Contents

1 Overview 3

1.1 Introduction 5
 1.1.1 Structure ... 5
 1.1.2 How to Read This .. 6

1.2 Installation 7
 1.2.1 Microsoft Windows .. 7
 1.2.2 Linux ... 8
 1.2.2.1 Snap .. 8
 1.2.2.2 AppImage .. 8
 1.2.2.3 Archive .. 9
 1.2.3 Apple macOS .. 9
 1.2.4 Adding Third-party Solvers 9

1.3 First steps with MiniZinc 11
 1.3.1 The MiniZinc IDE .. 11
 1.3.2 The MiniZinc command line tool 16

2 A MiniZinc Tutorial 19

2.1 Basic Modelling in MiniZinc 21
 2.1.1 Our First Example .. 21
 2.1.2 An Arithmetic Optimisation Example 25
 2.1.3 Datafiles and Assertions .. 26
 2.1.4 Real Number Solving .. 29
 2.1.5 Basic structure of a model 31

2.2 More Complex Models 35
 2.2.1 Arrays and Sets ... 35
 2.2.2 Global Constraints ... 45
 2.2.3 Conditional Expressions .. 46
 2.2.4 Enumerated Types ... 48
 2.2.5 Complex Constraints ... 50
 2.2.6 Set Constraints .. 56
 2.2.7 Putting it all together .. 58

2.3 Predicates and Functions 61
 2.3.1 Global Constraints ... 61
 2.3.1.1 Alldifferent .. 61
 2.3.1.2 Cumulative .. 61
 2.3.1.3 Table ... 63
 2.3.1.4 Regular .. 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Defining Predicates</td>
<td>68</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Defining Functions</td>
<td>70</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Reflection Functions</td>
<td>72</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Local Variables</td>
<td>73</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Context</td>
<td>75</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Local Constraints</td>
<td>76</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Domain Reflection Functions</td>
<td>77</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Scope</td>
<td>79</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Declaring and Using Option Types</td>
<td>81</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Hidden Option Types</td>
<td>82</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Finite Domain Search</td>
<td>85</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Search Annotations</td>
<td>89</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Annotations</td>
<td>91</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Restart</td>
<td>92</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Warm Starts</td>
<td>94</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Variable Bounds</td>
<td>97</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Effective Generators</td>
<td>98</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Redundant Constraints</td>
<td>100</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Modelling Choices</td>
<td>101</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Multiple Modelling and Channels</td>
<td>103</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Symmetry</td>
<td>105</td>
</tr>
<tr>
<td>2.6.6.1</td>
<td>Static Symmetry Breaking</td>
<td>105</td>
</tr>
<tr>
<td>2.6.6.2</td>
<td>Other Examples of Symmetry</td>
<td>107</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Modelling Integers</td>
<td>109</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Modelling Disequality</td>
<td>110</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Modelling Cardinality</td>
<td>111</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Flattening Expressions</td>
<td>119</td>
</tr>
<tr>
<td>2.8.1.1</td>
<td>Simplification and Evaluation</td>
<td>120</td>
</tr>
<tr>
<td>2.8.1.2</td>
<td>Defining Subexpressions</td>
<td>120</td>
</tr>
<tr>
<td>2.8.1.3</td>
<td>FlatZinc constraint form</td>
<td>121</td>
</tr>
<tr>
<td>2.8.1.4</td>
<td>Bounds analysis</td>
<td>121</td>
</tr>
<tr>
<td>2.8.1.5</td>
<td>Objectives</td>
<td>122</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Linear Expressions</td>
<td>122</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Unrolling Expressions</td>
<td>123</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Arrays</td>
<td>124</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Reification</td>
<td>126</td>
</tr>
<tr>
<td>2.8.6</td>
<td>Predicates</td>
<td>129</td>
</tr>
<tr>
<td>2.8.7</td>
<td>Let Expressions</td>
<td>131</td>
</tr>
</tbody>
</table>

