of ints in range
array [1.. n ] of set of { xa, xb, . . . , xk } array of subsets of set

A range xa .. xb denotes a closed interval {x|xa ≤ x ≤ xb} (same for float ranges).
An array type appearing in a predicate declaration may use just int instead of 1.. n for the
array index range in cases where the array argument can be of any length.

Variable types

Variables are quantities decided by the solver (see rules <basic-var-type> and
<array-var-type> in Section 4.3.6).
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Variable type
var bool

var float

var ra .. rb
var int

var xa .. xb
var { xa, xb, . . . , xk }

var set of xa .. xb
var set of { xa, xb, . . . , xk }

array [1.. n ] of var bool

array [1.. n ] of var float

array [1.. n ] of var ra .. rb
array [1.. n ] of var int

array [1.. n ] of var xa .. xb
array [1.. n ] of var set of xa .. xb
array [1.. n ] of var set of { xa, xb, . . . , xk }

In predicate declarations the following additional variable types are allowed.

Variable type
var set of int

array [1.. n ] of var set of int

An array type appearing in a predicate declaration may use just int instead of 1.. n for the
array index range in cases where the array argument can be of any length.

The string type

String literals and literal arrays of string literals can appear as annotation arguments, but not
elsewhere. Strings have the same syntax as in C programs (namely, they are delimited by double
quotes and the backslash character is used for escape sequences).
Examples:

"" % The empty string.
"Hello."
"Hello,\nWorld\t\"quoted!\"" % A string with an embedded newline, tab and␣
↪→quotes.

4.3.1.3 Values and expressions

(See rule <expr> in Section 4.3.6)
Examples of literal values:
Type Literals bool true, false float 2.718, -1.0, 3.0e8 int -42, 0, 69 set of int {}, {2, 3,
5}, 1..10 arrays [], [ ya, . . . , yk ]
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where each array element yi is either: a non-array literal, or the name of a non-array parameter
or variable, v. For example:

[1, 2, 3] % Just literals
[x, y, z] % x, y, and z are variables or parameters.
[x, 3] % Mix of identifiers and literals

Section 4.3.6 gives the regular expressions specifying the syntax for float and int literals.

4.3.1.4 FlatZinc models

A FlatZinc model consists of:
1. zero or more external predicate declarations (i.e., a non-standard predicate that is sup-
ported directly by the target solver);

2. zero or more parameter declarations;
3. zero or more variable declarations;
4. zero or more constraints;
5. a solve goal

in that order.
FlatZinc uses the UTF-8 character set. Non-ASCII characters can only appear in string literals.
FlatZinc syntax is case sensitive (foo and Foo are different names). Identifiers start with a letter
([A-Za-z]) and are followed by any sequence of letters, digits, or underscores ([A-Za-z0-9_]).
Additionally, identifiers of variable or parameter names may start with an underscore. Identifiers
that correspond to the names of predicates, predicate parameters and annotations cannot have
leading underscores.
The following keywords are reserved and cannot be used as identifiers: annotation, any, array,
bool, case, constraint, diff, div, else, elseif, endif, enum, false, float, function, if,
in, include, int, intersect, let, list, maximize, minimize, mod, not, of, satisfy, subset,
superset, output, par, predicate, record, set, solve, string, symdiff, test, then, true, tuple,
union, type, var, where, xor. Note that some of these keywords are not used in FlatZinc. They
are reserved because they are keywords in Zinc and MiniZinc.
FlatZinc syntax is insensitive to whitespace.

4.3.1.5 Predicate declara ons

(See rule <predicate-item> in Section 4.3.6)
Predicates used in the model that are not standard FlatZinc must be declared at the top of a
FlatZinc model, before any other lexical items. Predicate declarations take the form

<predicate-item> ::= "predicate" <identifier> "(" [ <pred-param-type> :␣
↪→<identifier> "," ... ] ")" ";"
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Annotations are not permitted anywhere in predicate declarations.
It is illegal to supply more than one predicate declaration for a given <identifier>.
Examples:

% m is the median value of {x, y, z}.
%

predicate median_of_3(var int: x, var int: y, var int: z, var int: m);

% all_different([x1, .., xn]) iff
% for all i, j in 1..n: xi != xj.
%

predicate all_different(array [int] of var int: xs);

% exactly_one([x1, .., xn]) iff
% there exists an i in 1..n: xi = true
% and for all j in 1..n: j != i -> xj = false.
%

predicate exactly_one(array [int] of var bool: xs);

4.3.1.6 Parameter declara ons

(See rule param_decl in Section 4.3.6)
Parameters have fixed values and must be assigned values:

<par-decl-item> ::= <par-type> ":" <var-par-identifier> "=" <par-expr> ";"

where <par-type> is a parameter type, <var-par-identifier> is an identifier, and <par-expr>
is a literal value (either a basic integer, float or bool literal, or a set or array of such literals).
Annotations are not permitted anywhere in parameter declarations.
Examples:

float: pi = 3.141;
array [1..7] of int: fib = [1, 1, 2, 3, 5, 8, 13];
bool: beer_is_good = true;

4.3.1.7 Variable declara ons

(See rule var_decl in Section 4.3.6)
Variables have variable types and can be declared with optional assignments. The assignment
can fix a variable to a literal value, or create an alias to another variable. Arrays of variables
always have an assignment, defining them in terms of an array literal that can contain identifiers
of variables or constant literals. Variables may be declared with zero or more annotations.
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<var-decl-item> ::= <basic-var-type> ":" <var-par-identifier> <annotations>␣
↪→[ "=" <basic-expr> ] ";"

| <array-var-type> ":" <var-par-identifier> <annotations>
↪→"=" <array-literal> ";"

where <basic-var-type> and <array-var-type> are variable types, <var-par-identifier> is an
identifier, <annotations> is a (possibly empty) set of annotations, <basic-expr> is an identifier
or a literal, and <array-literal> is a literal array value.
Examples:

var 0..9: digit;
var bool: b;
var set of 1..3: s;
var 0.0..1.0: x;
var int: y :: mip; % 'mip' annotation: y should be a MIP variable.
array [1..3] of var 1..10: b = [y, 3, digit];

4.3.1.8 Constraints

(See rule <constraint-item> in Section 4.3.6)
Constraints take the following form and may include zero or more annotations:

<constraint-item> ::= "constraint" <identifier> "(" [ <expr> "," ... ] ")"␣
↪→<annotations> ";"

The arguments expressions (<expr>) can be literal values or identifiers.
Examples:

constraint int_le(0, x); % 0 <= x
constraint int_lt(x, y); % x < y
constraint int_le(y, 10); % y <= 10

% 'domain': use domain consistency for this constraint:
% 2x + 3y = 10

constraint int_lin_eq([2, 3], [x, y], 10) :: domain;

4.3.1.9 Solve item

(See rule <solve-item> in Section 4.3.6)
A model finishes with a solve item, taking one of the following forms:

<solve-item> ::= "solve" <annotations> "satisfy" ";"
| "solve" <annotations> "minimize" <basic-expr> ";"
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| "solve" <annotations> "maximize" <basic-expr> ";"

The first alternative searches for any satisfying assignment, the second one searches for an as-
signment minimizing the given expression, and the third one for an assignment maximizing the
expression. The <basic-expr> can be either a variable identifier or a literal value (if the objective
function is constant).
A solution consists of a complete assignment where all variables in the model have been given
a fixed value.
Examples:

solve satisfy; % Find any solution using the default strategy.

solve minimize w; % Find a solution minimizing w, using the default␣
↪→strategy.