3 User Manual | 135 |
| 3.1 The MiniZinc Command Line Tool | 137 |
3.1 Basic Usage

- **3.1.1 Basic Usage**
- **3.1.2 Adding Solvers**
 - **3.1.2.1 Configuration files**
 - **3.1.2.2 Configuration for MIP solvers**
- **3.1.3 Options**
 - **3.1.3.1 General options**
 - **3.1.3.2 Solving options**
 - **3.1.3.3 Flattener input options**
 - Flattener two-pass options
 - Flattener output options
 - **3.1.3.4 Solution output options**
- **3.1.4 User Configuration Files**

3.2 The MiniZinc IDE

- **3.2.1 Editing files**
 - **3.2.1.1 Editing functions**
 - **3.2.1.2 Fonts and dark mode**
- **3.2.2 Configuring and Running a Solver**
 - **3.2.2.1 Running a model**
 - **3.2.2.2 Solver configurations**
 - **3.2.2.3 Automatic Solution Checking**
 - **3.2.2.4 Compiling a model**
- **3.2.3 Working With Projects**
- **3.2.4 Submitting Solutions to Online Courses**
- **3.2.5 Configuration Options**
 - **3.2.5.1 Locating the MiniZinc installation**
 - **3.2.5.2 Adding Third-Party Solvers**
 - Configuring existing solvers
 - Adding new solvers

3.3 Solving Technologies and Solver Backends

- **3.3.1 Constraint Programming Solvers**
 - **3.3.1.1 Gecode**
 - **3.3.1.2 Chuffed**
 - **3.3.1.3 OR-Tools**
- **3.3.2 Mixed-Integer Programming Solvers**
 - **3.3.2.1 MIP-Aware Modeling (But Mostly Useful for All Backends)**
 - **3.3.2.2 Useful Flattening Parameters**
 - **3.3.2.3 Some Solver Options and Changed Default Values**
 - **3.3.2.4 Subtour Elimination Constraints**
 - **3.3.2.5 Unified Domains (MIPdomains)**
 - **3.3.2.6 Indicator Constraints**
 - **3.3.2.7 Pools of User Cuts and Lazy Constraints**
 - **3.3.2.8 Warm Starts**
- **3.3.3 Non-linear Solvers**

3.4 Automatic Solution Checking

- **3.4.1 Basic checker models**
- **3.4.2 Detailed feedback**
- **3.4.3 Instance data in checker models**
- **3.4.4 Checking optimisation problems**
- **3.4.5 Hidden variables**
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2</td>
<td>Option type support</td>
<td>274</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Option type support for Booleans</td>
<td>274</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Option type support for integers</td>
<td>276</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Other declarations</td>
<td>281</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Compiler options</td>
<td>282</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Parameters</td>
<td>282</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Functions and Predicates</td>
<td>282</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Builtins</td>
<td>282</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Comparison Builtins</td>
<td>282</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Arithmetic Builtins</td>
<td>287</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Exponential and logarithmic builtins</td>
<td>294</td>
</tr>
<tr>
<td>4.2.4.4</td>
<td>Trigonometric functions</td>
<td>295</td>
</tr>
<tr>
<td>4.2.4.5</td>
<td>Logical operations</td>
<td>297</td>
</tr>
<tr>
<td>4.2.4.6</td>
<td>Set operations</td>
<td>300</td>
</tr>
<tr>
<td>4.2.4.7</td>
<td>Conditionals</td>
<td>303</td>
</tr>
<tr>
<td>4.2.4.8</td>
<td>Array operations</td>
<td>305</td>
</tr>
<tr>
<td>4.2.4.9</td>
<td>Array sorting operations</td>
<td>321</td>
</tr>
<tr>
<td>4.2.4.10</td>
<td>Coercions</td>
<td>323</td>
</tr>
<tr>
<td>4.2.4.11</td>
<td>String operations</td>
<td>325</td>
</tr>
<tr>
<td>4.2.4.12</td>
<td>Reflection operations</td>
<td>328</td>
</tr>
<tr>
<td>4.2.4.13</td>
<td>Assertions and debugging functions</td>
<td>331</td>
</tr>
<tr>
<td>4.2.4.14</td>
<td>Functions for enums</td>
<td>332</td>
</tr>
<tr>
<td>4.2.4.15</td>
<td>Random Number Generator builtins</td>
<td>333</td>
</tr>
<tr>
<td>4.2.4.16</td>
<td>Special constraints</td>
<td>336</td>
</tr>
<tr>
<td>4.2.4.17</td>
<td>Language information</td>
<td>336</td>
</tr>
<tr>
<td>4.2.5</td>
<td>FlatZinc builtins</td>
<td>337</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Integer FlatZinc builtins</td>
<td>337</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Bool FlatZinc builtins</td>
<td>340</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Set FlatZinc builtins</td>
<td>342</td>
</tr>
<tr>
<td>4.2.5.4</td>
<td>Float FlatZinc builtins</td>
<td>344</td>
</tr>
<tr>
<td>4.2.5.5</td>
<td>FlatZinc builtins added in MiniZinc 2.0.0.</td>
<td>349</td>
</tr>
<tr>
<td>4.2.5.6</td>
<td>FlatZinc builtins added in MiniZinc 2.0.2.</td>
<td>350</td>
</tr>
<tr>
<td>4.2.5.7</td>
<td>FlatZinc builtins added in MiniZinc 2.1.0.</td>
<td>351</td>
</tr>
<tr>
<td>4.2.5.8</td>
<td>FlatZinc builtins added in MiniZinc 2.1.1.</td>
<td>351</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Global constraints</td>
<td>351</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>All-Different and related constraints</td>
<td>352</td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>Lexicographic constraints</td>
<td>352</td>
</tr>
<tr>
<td>4.2.6.3</td>
<td>Sorting constraints</td>
<td>356</td>
</tr>
<tr>
<td>4.2.6.4</td>
<td>Channeling constraints</td>
<td>357</td>
</tr>
<tr>
<td>4.2.6.5</td>
<td>Counting constraints</td>
<td>358</td>
</tr>
<tr>
<td>4.2.6.6</td>
<td>Packing constraints</td>
<td>361</td>
</tr>
<tr>
<td>4.2.6.7</td>
<td>Scheduling constraints</td>
<td>365</td>
</tr>
<tr>
<td>4.2.6.8</td>
<td>Graph constraints</td>
<td>367</td>
</tr>
<tr>
<td>4.2.6.9</td>
<td>Extensional constraints (table, regular etc.)</td>
<td>374</td>
</tr>
<tr>
<td>4.2.6.10</td>
<td>Other declarations</td>
<td>376</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Additional declarations for Gecode</td>
<td>381</td>
</tr>
<tr>
<td>4.2.7.1</td>
<td>Additional Gecode search annotations</td>
<td>381</td>
</tr>
<tr>
<td>4.2.7.2</td>
<td>Additional Gecode constraints</td>
<td>383</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Additional declarations for Chuffed</td>
<td>384</td>
</tr>
</tbody>
</table>
MiniZinc is a free and open-source constraint modeling language. You can use MiniZinc to model constraint satisfaction and optimization problems in a high-level, solver-independent way, taking advantage of a large library of pre-defined constraints.

This handbook consists of four parts: Section 1 covers installation and basic steps; Section 2 is a tutorial-style introduction into modelling with MiniZinc; Section 3 is a user manual for the individual tools in the MiniZinc tool chain; and Section 4 is a reference to the language.

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License\(^5\). This means that you are free to copy and redistribute the material in any medium or format for any purpose, even commercially. However, you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. If you remix, transform, or build upon the material, you may not distribute the modified material.

\(^5\) http://creativecommons.org/licenses/by-nd/4.0/
Part 1

Overview
CHAPTER 1.1

Introduction

MiniZinc is a language for specifying constrained optimization and decision problems over integers and real numbers. A MiniZinc model does not dictate how to solve the problem - the MiniZinc compiler can translate it into different forms suitable for a wide range of solvers, such as Constraint Programming (CP), Mixed Integer Linear Programming (MIP) or Boolean Satisfiability (SAT) solvers.