% First label the variables in xs in the order x[1], x[2], ...
% trying values in ascending order.

solve :: int_search(xs, input_order, indomain_min, complete)
satisfy; % Find any solution.

% First use first-fail on these variables, splitting domains
% at each choice point.

solve :: int_search([x, y, z], first_fail, indomain_split, complete)
maximize x; % Find a solution maximizing x.

4.3.1.10 Annota ons

Annotations are optional suggestions to the solver concerning how individual variables and con-
straints should be handled (e.g., a particular solver may have multiple representations for int
variables) and how search should proceed. An implementation is free to ignore any annotations
it does not recognise, although it should print a warning on the standard error stream if it does
so. Annotations are unordered and idempotent: annotations can be reordered and duplicates
can be removed without changing the meaning of the annotations.
An annotation is prefixed by ::, and either just an identifier or an expression that looks like a
predicate call:

<annotations> ::= [ "::" <annotation> ]*

<annotation> ::= <identifier>
| <identifier> "(" <ann-expr> "," ... ")"

<ann-expr> := <expr>
| <annotation>

The arguments of the second alternative can be any expression or other annotations (without
the leading ::).
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Search annota ons

While an implementation is free to ignore any or all annotations in a model, it is recommended
that implementations at least recognise the following standard annotations for solve items.

seq_search([<searchannotation>, ...])

allows more than one search annotation to be specified in a particular order (otherwise annota-
tions can be handled in any order).
A <searchannotation> is one of the following:

int_search(<vars>, <varchoiceannotation>, <assignmentannotation>,␣
↪→<strategyannotation>)

bool_search(<vars>, <varchoiceannotation>, <assignmentannotation>,␣
↪→<strategyannotation>)

set_search(<vars>, <varchoiceannotation>, <assignmentannotation>,␣
↪→<strategyannotation>)

where <vars> is the identifier of an array variable or an array literal specifying the variables to
be assigned (ints, bools, or sets respectively). Note that these arrays may contain literal values.
<varchoiceannotation> specifies how the next variable to be assigned is chosen at each choice
point. Possible choices are as follows (it is recommended that implementations support the
starred options):

input_order⋆ Choose variables in the order they appear in vars.
first_fail⋆ Choose the variable with the smallest domain.
anti_first_failChoose the variable with the largest domain.
smallest Choose the variable with the smallest value in its domain.
largest Choose the variable with the largest value in its domain.
occurrence Choose the variable with the largest number of attached constraints.
most_constrainedChoose the variable with the smallest domain, breaking ties using the number

of constraints.
max_regret Choose the variable with the largest difference between the two smallest values

in its domain.
dom_w_deg Choose the variable with the smallest value of domain size divided by weighted

degree, where the weighted degree is the number of times the variables been
in a constraint which failed

<assignmentannotation> specifies how the chosen variable should be constrained. Possible
choices are as follows (it is recommended that implementations support at least the starred
options):
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indomain_min ⋆ Assign the smallest value in the variable’s domain.
indomain_max ⋆ Assign the largest value in the variable’s domain.
indomain_middle Assign the value in the variable’s domain closest to the mean of its current

bounds.
indomain_median Assign the middle value in the variable’s domain.
indomain Nondeterministically assign values to the variable in ascending order.
indomain_random Assign a random value from the variable’s domain.
indomain_split Bisect the variable’s domain, excluding the upper half first.
indomain_reverse_splitBisect the variable’s domain, excluding the lower half first.
indomain_intervalIf the variable’s domain consists of several contiguous intervals, reduce the

domain to the first interval. Otherwise just split the variable’s domain.

Of course, not all assignment strategies make sense for all search annotations (e.g., bool_search
and indomain_split).
Finally, <strategyannotation> specifies a search strategy; implementations should at least sup-
port complete (i.e., exhaustive search).

Output annota ons

Model output is specified through variable annotations. Non-array output variables are anno-
tated with output_var. Array output variables are annotated with output_array([ x1 .. x2 ,
... ]) where x1 .. x2 , ... are the index set ranges of the original MiniZinc array (which
may have had multiple dimensions and/or index sets that do not start at 1). See Section 4.3.2
for details on the output format.

Variable defini on annota ons

To support solvers capable of exploiting functional relationships, a variable defined as a function
of other variables may be annotated thus:

var int: x :: is_defined_var;

...

constraint int_plus(y, z, x) :: defines_var(x);

(The defines_var annotation should appear on exactly one constraint.) This allows a solver to
represent x internally as a representation of y+z rather than as a separate constrained variable.
The is_defined_var annotation on the declaration of x provides “early warning” to the solver
that such an option is available.

Intermediate variables

Intermediate variables introduced during conversion of a MiniZinc model to FlatZinc may be
annotated thus:
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var int: X_INTRODUCED_3 :: var_is_introduced;

This information is potentially useful to the solver’s search strategy.

Constraint annota ons

Annotations can be placed on constraints advising the solver how the constraint should be im-
plemented. Here are some constraint annotations supported by some solvers:

bounds or boundsZ Use integer bounds propagation.
boundsR Use real bounds propagation.
boundsD A tighter version of boundsZ where support for the bounds must exist.
domain Use domain propagation.
priority(k) where k is an integer constant indicating propagator priority.

4.3.2 Output

An implementation can produce three types of output: solutions, statistics, and errors.

4.3.2.1 Solu on output

An implementation must output values for all and only the variables annotated with output_var
or output_array (output annotations must not appear on parameters). Output must be printed
to the standard output stream.
For example:

var 1..10: x :: output_var;
var 1..10: y; % y is not output.

% Output zs as a "flat" representation of a 2D array:
array [1..4] of var int: zs :: output_array([1..2, 1..2]);

All non-error output must be sent to the standard output stream.
Output must take the following form:

<var-par-identifier> = <basic-literal-expr> ;

or, for array variables,

<var-par-identifier> = array<N>d(<a>..<b>, ..., [<y1>, <y2>, ... <yk>]);

where <N> is the number of index sets specified in the corresponding output_array annotation,
<a>..<b>, ... are the index set ranges, and <y1>, <y2>, ... <yk> are literals of the element
type.
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Using this format, the output of a FlatZinc model solution is suitable for input to a MiniZinc
model as a data file (this is why parameters are not included in the output).
Implementations must ensure that all model variables (not just the output variables) have sat-
isfying assignments before printing a solution.
The output for a solution must be terminated with ten consecutive minus signs on a separate
line: ----------.
Multiple solutions may be output, one after the other, as search proceeds. How many solutions
should be output depends on the mode the solver is run in as controlled by the -a command line
flag (see Section 4.3.4).
If at least one solution has been found and search then terminates having explored the whole
search space, then ten consecutive equals signs should be printed on a separate line: ==========.
If no solutions have been found and search terminates having explored the whole search space,
then =====UNSATISFIABLE===== should be printed on a separate line.
If the objective of an optimization problem is unbounded, then =====UNBOUNDED===== should be
printed on a separate line.
If no solutions have been found and search terminates having not explored the whole search
space, then =====UNKNOWN===== should be printed on a separate line.
Implementations may output further information about the solution(s), or lack thereof, in the
form of FlatZinc comments.
Examples:
Asking for a single solution to this model:

var 1..3: x :: output_var;
solve satisfy

might produce this output:

x = 1;
----------

Asking for all solutions to this model:

array [1..2] of var 1..3: xs :: output_array([1..2]);
constraint int_lt(xs[1], xs[2]); % x[1] < x[2].
solve satisfy

might produce this output:

xs = array1d(1..2, [1, 2]);
----------
xs = array1d(1..2, [1, 3]);
----------
xs = array1d(1..2, [2, 3]);
----------
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==========

Asking for a single solution to this model:

var 1..10: x :: output_var;
solve maximize x;

should produce this output:

x = 10;
----------
==========

The row of equals signs indicates that a complete search was performed and that the last result
printed is the optimal solution.
Running a solver on this model with some termination condition (such as a very short time-out):

var 1..10: x :: output_var;
solve maximize x;

might produce this output:

x = 1;
----------
x = 2;
----------
x = 3;
----------

Because the output does not finish with ==========, search did not finish, hence these results
must be interpreted as approximate solutions to the optimization problem.
Asking for a solution to this model:

var 1..3: x :: output_var;
var 4..6: y :: output_var;
constraint int_lt(y, x); % y < x.
solve satisfy;

should produce this output:

=====UNSATISFIABLE=====

indicating that a complete search was performed and no solutions were found (i.e., the problem
is unsatisfiable).
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4.3.2.2 Sta s cs output

FlatZinc solvers can output statistics in a standard format so that it can be read by scripts, for
example, in order to run experiments and automatically aggregate the results. Statistics should
be printed to the standard output stream in the form of FlatZinc comments that follow a specific
format. Statistics can be output at any time during the solving, i.e., before the first solution, be-
tween solutions, and after the search has finished. Statistics output corresponding to a solution
should be the last one before its ‘———-‘ separator.
Each value should be output on a line of its own in the following format:

%%%mzn-stat: <name>=<value>

Each block of statistics is terminated by a line of its own with the following format:

%%%mzn-stat-end

Example

%%%mzn-stat: objective=1e+308
%%%mzn-stat: objectiveBound=0
%%%mzn-stat: nodes=0
%%%mzn-stat: solveTime=2.3567
%%%mzn-stat-end

(no feasible solution found yet but something can be printed...)

%%%mzn-stat: objective=12345
%%%mzn-stat: objectiveBound=122
%%%mzn-stat: nodes=35
%%%mzn-stat: solveTime=78.5799
%%%mzn-stat-end

(the corresponding feasible solution with value 12345 goes here
or before its statistics but above the separator)

---------- (<- the solution separator)

%%%mzn-stat: objective=379
%%%mzn-stat: objectiveBound=379
%%%mzn-stat: nodes=4725
%%%mzn-stat: solveTime=178.5799
%%%mzn-stat-end

(the corr. optimal solution with value 379 goes here)
----------
========== (<- the 'search complete' marker)

%%%mzn-stat: objective=379 (<- this is the concluding output)
%%%mzn-stat: objectiveBound=379
%%%mzn-stat: nodes=13456
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%%%mzn-stat: solveTime=2378.5799
%%%mzn-stat-end

The <name> describes the kind of statistics gathered, and the <value> can be any value of a
MiniZinc type. The following names are considered standard statistics:

Name Type Explana on
nodes int Number of search nodes
openNodes int Number of open search nodes
objective float Current objective value
objectiveBound float Dual bound on the objective value
failures int Number of leaf nodes that were failed
restarts int Number of times the solver restarted the search
variables int Number of variables
intVariables int Number of integer variables created
boolVariables int Number of bool variables created
floatVariables int Number of float variables created
setVariables int Number of set variables created
propagators int Number of propagators created
propagations int Number of propagator invocations
peakDepth int Peak depth of search tree
nogoods int Number of nogoods created
backjumps int Number of backjumps
peakMem float Peak memory (in Mbytes)
initTime float Initialisation time (in seconds)
solveTime float Solving time (in seconds)

4.3.2.3 Error and warning output

Errors and warnings must be output to the standard error stream. When an error occurs, the
implementation should exit with a non-zero exit code, signaling failure.

4.3.3 Solver-specific Libraries

Constraints in FlatZinc can call standard predicates as well as solver-specific predicates. Stan-
dard predicates are the ones that the MiniZinc compiler assumes to be present in all solvers.
Without further customisation, the compiler will try to compile the entire model into a set of
these standard predicates.
Solvers can use custom predicates and redefine standard predicates by supplying a solver specific
library of predicate declarations. Examples of such libraries can be found in the binary distribu-
tion of MiniZinc, inside the share/minizinc/gecode and share/minizinc/chuffed directories.
The solver-specific library needs to be made available to the MiniZinc compiler by specifying its
location in the solver’s configuration file, see Section 4.3.5.
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4.3.3.1 Standard predicates

FlatZinc solvers need to support the predicates listed as FlatZinc builtins in the library refer-
ence documentation, see Section 4.2.5.
Any standard predicate that is not supported by a solver needs to be redefined. This can be
achieved by placing a file called redefinitions.mzn in the solver’s MiniZinc library, which can
contain alternative definitions of predicates, or define them as unsupported using the abort
predicate.
Example for a redefinitions.mzn:

% Redefine float_sinh function in terms of exp
predicate float_sinh(var float: a, var float: b) =

b == (exp(a)-exp(-a))/2.0;

% Mark float_tanh as unsupported
predicate float_tanh(var float: a, var float: b) =

abort("The builtin float_tanh is not supported by this solver.");

The redefinition can use the full MiniZinc language. Note, however, that redefining builtin pred-
icates in terms of MiniZinc expressions can lead to problems if the MiniZinc compiler translates
the high-level expression back to the redefined builtin.
The reference documentation (Section 4.2.5) also contains sections on builtins that were added
in later versions of MiniZinc. In order to maintain backwards compatibility with solvers that
don’t support these, they are organised in redefinition files with a version number attached,
such as redefinitions-2.0.mzn. In order to declare support for these builtins, the solver-specific
library must contain the corresponding redefinitions file, with the predicates either redefined in
terms of other predicates, or declared as supported natively by the solver by providing a predicate
declaration without a body.
Example for a redefinitions-2.0.mzn that declares native support for the predicates added in
MiniZinc 2.0:

predicate bool_clause_reif(array[int] of var bool: as,
array[int] of var bool: bs,
var bool: b);

predicate array_int_maximum(var int: m, array[int] of var int: x);
predicate array_float_maximum(var float: m, array[int] of var float: x);
predicate array_int_minimum(var int: m, array[int] of var int: x);
predicate array_float_minimum(var float: m, array[int] of var float: x);

4.3.3.2 Solver-specific predicates

Many solvers have built-in support for some of the constraints in the MiniZinc standard library.
But without declaring which constraints they support, MiniZinc will assume that they don’t
support any except for the standard FlatZinc builtins mentioned in the section above.
A solver can declare that it supports a non-standard constraint by overriding one of the files of the
standard library in its own solver-specific library. For example, assume that a solver supports the

4.3.3. Solver-specific Libraries 417



MiniZinc Handbook, Release 2.4.3

all_different constraint on integer variables. In the standard library, this constraint is defined
in the file fzn_all_different_int.mzn, with the following implementation:

predicate fzn_all_different_int(array[int] of var int: x) =
forall(i,j in index_set(x) where i < j) ( x[i] != x[j] );

A solver, let’s call it OptiSolve, that supports this constraint natively can place a file with the same
name, fzn_all_different_int.mzn, in its library, and redefine it as follows:

predicate optisolve_alldifferent(array[int] of var int: x);

predicate fzn_all_different_int(array[int] of var int: x) =
optisolve_alldifferent(x);

When a MiniZinc model that contains the all_different constraint is now compiled with
the OptiSolve library, the generated FlatZinc will contain calls to the newly defined predicate
optisolve_alldifferent.
Note: The solver-specific library has been reorganised for MiniZinc version 2.3.0. Previously, a
solver library would contain e.g. the file bin_packing.mzn in order to override the bin_packing
constraint. With version 2.3.0, this is still possible (in order to maintain backwards compati-
bility). However, the predicate bin_packing from file bin_packing.mzn now delegates to the
predicate fzn_bin_packing in fzn_bin_packing.mzn. This enables the bin_packing predicate to
check that the arguments are correct using assertions, before delegating to the solver-specific
predicate. If your solver still uses the old library layout (i.e., overriding bin_packing.mzn instead
of fzn_bin_packing.mzn), you should consider updating it to the new standard.