The MiniZinc language lets users write models in a way that is close to a mathematical formulation of the problem, using familiar notation such as existential and universal quantifiers, sums over index sets, or logical connectives like implications and if-then-else statements. Furthermore, MiniZinc supports defining predicates and functions that let users structure their models (similar to procedures and functions in regular programming languages).

MiniZinc models are usually parametric, i.e., they describe a whole class of problems rather than an individual problem instance. That way, a model of, say, a vehicle routing problem could be reused to generate weekly plans, by instantiating it with the updated customer demands for the upcoming week.

MiniZinc is designed to interface easily to different backend solvers. It does this by transforming an input MiniZinc model and data file into a FlatZinc model. FlatZinc models consist of variable declarations and constraint definitions as well as a definition of the objective function if the problem is an optimization problem. The translation from MiniZinc to FlatZinc makes use of a library of function and predicate definitions for the particular target solver, which allows the MiniZinc compiler to produce specialised FlatZinc that only contains the types of variables and constraints that are supported by the target. In particular, MiniZinc allows the specification of global constraints by decomposition. Furthermore, annotations of the model let the user fine tune the behaviour of the solver, independent of the declarative meaning of the model.

1.1.1 Structure

This documentation consists of four parts. The first part (page 5) includes this introduction and then describes how to download and install MiniZinc and how to make your first steps using the MiniZinc IDE and the command line tools. The second part (page 21) is a tutorial
introduction to modelling with MiniZinc, from basic syntax and simple modelling techniques to more advanced topics. It also explains how MiniZinc is compiled to FlatZinc. The third part (page 137) is a user manual for the tools that make up the MiniZinc tool chain. Finally, The fourth part (page 209) contains the reference documentation for MiniZinc, including a definition of the MiniZinc language, documentation on how to interface a solver to FlatZinc, and an annotated list of all predicates and functions in the MiniZinc standard library.

1.1.2 How to Read This

If you are new to MiniZinc, follow the installation instructions and the introduction to the IDE and then work your way through the tutorial. Most example code can be downloaded, but it is sometimes more useful to type it in yourself to get the language into your muscle memory! If you need help, visit the MiniZinc website at http://www.minizinc.org where you find a discussion forum.

Some of the code examples are shown in boxes like the one below. If a code box has a heading, it usually lists the name of a file that can be downloaded from http://minizinc.org/doc-latest/en/downloads/index.html.

```
% Just an example
var int: x;
solve satisfy;
```

Throughout the documentation, some concepts are defined slightly more formally in special sections like this one.

More details

These sections can be skipped over if you just want to work through the tutorial for the first time, but they contain important information for any serious MiniZinc user!

Finally, if you find a mistake in this documentation, please report it through our GitHub issue tracker at https://github.com/minizinc/minizinc-doc/issues.
A complete installation of the MiniZinc system comprises the MiniZinc compiler tool chain, one or more solvers, and (optionally) the MiniZinc IDE.

The easiest way to get a full, working MiniZinc system is to use the bundled binary packages, available from http://www.minizinc.org/software.html.

The bundled binary packages contain the compiler and IDE, as well as the following solvers: Gecode, Chuffed, COIN-OR CBC, and an interface to the Gurobi and CPLEX solvers (the Gurobi and CPLEX libraries are not included).

Alternatively, it is possible to compile all components from source code, as described in *Installation from Source Code* (page 197).

1.2.1 Microsoft Windows

To install the bundled binary packages, simply download the installer, double-click to execute it, and follow the prompts. **Note:** 32 bit Windows installations are no longer supported in the bundled binary packages.

After installation is complete, you can find the MiniZinc IDE installed as a Windows application. The file extensions .mzn, .dzn and .fzn are linked to the IDE, so double-clicking any MiniZinc file should open it in the IDE.