4.3.3.3 Reified and half-reified predicates

A reified constraint is a constraint that is not simply enforced, but whose truth value is bound
to a Boolean variable. For example, a MiniZinc expression var bool: b = all_different(x);
would constrain b to be true if and only if the variables x take pairwise different values.
If a predicate is called in such a reified context, the MiniZinc compiler will try to find a version
of the predicate with _reif added to its identifier and an additional var bool argument. For the
above example, the compiler will try to generate the following FlatZinc code:

var bool: b;
constraint all_different_reif(x, b);

If the _reif predicate does not exist, the compiler will try to use the definition of the original
predicate. However, this may not be ideal: the original definition may make use of free variables
in a let expression (which is not allowed in reified contexts), or it may lead to inefficient solving.
Solver libraries should therefore provide reified versions of constraints whenever possible. The
library contains files fzn_<constraintname>_reif.mzn for this purpose.
When a reified constraint is used in a positive context (see Section 2.3.6), the MiniZinc com-
piler can use a special version, called a half-reified predicate and identified by an _imp suffix,
instead of the _reif predicate. Half-reified predicates essentially represent constraints that are
implied by a Boolean variable rather than being equivalent to one. This typically leads to simpler
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translations or more efficient propagation (e.g., a half-reified all_different only needs to check
whether it is false, but it never has to implement the negation of the actual constraint).
For example, constraint y=0 \/ all_different(x) might be translated as follows:

var bool: X_INTRODUCED_1;
var bool: X_INTRODUCED_2;
constraint int_eq_imp(y,0,X_INTRODUCED_1);
constraint all_different_imp(x, X_INTRODUCED_2);
constraint array_bool_or([X_INTRODUCED_1,X_INTRODUCED_2]);

MiniZinc will decide whether to use half-reification case by case based on the availability of the
_imp predicate. As for reified constraints, it may be benefitial to provide specialised half-reified
versions if the solver supports them.

4.3.4 Command-Line Interface and Standard Op ons

In order to work with the minizinc command line driver, a FlatZinc solver must be an executable
(which can include e.g. shell scripts) that can be invoked as follows:

$ <executable-name> [options] model.fzn

where <executable-name> is the name of the executable. Solvers may support the following
standard options:
-a

Instructs the solver to report all solutions in the case of satisfaction problems, or print
intermediate solutions of increasing quality in the case of optimisation problems.

-n <i>
Instructs the solver to stop after reporting i solutions (only used with satisfaction prob-
lems).

-f
Instructs the solver to conduct a “free search”, i.e., ignore any search annotations. The
solver is not required to ignore the annotations, but it is allowed to do so.

-s
Print statistics during and/or after the search for solutions. Statistics should be printed as
FlatZinc comments to the standard output stream. See below for a standard format for
statistics.

-v
Print log messages (verbose solving) to the standard error stream. If solvers choose to
print to standard output instead, all messages must be valid comments (i.e., start with a %
character).

-p <i>
Run with i parallel threads (for multi-threaded solvers).

-r <i>
Use i as the random seed (for any random number generators the solver may be using).
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-t <ms>
Wall time limit ms milliseconds.

4.3.5 Solver Configura on Files

In order for a solver to be available to MiniZinc, it has to be described in a solver configuration
file. This is a simple file, in JSON or .dzn format, that contains some basic information such as
the solver’s name, version, where its library of global constraints can be found, and a path to its
executable. Examples are given in section Solver Backends in User Manual.
A solver configuration file must have file extension .msc (for MiniZinc Solver Configuration),
and can be placed in any of the following locations:
• In the minizinc/solvers/ directory of the MiniZinc installation. If you install MiniZinc
from the binary distribution, this directory can be found at /usr/share/minizinc/solvers
on Linux systems, inside theMiniZincIDE application onmacOS system, and in the Program
Files\MiniZinc IDE (bundled) folder on Windows.

• In the directory $HOME/.minizinc/solvers on Linux and macOS systems, and the Appli-
cation Data directory on Windows systems.

• In any directory listed on the MZN_SOLVER_PATH environment variable (directories are sep-
arated by : on Linux and macOS, and by ; on Windows systems).

• In any directory listed in the mzn_solver_path option of the global or user-specific config-
uration file (see Section 3.1.4)

• Alternatively, you can use the MiniZinc IDE to create solver configuration files, see Section
3.2.5.2 for details.

Solver configuration files must be valid JSON or .dzn files. As a JSON file, it must be an object
with certain fields. As a .dzn file, it must consist of assignment items.
For example, a simple solver configuration in JSON format could look like this:

{
"name" : "My Solver",
"version": "1.0",
"id": "org.myorg.my_solver",
"executable": "fzn-mysolver"

}

The same configuration in .dzn format would look like this:

name = "My Solver";
version = "1.0";
id = "org.myorg.my_solver";
executable = "fzn-mysolver";

Here is a list of all configuration options recognised by the configuration file parser. Any valid
configuration file must at least contain the fields name, version, id, and executable.
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• name (string, required): The name of the solver (displayed, together with the version,
when you call minizinc --solvers, and in the MiniZinc IDE).

• version (string, required): The version of the solver.
• id (string, required): A unique identifier for the solver, “reverse domain name” notation.
• executable (string, required): The executable for this solver that can run FlatZinc files.
This can be just a file name (in which case the solver has to be on the current PATH), or
an absolute path to the executable, or a relative path (which is interpreted relative to the
location of the configuration file).

• mznlib (string, default ""): The solver-specific library of global constraints and redefini-
tions. This should be the name of a directory (either an absolute path or a relative path,
interpreted relative to the location of the configuration file). For solvers whose libraries
are installed in the same location as the MiniZinc standard library, this can also take the
form -G<solverlib>, e.g., -Ggecode (this is mostly the case for solvers that ship with the
MiniZinc binary distribution).

• tags (list of strings, default empty): Each solver can have one or more tags that describe
its features in an abstract way. Tags can be used for selecting a solver using the --solver
option. There is no fixed list of tags, however we recommend using the following tags if
they match the solver’s behaviour:

– "cp": for Constraint Programming solvers
– "mip": for Mixed Integer Programming solvers
– "float": for solvers that support float variables
– "api": for solvers that use the internal C++ API

• stdFlags (list of strings, default empty): Which of the standard solver command line flags
are supported by this solver. The standard flags are -a, -n, -s, -v, -p, -r, -f, -t.

• extraFlags (list of list of strings, default empty): Extra command line flags supported
by the solver. Each entry must be a list of four strings. The first string is the name of
the option (e.g. "--special-algorithm"). The second string is a description that can be
used to generate help output (e.g. "which special algorithm to use"). The third string
specifies the type of the argument ("int", "bool", "float", "string" or "opt"). The fourth
string is the default value. The following types have an additional extended syntax:

– "int:n:m"where n and m are integers, gives lower and upper bounds for the supported
values

– "float:n:m"where n and m are floating point numbers, gives lower and upper bounds
for the supported values

– "bool:onstring:offstring" specifies strings to add to the command line flag to
turn it on (onstring) and off (offstring). E.g., ["-interrupt","whether to catch
Ctrl-C","bool:false:true","true"] specifies a command line option that can be
called as -interrupt true or -interrupt false. The standard behaviour (just
"bool") means that the option is either added to the command line or not.