If you want to use MiniZinc from a command prompt, you need to add the installation directory to the PATH environment variable. In a Windows command prompt you could use the following command:

```
C:\>setx PATH "%PATH%;C:\Program Files\MiniZinc 2.3.1 (bundled)\"
```
1.2.2 Linux

The MiniZinc bundled binary distribution for Linux is provided using three different distribution methods: Snap, AppImage, and an archive containing all necessary files. The capabilities of each package is the same, but it depends on your Linux distribution which method is the easiest to use. Note: Linux bundles are compiled to be compatible with many Linux distributions using an x86_64 architecture, but some dependencies on low level libraries cannot be avoided. Make use of the MiniZinc issue trackers if you encounter any problems.

1.2.2.1 Snap

The MiniZinc Snap is the easiest way to install the MiniZinc bundle if Snap (https://snapcraft.io/) is available on your system. The installation will provide the minizinc command within terminal environments and will add an application entry for the MiniZinc IDE. The IDE can be started from the command line using minizinc.ide. The following command will commence the installation of the MiniZinc snap:

```bash
$ snap install minizinc --classic
```

Note: the MiniZinc snap requires the classic permission model to access solvers that are installed somewhere else on your system.

An advantage of using the MiniZinc snap is that it will be automatically updated whenever a new version of the snap is available. Using snap channels it is also possible to automatically follow the developmental versions of MiniZinc. More information about the MiniZinc snap can be found in the Snap Store.

1.2.2.2 AppImage

The MiniZinc AppImage provides a way of installing the MiniZinc bundles without any added requirements. AppImages (https://appimage.org/) provide self-contained versions of applications with all their required dependencies. To use the MiniZinc AppImage you simply download the AppImage, make it executable, and run:

```bash
$ chmod +x MiniZincIDE-2.3.1-x86_64.AppImage
$ ./MiniZincIDE-2.3.1-x86_64.AppImage
```

AppImages have no standard integration with the desktop environment. A script has been added to the MiniZinc AppImage to integrate the application into both the terminal and the desktop environment. The one requirement for this script is that the AppImage CANNOT be moved after the install script has been run. A suggestion would be to store the AppImages in ~/Applications/ or /opt/Applications/. The following commands move the AppImage to the second location and install minizinc and MiniZincIDE to /usr/local/bin and will add a desktop entry and its corresponding icon to $HOME/.local/share/applications,icons:

```bash
$ mv ./MiniZincIDE-2.3.1-x86_64.AppImage /opt/Applications/
$ /opt/Applications/MiniZincIDE-2.3.1-x86_64.AppImage install
```

Note: to change the installation locations can be changed using the environmental variables $BIN_LOCATION and $DESKTOP_LOCATION. The default behaviour can be achieved using the following command:
1.2.2.3 Archive

The MiniZinc archive bundle is straightforward, but doesn’t offer any automatic integrations with the desktop environment. After downloading, uncompress the archive, for example in your home directory or any other location where you want to install it:

$ tar xf MiniZincIDE-2.3.1-bundle-linux-x86_64.tgz

This will unpack MiniZinc into a directory that is called the same as the archive file (without the .tgz). You can start the MiniZinc IDE using the MiniZincIDE.sh shell script, which sets up a number of paths and environment variables.

In order to use the command line tools, after unpacking, make the following changes to some environment variables (assuming a bash-like shell):

$ export PATH=MiniZincIDE-2.3.1-bundle-linux-x86_64/bin:$PATH
$ export LD_LIBRARY_PATH=MiniZincIDE-2.3.1-bundle-linux-x86_64/lib:$LD_LIBRARY_PATH
$ export QT_PLUGIN_PATH=MiniZincIDE-2.3.1-bundle-linux-x86_64/plugins:$QT_PLUGIN_PATH

1.2.3 Apple macOS

The macOS bundled binary distribution works with any version of OS X starting from 10.9. After downloading the disk image (.dmg) file, double click it if it doesn't open automatically. You will see an icon for the MiniZinc IDE that you can drag into your Applications folder (or anywhere else you want to install MiniZinc).

In order to use the MiniZinc tools from a terminal, you need to add the path to the MiniZinc installation to the PATH environment variable. If you installed the MiniZinc IDE in the standard Applications folder, the following command will add the correct path:

$ export PATH=/Applications/MiniZincIDE.app/Contents/Resources:$PATH

1.2.4 Adding Third-party Solvers

Third party solvers for MiniZinc typically consist of two parts: a solver executable, and a solver-specific MiniZinc library. MiniZinc must be aware of the location of both the executable and the library in order to compile and run a model with that solver. Each solver therefore needs to provide a configuration file in a location where the MiniZinc toolchain can find it.

The easiest way to add a solver to the MiniZinc system is via the MiniZinc IDE. This is explained in Section 3.2.5.2. You can also add configuration files manually, as explained in Section 4.3.5.
First steps with MiniZinc

We recommend using the bundled binary distribution of MiniZinc introduced in Section 1.2. It contains the MiniZinc IDE, the MiniZinc compiler, and several pre-configured solvers so you can get started straight away.

This section introduces the MiniZinc IDE and the command line tool minizinc using some very basic examples. This should be enough to get you started with the MiniZinc tutorial in Section 2 (in fact, you only need to be able to use one of the two, for instance just stick to the IDE if you are not comfortable with command line tools, or just use the minizinc command if you suffer from fear of mice).

1.3.1 The MiniZinc IDE

The MiniZinc IDE provides a simple interface to most of MiniZinc's functionality. It lets you edit model and data files, solve them with any of the solvers supported by MiniZinc, run debugging and profiling tools, and submit solutions to online courses (such as the MiniZinc Coursera courses).

When you open the MiniZinc IDE for the first time, it will ask you whether you want to be notified when an update is available. If you installed the IDE from sources, it may next ask you to locate your installation of the MiniZinc compiler. Please refer to Section 3.2.5 for more details on this.

The IDE will then greet you with the MiniZinc Playground, a window that will look like this:
You can start writing your first MiniZinc model! Let’s try something very simple:

```mini
1 % Use this editor as a MiniZinc scratch book
2 var 1..3: x;
3 var 1..3: y;
4 constraint x+y > 2;
5 solve satisfy;
```

In order to solve the model, you click on the Run button in the toolbar, or use the keyboard shortcut Ctrl+R (or command+R on macOS):
As you can see, an output window pops up that displays a solution to the problem you entered. Let us now try a model that requires some additional data.

When you run this model, the IDE will ask you to enter a value for the parameter n:
After entering, for example, the value 4 and clicking Ok, the solver will execute the model for n=4:

```plaintext
% Use this editor as a MiniZinc scratch book
int: n;
var 1..n: x;
var 1..n: y;
constraint x+y > n;
solve satisfy;
```

Running untitled_model.mzn, additional arguments n=4;

```
x = 4;
y = 1;
----------
Finished in 100msec
```

Alternatively, data can also come from a file. Let's create a new file with the data and save it as data.dzn:
When you now go back to the Playground tab and click Run, the IDE will give you the option to select a data file:

Click on the data.dzn entry, then on Ok, and the model will be run with the given data file:
Of course you can save your model to a file, and load it from a file, and the editor supports the usual functionality.

If you want to know more about the MiniZinc IDE, continue reading from Section 3.2.

1.3.2 The MiniZinc command line tool

The MiniZinc command line tool, `minizinc`, combines the functionality of the MiniZinc compiler, different solver interfaces, and the MiniZinc output processor. After installing MiniZinc from the bundled binary distribution, you may have to set up your `PATH` in order to use the command line tool (see Section 1.2).