– "opt:first option:second option:...:last option" specifies a list of possible val-
ues for the option

• supportsMzn (bool, default false): Whether the solver can run MiniZinc directly (i.e., it
implements its own compilation or interpretation of the model).
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• supportsFzn (bool, default true): Whether the solver can run FlatZinc. This should be
the case for most solvers

• needsSolns2Out (bool, default true): Whether the output of the solver needs to be passed
through the MiniZinc output processor.

• needsMznExecutable (bool, default false): Whether the solver needs to know the location
of the MiniZinc executable. If true, it will be passed to the solver using the mzn-executable
option.

• needsStdlibDir (bool, default false): Whether the solver needs to know the location of
the MiniZinc standard library directory. If true, it will be passed to the solver using the
stdlib-dir option.

• isGUIApplication (bool, default false): Whether the solver has its own graphical user
interface, which means that MiniZinc will detach from the process and not wait for it to
finish or to produce any output.

4.3.6 Grammar

This is the full grammar for FlatZinc. It is a proper subset of the MiniZinc grammar (see Section
4.1.14). However, instead of specifying all the cases in the MiniZinc grammar that do not apply
to FlatZinc, the BNF syntax below contains only the relevant syntactic constructs. It uses the
same notation as in Section 4.1.2.

% A FlatZinc model
<model> ::=

[ <predicate-item> ]*
[ <par-decl-item> ]*
[ <var-decl-item> ]*
[ <constraint-item> ]*
<solve-item>

% Predicate items
<predicate-item> ::= "predicate" <identifier> "(" [ <pred-param-type> :␣
↪→<identifier> "," ... ] ")" ";"

% Identifiers
<identifier> ::= [A-Za-z][A-Za-z0-9_]*

<basic-par-type> ::= "bool"
| "int"
| "float"
| "set of int"

<par-type> ::= <basic-par-type>
| "array" "[" <index-set> "]" "of" <basic-par-type>

<basic-var-type> ::= "var" "bool"
| "var" "int"
| "var" <int-literal> ".." <int-literal>
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| "var" "{" <int-literal> "," ... "}"
| "var" "float"
| "var" <float-literal> ".." <float-literal>
| "var" "set" "of" <int-literal> ".." <int-literal>
| "var" "set" "of" "{" [ <int-literal> "," ... ] "}"

<array-var-type> ::= "array" "[" <index-set> "]" "of" <basic-var-type>

<index-set> ::= "1" ".." <int-literal>

<basic-pred-param-type> ::= <basic-par-type>
| <basic-var-type>
| <int-literal> ".." <int-literal>
| <float-literal> ".." <float-literal>
| "{" <int-literal> "," ... "}"
| "set" "of" <int-literal> .. <int-literal>
| "set" "of" "{" [ <int-literal> "," ... ] "}"
| "var" "set" "of" "int"

<pred-param-type> ::= <basic-pred-param-type>
| "array" "[" <pred-index-set> "]" "of"␣

↪→<basic-pred-param-type>

<pred-index-set> ::= <index-set>
| "int"

<basic-literal-expr> ::= <bool-literal>
| <int-literal>
| <float-literal>
| <set-literal>

<basic-expr> ::= <basic-literal-expr>
| <var-par-identifier>

<expr> ::= <basic-expr>
| <array-literal>

<par-expr> ::= <basic-literal-expr>
| <par-array-literal>

<var-par-identifier> ::= [A-Za-z_][A-Za-z0-9_]*

% Boolean literals
<bool-literal> ::= "false"

| "true"

% Integer literals
<int-literal> ::= [0-9]+

| 0x[0-9A-Fa-f]+
| 0o[0-7]+
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% Float literals
<float-literal> ::= [0-9]+.[0-9]+

| [0-9]+.[0-9]+[Ee][-+]?[0-9]+
| [0-9]+[Ee][-+]?[0-9]+

% Set literals
<set-literal> ::= "{" [ <int-literal> "," ... ] "}"

| <int-literal> ".." <int-literal>
| "{" [ <float-literal> "," ... ] "}"
| <float-literal> ".." <float-literal>

<array-literal> ::= "[" [ <basic-expr> "," ... ] "]"

<par-array-literal> ::= "[" [ <basic-literal-expr> "," ... ] "]"

% Parameter declarations

<par-decl-item> ::= <par-type> ":" <var-par-identifier> "=" <par-expr> ";"

% Variable declarations

<var-decl-item> ::= <basic-var-type> ":" <var-par-identifier> <annotations>␣
↪→[ "=" <basic-expr> ] ";"

| <array-var-type> ":" <var-par-identifier> <annotations>
↪→"=" <array-literal> ";"

% Constraint items

<constraint-item> ::= "constraint" <identifier> "(" [ <expr> "," ... ] ")"␣
↪→<annotations> ";"

% Solve item

<solve-item> ::= "solve" <annotations> "satisfy" ";"
| "solve" <annotations> "minimize" <basic-expr> ";"
| "solve" <annotations> "maximize" <basic-expr> ";"

% Annotations

<annotations> ::= [ "::" <annotation> ]*

<annotation> ::= <identifier>
| <identifier> "(" <ann-expr> "," ... ")"

<ann-expr> := <expr>
| <annotation>

% End of FlatZinc grammar
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implied_constraint, 345
index_set, 321
index_set_1of2, 321
index_set_1of3, 321
index_set_1of4, 321
index_set_1of5, 321
index_set_1of6, 321
index_set_2of2, 321
index_set_2of3, 322
index_set_2of4, 322
index_set_2of5, 322
index_set_2of6, 322
index_set_3of3, 322
index_set_3of4, 322
index_set_3of5, 322
index_set_3of6, 322
index_set_4of4, 322
index_set_4of5, 322
index_set_4of6, 323
index_set_5of5, 323
index_set_5of6, 323
index_set_6of6, 323
index_sets_agree, 323
int2float, 332, 333
is_fixed, 337, 338
join, 335
lb, 338
lb_array, 338, 339
length, 323
ln, 301
log, 302
log10, 302
log2, 302
lognormal, 344
max, 298, 299, 310
min, 299, 300, 310
mzn_compiler_version, 345
mzn_version_to_string, 346
normal, 344
outputJSON, 335
outputJSONParameters, 335
poisson, 344
pow, 300
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product, 300
redundant_constraint, 345
reverse, 323, 324
round, 333
row, 324
set2array, 333
set_to_ranges, 310, 311
show, 335
show2d, 335
show3d, 336
show_float, 336
show_int, 336
showJSON, 336
sin, 304
sinh, 304
slice_1d, 324, 325
slice_2d, 325
slice_3d, 325, 326
slice_4d, 326, 327
slice_5d, 327, 328
slice_6d, 328, 329
sort, 330
sort_by, 330, 331
sqrt, 300
string_length, 336
sum, 301
symmetry_breaking_constraint, 345
tan, 304
tanh, 304
tdistribution, 344
to_enum, 342
trace, 341
trace_stdout, 341
ub, 339
ub_array, 339, 340
uniform, 345
weibull, 345
xorall, 307

C
card

Builtins, 310
cauchy

Builtins, 343
ceil

Builtins, 332
chisquared

Builtins, 343
circuit

Global constraints, 393
circuit_cost

Additional declarations for Gecode, 400
circuit_cost_array

Additional declarations for Gecode, 400
clause

Builtins, 306
coercion

automatic, 56
bool2int, 56
int2float, 56

col
Builtins, 320

command line option
- –input-from-stdin, 141
–MIPDMaxDensEE <n>, 141
–MIPDMaxIntvEE <n>, 141
–allow-multiple-assignments, 142
–compile-solution-checker

<file>.mzc.mzn, 142
–compiler-statistics, 140
–config-dirs, 140
–error-msg, 144
–fzn <file>, –output-fzn-to-file <file>,

142
–help <id>, 140
–help, -h, 139
–ignore-stdlib, 141
–instance-check-only, 141
–keep-paths, 143
–model-interface-only, 141
–model-types-only, 141
–no-flush-output, 144
–no-optimize, 141
–no-output-comments, 144
–no-output-ozn, -O-, 142
–non-unique, 144
–only-range-domains, 142
–output-base <name>, 142
–output-mode <item|dzn|json>, 143
–output-non-canonical <file>, 144
–output-objective, 143
–output-ozn-to-stdout, 143
–output-paths, 143
–output-paths-to-file <file>, 143
–output-paths-to-stdout, 143
–output-raw <file>, 144
–output-time, 144
–output-to-stdout, –output-fzn-to-stdout,

143
–ozn-file <file>, 143
–pre-passes <n>, 142
–sac, 142
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–search-complete-msg <msg>, 144
–shave, 142
–soln-comma <s>, –solution-comma

<s>, 143
–soln-sep <s>, –soln-separator <s>, –

solution-separator <s>, 143
–solver <id>, –solver <solver configura-

tion file>.msc, 140
–solver-statistics, 140
–solvers, 140
–solvers-json, 140
–stdlib-dir <dir>, 141
–two-pass, 142
–unbounded-msg, 143
–unknown-msg, 144
–unsat-msg (–unsatisfiable-msg), 143
–unsatorunbnd-msg, 143
–use-gecode, 142
–verbose-compilation, 140
–verbose-solving, 141
–version, 139
-D <data>, –cmdline-data <data>, 141
-D fMIPdomains=false|hyperpage, 141
-G –globals-dir –mzn-globals-dir <dir>,

141
-I –search-dir, 141
-O, –ozn, –output-ozn-to-file <file>, 142
-O<n>, 142
-Werror, 143
-a, 419
-a, –all-solutions, 140
-c, –canonicalize, 144
-c, –compile, 140
-d <file>, –data <file>, 141
-e, –model-check-only, 141
-f, 419
-f, –free-search, 140
-i <n>, –ignore-lines <n>, –ignore-

leading-lines <n>, 143
-n <i>, 419
-n <i>, –num-solutions <i>, 140
-o <file>, –output-to-file <file>, 143
-p <i>, 419
-p <i>, –parallel <i>, 141
-r <i>, 419
-r <i>, –random-seed <i>, 141
-s, 419
-s, –statistics, 140
-t <ms>, 419
-v, 419
-v, -l, –verbose, 140

Compiler options
mzn_check_only_range_domains, 289
mzn_min_version_required, 289
mzn_opt_only_range_domains, 289

complete
Annotations, 272

comprehension, 79
generator, 42
list, 44
set, 42

concat
Builtins, 333

connected
Global constraints, 379

constraint, 23
complex, 50
higher order, 55
local, 76
redundant, 100
set, 56

constraint_name
Annotations, 268

context, 75
mixed, 77
negative, 75, 77

cos
Builtins, 303

cosh
Builtins, 303

cost_mdd
Global constraints, 388

cost_regular
Global constraints, 388

count
Builtins, 298

count_eq, 362
cumulative, 61

Global constraints, 375, 376

D
d_weighted_spanning_tree

Global constraints, 379
dag

Global constraints, 380
data file, 26

command line, 28
dconnected

Global constraints, 380
decision variable, see variable
decreasing

Global constraints, 369, 370
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defines_var
Annotations, 268

deopt
Option type support, 277, 281, 286, 288

DFA, 65
diffn

Global constraints, 372
diffn_k

Global constraints, 372
diffn_nonstrict

Global constraints, 373
diffn_nonstrict_k

Global constraints, 373
discrete_distribution

Builtins, 343
disjoint

Global constraints, 393
disjunctive

Global constraints, 376
disjunctive_strict

Global constraints, 376
distribute

Global constraints, 363
div, 26
doc_comment

Annotations, 269
dom

Builtins, 336
dom_array

Builtins, 336
dom_bounds_array

Builtins, 337
dom_size

Builtins, 337
dom_w_deg, 90

Annotations, 270
domain, 23

Annotations, 270
reflection, 77, 78

domain_change_constraint
Annotations, 267

dpath
Global constraints, 381

dreachable
Global constraints, 381, 382

dsteiner
Global constraints, 382

dtree
Global constraints, 383

E
element

Option type support, 277, 278, 281, 282,
286

enum_next
Builtins, 341, 342

enum_prev
Builtins, 342

enumerated type, 40, 41
enumerated types, 32
exactly

Global constraints, 363, 392
exists, 43

Builtins, 306
Option type support, 278

exp
Builtins, 301

exponential
Builtins, 343

expression, 91
arithmetic, 26
assert, 70
Boolean, 51, 69
conditional, 46
generator call, 43
let, 77

expression_name
Annotations, 269

F
false, 51
fdistribution

Builtins, 343
file_path

Builtins, 333
first_fail, 90

Annotations, 270
fix, 60

Builtins, 337
fixed, 32, 42, 60
FlatZinc builtins

array_bool_and, 349
array_bool_element, 349
array_bool_or, 349
array_bool_xor, 349
array_float_element, 353
array_float_maximum, 354, 359
array_float_minimum, 354, 359
array_int_element, 346
array_int_maximum, 346, 359
array_int_minimum, 346, 359
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array_set_element, 351
array_var_bool_element, 349
array_var_bool_element_nonshifted, 359
array_var_float_element, 354
array_var_float_element_nonshifted, 359
array_var_int_element, 346
array_var_int_element_nonshifted, 360
array_var_set_element, 351
array_var_set_element_nonshifted, 360
bool2int, 349
bool_and, 349
bool_clause, 350
bool_clause_reif, 359
bool_eq, 350
bool_eq_reif, 350
bool_le, 350
bool_le_reif, 350
bool_lin_eq, 350
bool_lin_le, 350
bool_lt, 350
bool_lt_reif, 350
bool_not, 350
bool_or, 351
bool_xor, 351
float_abs, 354
float_acos, 354
float_acosh, 354
float_asin, 354
float_asinh, 354
float_atan, 354
float_atanh, 354
float_cos, 354
float_cosh, 355
float_div, 355
float_dom, 355, 360
float_eq, 355
float_eq_reif, 355
float_exp, 355
float_in, 355, 360
float_in_reif, 355
float_le, 355
float_le_reif, 355
float_lin_eq, 356
float_lin_eq_reif, 356
float_lin_le, 356
float_lin_le_reif, 356
float_lin_lt, 356
float_lin_lt_reif, 356
float_lin_ne, 356
float_lin_ne_reif, 357
float_ln, 357

float_log10, 357
float_log2, 357
float_lt, 357
float_lt_reif, 357
float_max, 357
float_min, 357
float_ne, 357
float_ne_reif, 357
float_plus, 358
float_pow, 358
float_sin, 358
float_sinh, 358
float_sqrt, 358
float_tan, 358
float_tanh, 358
float_times, 358
int2float, 358
int_abs, 346
int_div, 346
int_eq, 346
int_eq_reif, 347
int_le, 347
int_le_reif, 347
int_lin_eq, 347
int_lin_eq_reif, 347
int_lin_le, 347
int_lin_le_reif, 347
int_lin_ne, 347
int_lin_ne_reif, 348
int_lt, 348
int_lt_reif, 348
int_max, 348
int_min, 348
int_mod, 348
int_ne, 348
int_ne_reif, 348
int_plus, 348
int_pow, 348
int_pow_fixed, 349
int_times, 349
max, 360
min, 361
set_card, 351
set_diff, 351
set_eq, 351
set_eq_reif, 351
set_in, 352
set_in_reif, 352
set_intersect, 352
set_le, 352
set_le_reif, 352
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set_lt, 352
set_lt_reif, 352
set_ne, 353
set_ne_reif, 353
set_subset, 353
set_subset_reif, 353
set_superset, 353
set_symdiff, 353
set_union, 353

float_abs
FlatZinc builtins, 354

float_acos
FlatZinc builtins, 354

float_acosh
FlatZinc builtins, 354

float_asin
FlatZinc builtins, 354

float_asinh
FlatZinc builtins, 354

float_atan
FlatZinc builtins, 354

float_atanh
FlatZinc builtins, 354

float_cos
FlatZinc builtins, 354

float_cosh
FlatZinc builtins, 355

float_default_search
Additional declarations for Gecode, 398

float_div
FlatZinc builtins, 355

float_dom
FlatZinc builtins, 355, 360

float_eq
FlatZinc builtins, 355
Option type support, 287

float_eq_reif
FlatZinc builtins, 355

float_exp
FlatZinc builtins, 355

float_in
FlatZinc builtins, 355, 360

float_in_reif
FlatZinc builtins, 355

float_le
FlatZinc builtins, 355

float_le_reif
FlatZinc builtins, 355

float_lin_eq
FlatZinc builtins, 356

float_lin_eq_reif

FlatZinc builtins, 356
float_lin_le

FlatZinc builtins, 356
float_lin_le_reif

FlatZinc builtins, 356
float_lin_lt

FlatZinc builtins, 356
float_lin_lt_reif

FlatZinc builtins, 356
float_lin_ne

FlatZinc builtins, 356
float_lin_ne_reif

FlatZinc builtins, 357
float_ln

FlatZinc builtins, 357
float_log10

FlatZinc builtins, 357
float_log2

FlatZinc builtins, 357
float_lt

FlatZinc builtins, 357
float_lt_reif

FlatZinc builtins, 357
float_max

FlatZinc builtins, 357
float_min

FlatZinc builtins, 357
float_ne

FlatZinc builtins, 357
Option type support, 287

float_ne_reif
FlatZinc builtins, 357

float_plus
FlatZinc builtins, 358

float_pow
FlatZinc builtins, 358

float_search
Annotations, 273, 274
Option type support, 287

float_sin
FlatZinc builtins, 358

float_sinh
FlatZinc builtins, 358

float_sqrt
FlatZinc builtins, 358

float_tan
FlatZinc builtins, 358

float_tanh
FlatZinc builtins, 358

float_times
FlatZinc builtins, 358
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floor
Builtins, 332

forall, 42, 43
Builtins, 307
Option type support, 278

format
Builtins, 333–335

format_justify_string
Builtins, 335

function, 60, 74, 75
definition, 70, 72

G
gamma

Builtins, 344
gecode_array_set_element_intersect

Additional declarations for Gecode, 400
gecode_array_set_element_intersect_in

Additional declarations for Gecode, 400
gecode_array_set_element_partition

Additional declarations for Gecode, 400
generator, 98
generator call, 43
geost

Global constraints, 373
geost_bb

Global constraints, 373
geost_nonoverlap_k

Global constraints, 374
geost_smallest_bb

Global constraints, 374
global constraint, 61

alldifferent, 61
cumulative, 61
disjunctive, 73
regular, 65
table, 63

Global constraints
all_different, 364
all_disjoint, 365
all_equal, 365
alldifferent_except_0, 365
alternative, 375
among, 361
arg_max, 392, 393
arg_min, 393
arg_sort, 369
at_least, 361, 392
at_most, 361, 392
at_most1, 361
bin_packing, 371

bin_packing_capa, 372
bin_packing_load, 372
bounded_dpath, 377, 378
bounded_path, 378, 379
circuit, 393
connected, 379
cost_mdd, 388
cost_regular, 388
cumulative, 375, 376
d_weighted_spanning_tree, 379
dag, 380
dconnected, 380
decreasing, 369, 370
diffn, 372
diffn_k, 372
diffn_nonstrict, 373
diffn_nonstrict_k, 373
disjoint, 393
disjunctive, 376
disjunctive_strict, 376
distribute, 363
dpath, 381
dreachable, 381, 382
dsteiner, 382
dtree, 383
exactly, 363, 392
geost, 373
geost_bb, 373
geost_nonoverlap_k, 374
geost_smallest_bb, 374
global_cardinality, 363
global_cardinality_closed, 364
global_cardinality_low_up, 364
global_cardinality_low_up_closed, 364
increasing, 370
int_set_channel, 370
inverse, 370, 371
inverse_in_range, 371
inverse_set, 371
knapsack, 375
lex2, 365
lex_greater, 365, 366
lex_greatereq, 366
lex_less, 367
lex_lesseq, 367
link_set_to_booleans, 371
maximum, 393
maximum_arg, 393, 394
mdd, 389
mdd_nondet, 389
member, 394
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minimum, 394
minimum_arg, 395
network_flow, 395
network_flow_cost, 395
neural_net, 392
nvalue, 365
partition_set, 396
path, 384
piecewise_linear, 396
range, 396
reachable, 384, 385
regular, 390
regular_nfa, 391
roots, 396
seq_precede_chain, 368
sliding_sum, 397
sort, 370
span, 377
steiner, 385
strict_lex2, 368
subcircuit, 397
subgraph, 386
sum_pred, 397
sum_set, 397
symmetric_all_different, 365
table, 391
tree, 387
value_precede, 368
value_precede_chain, 368
weighted_spanning_tree, 387

global_cardinality
Global constraints, 363

global_cardinality_closed
Global constraints, 364

global_cardinality_low_up
Global constraints, 364

global_cardinality_low_up_closed
Global constraints, 364

H
has_bounds

Builtins, 337
has_element

Builtins, 320, 321
has_index

Builtins, 321
has_ub_set

Builtins, 337
I
if_then_else

Builtins, 311–313

if_then_else_partiality
Builtins, 313

iffall, 43
Builtins, 307

impact
Annotations, 270

implied_constraint
Builtins, 345

increasing
Global constraints, 370

index_set
Builtins, 321

index_set_1of2
Builtins, 321

index_set_1of3
Builtins, 321

index_set_1of4
Builtins, 321

index_set_1of5
Builtins, 321

index_set_1of6
Builtins, 321

index_set_2of2
Builtins, 321

index_set_2of3
Builtins, 322

index_set_2of4
Builtins, 322

index_set_2of5
Builtins, 322

index_set_2of6
Builtins, 322

index_set_3of3
Builtins, 322

index_set_3of4
Builtins, 322

index_set_3of5
Builtins, 322

index_set_3of6
Builtins, 322

index_set_4of4
Builtins, 322

index_set_4of5
Builtins, 322

index_set_4of6
Builtins, 323

index_set_5of5
Builtins, 323

index_set_5of6
Builtins, 323

index_set_6of6
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Builtins, 323
index_sets_agree

Builtins, 323
indomain

Annotations, 271
indomain_interval

Annotations, 271
indomain_max

Annotations, 271
indomain_median, 90

Annotations, 271
indomain_middle

Annotations, 271
indomain_min, 90

Annotations, 271
indomain_random, 90

Annotations, 271
indomain_reverse_split

Annotations, 272
indomain_split, 90

Annotations, 272
indomain_split_random

Annotations, 272
input_order, 90

Annotations, 270
int2float

Builtins, 332, 333
FlatZinc builtins, 358
Option type support, 282

int_abs
FlatZinc builtins, 346

int_default_search
Additional declarations for Gecode, 399

int_div
FlatZinc builtins, 346

int_eq
FlatZinc builtins, 346
Option type support, 282

int_eq_reif
FlatZinc builtins, 347

int_le
FlatZinc builtins, 347

int_le_reif
FlatZinc builtins, 347

int_lin_eq
FlatZinc builtins, 347

int_lin_eq_reif
FlatZinc builtins, 347

int_lin_le
FlatZinc builtins, 347

int_lin_le_reif

FlatZinc builtins, 347
int_lin_ne

FlatZinc builtins, 347
int_lin_ne_reif

FlatZinc builtins, 348
int_lt

FlatZinc builtins, 348
int_lt_reif

FlatZinc builtins, 348
int_max

FlatZinc builtins, 348
int_min

FlatZinc builtins, 348
int_mod

FlatZinc builtins, 348
int_ne

FlatZinc builtins, 348
Option type support, 282

int_ne_reif
FlatZinc builtins, 348

int_plus
FlatZinc builtins, 348

int_pow
FlatZinc builtins, 348

int_pow_fixed
FlatZinc builtins, 349

int_search, 90
Annotations, 274
Option type support, 282

int_set_channel
Global constraints, 370

int_times
FlatZinc builtins, 349

integer, 22
inverse

Global constraints, 370, 371
inverse_in_range

Global constraints, 371
inverse_set

Global constraints, 371
is_defined_var

Annotations, 267
is_fixed

Builtins, 337, 338
is_reverse_map

Annotations, 267
item, 31

annotation, 33, 91
assignment, 32
constraint, 32
enum, 33
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include, 31
output, 33
predicate, 33
solve, 32
variable declaration, 32

J
join

Builtins, 335

K
knapsack

Global constraints, 375

L
largest

Annotations, 270
largest_smallest

Additional declarations for Chuffed, 401
lb

Builtins, 338
lb_array

Builtins, 338, 339
length

Builtins, 323
let, 73
lex2

Global constraints, 365
lex_greater

Global constraints, 365, 366
lex_greatereq

Global constraints, 366
lex_less

Global constraints, 367
lex_lesseq

Global constraints, 367
link_set_to_booleans

Global constraints, 371
list, 40
ln

Builtins, 301
log

Builtins, 302
log10

Builtins, 302
log2

Builtins, 302
lognormal

Builtins, 344

M
max, 43

Builtins, 298, 299, 310
FlatZinc builtins, 360
Option type support, 282, 287

max_regret
Annotations, 270

maximize, 26
maximum

Global constraints, 393
maximum_arg

Global constraints, 393, 394
maybe_partial

Annotations, 267
mdd

Global constraints, 389
mdd_nondet

Global constraints, 389
member

Global constraints, 394
min, 43

Builtins, 299, 300, 310
FlatZinc builtins, 361
Option type support, 282, 287

minimize, 26
minimum

Global constraints, 394
minimum_arg

Global constraints, 395
minizinc -c, 119
mod, 26
most_constrained

Annotations, 270
mzn_break_here

Annotations, 268
mzn_check_enum_var

Annotations, 269
mzn_check_only_range_domains

Compiler options, 289
mzn_check_var

Annotations, 268
mzn_compiler_version

Builtins, 345
mzn_constraint_name

Annotations, 269
mzn_deprecated

Annotations, 269
mzn_expression_name

Annotations, 269
mzn_min_version_required

Compiler options, 289
mzn_opt_only_range_domains

Compiler options, 289
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mzn_path
Annotations, 269

mzn_rhs_from_assignment
Annotations, 268

mzn_version_to_string
Builtins, 346

N
network_flow

Global constraints, 395
network_flow_cost

Global constraints, 395
neural_net

Global constraints, 392
NFA, 68
normal

Builtins, 344
nvalue

Global constraints, 365
O
objective, 26, 74
occurrence

Annotations, 271
occurs

Option type support, 278, 282, 287–289
operator

Boolean, 51
integer, 26
relational, 24
set, 38

optimization, 26
option type, 42
Option type support

’*’, 278, 283
’+’, 278, 279, 284
’-’, 279, 284
’/’, 284
’>’, 280, 285
’>=’, 280, 285
’<’, 279, 284, 285
’<=’, 279, 285
’div’, 280
’mod’, 280, 281
’not’, 276
~*, 283, 288
~+, 283, 288
~-, 283, 288
~=, 283, 288
absent, 276, 281, 286, 288
bool2float, 286
bool2int, 281

bool_eq, 276, 277
bool_search, 277
deopt, 277, 281, 286, 288
element, 277, 278, 281, 282, 286
exists, 278
float_eq, 287
float_ne, 287
float_search, 287
forall, 278
int2float, 282
int_eq, 282
int_ne, 282
int_search, 282
max, 282, 287
min, 282, 287
occurs, 278, 282, 287–289
product, 283, 287
sum, 283, 287, 288

option types, 81
outdomain_max

Annotations, 272
outdomain_median

Annotations, 272
outdomain_min

Annotations, 272
outdomain_random

Annotations, 272
output, 24, 48
output_array

Annotations, 269
output_only, 103

Annotations, 268
output_var

Annotations, 268
outputJSON

Builtins, 335
outputJSONParameters

Builtins, 335

P
parameter, 22, 73, 91
partition_set

Global constraints, 396
path

Global constraints, 384
piecewise_linear

Global constraints, 396
poisson

Builtins, 344
pow

Builtins, 300
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predicate, 60, 74, 75
definition, 68, 70, 73

priority_search
Additional declarations for Chuffed, 401

product, 43
Builtins, 300
Option type support, 283, 287

promise_total
Annotations, 268

R
random

Additional declarations for Gecode, 398
random_order

Additional declarations for Chuffed, 401
range, 32, 38, 65

float, 32
Global constraints, 396
integer, 32

reachable
Global constraints, 384, 385

redundant_constraint
Builtins, 345

regular, 65
Global constraints, 390

regular_nfa
Global constraints, 391

reification, 126
relax_and_reconstruct

Additional declarations for Gecode, 399
restart_constant, 93

Annotations, 273
restart_geometric, 93

Annotations, 273
restart_linear, 93

Annotations, 273
restart_luby, 93

Annotations, 273
restart_none, 93

Annotations, 272
reverse

Builtins, 323, 324
roots

Global constraints, 396
round

Builtins, 333
row

Builtins, 324
runtime flag

–all-solutions, 48
-a, 48

S
satisfaction, 24
scope, 79
search, 85

annotation, 89
constrain choice, 90
depth first, 85
finite domain, 85
restart, 92
sequential, 90
variable choice, 90

seq_precede_chain
Global constraints, 368

seq_search, 90
Annotations, 274

set, 38
set2array

Builtins, 333
set_card

FlatZinc builtins, 351
set_default_search

Additional declarations for Gecode, 399
set_diff

FlatZinc builtins, 351
set_eq

FlatZinc builtins, 351
set_eq_reif

FlatZinc builtins, 351
set_in

FlatZinc builtins, 352
set_in_reif

FlatZinc builtins, 352
set_intersect

FlatZinc builtins, 352
set_le

FlatZinc builtins, 352
set_le_reif

FlatZinc builtins, 352
set_lt

FlatZinc builtins, 352
set_lt_reif

FlatZinc builtins, 352
set_ne

FlatZinc builtins, 353
set_ne_reif

FlatZinc builtins, 353
set_search, 90

Annotations, 274, 275
set_subset

FlatZinc builtins, 353
set_subset_reif
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