Let's assume we have a file `model.mzn` with the following contents:

```plaintext
% Use this editor as a MiniZinc scratch book

int: n;
var 1..n: x;
var 1..n: y;
constraint x+y > n;
solve satisfy;
```

You can simply invoke `minizinc` on that file to solve the model and produce some output:

```
$ minizinc model.mzn
x = 3;
y = 1;
-------
$
```
If you have a model that requires a data file (like the one we used in the IDE example above), you pass both files to `minizinc`:

```
$ minizinc model.mzn data.dzn
  x = 5;
  y = 1;
  ----------
$
```

The `minizinc` tool supports numerous command line options. One of the most useful options is `-a`, which switches between `one solution` mode and `all solutions` mode. For example, for the first model above, it would result in the following output:

```
$ minizinc -a model.mzn
  x = 3;
  y = 1;
  ----------
  x = 2;
  y = 2;
  ----------
  x = 3;
  y = 2;
  ----------
  x = 1;
  y = 3;
  ----------
  x = 2;
  y = 3;
  ----------
  x = 3;
  y = 3;
  ----------
  ===========
$
```

To learn more about the `minizinc` command, explore the output of `minizinc --help` or continue reading in Section 3.1.
Part 2

A MiniZinc Tutorial
In this section we introduce the basic structure of a MiniZinc model using two simple examples.

2.1.1 Our First Example

As our first example, imagine that we wish to colour a map of Australia as shown in Fig. 2.1.1. It is made up of seven different states and territories each of which must be given a colour so that adjacent regions have different colours.
We can model this problem very easily in MiniZinc. The model is shown in Listing 2.1.1. The first line in the model is a comment. A comment starts with a % which indicates that the rest of the line is a comment. MiniZinc also has C-style block comments, which start with /* and end with */.

The next part of the model declares the variables in the model. The line

```MiniZinc
int: nc = 3;
```

specifies a parameter in the problem which is the number of colours to be used. Parameters are similar to (constant) variables in most programming languages. They must be declared and given a type. In this case the type is int. They are given a value by an assignment. MiniZinc allows the assignment to be included as part of the declaration (as in the line above) or to be a separate assignment statement. Thus the following is equivalent to the single line above

```MiniZinc
int: nc;
nc = 3;
```

Unlike variables in many programming languages a parameter can only be given a single value, in that sense they are named constants. It is an error for a parameter to occur in more than one assignment.

The basic parameter types are integers (int), floating point numbers (float), Booleans (bool) and strings (string). Arrays and sets are also supported.

MiniZinc models can also contain another kind of variable called a decision variable. Decision
variables are variables in the sense of mathematical or logical variables. Unlike parameters and variables in a standard programming language, the modeller does not need to give them a value. Rather the value of a decision variable is unknown and it is only when the MiniZinc model is executed that the solving system determines if the decision variable can be assigned a value that satisfies the constraints in the model and if so what this is.

In our example model we associate a decision variable with each region, wa, nt, sa, q, nsw, v and t, which stands for the (unknown) colour to be used to fill the region.

For each decision variable we need to give the set of possible values the variable can take. This is called the variable’s domain. This can be given as part of the variable declaration and the type of the decision variable is inferred from the type of the values in the domain.

In MiniZinc decision variables can be Booleans, integers, floating point numbers, or sets. Also supported are arrays whose elements are decision variables. In our MiniZinc model we use integers to model the different colours. Thus each of our decision variables is declared to have the domain \(1..\text{nc}\) which is an integer range expression indicating the set \(\{1, 2, \ldots, \text{nc}\}\) using the \texttt{var} declaration. The type of the values is integer so all of the variables in the model are integer decision variables.

MiniZinc carefully distinguishes between the two kinds of model variables: parameters and decision variables. The kinds of expressions that can be constructed using decision variables are more restricted than those that can be built from parameters. However, in any place that a decision variable can be used, so can a parameter of the same type.

Identifiers

Identifiers, which are used to name parameters and variables, are sequences of lower and uppercase alphabetic characters, digits and the underscore _ character. They must start with an alphabetic character. Thus myName_2 is a valid identifier. MiniZinc keywords are not allowed to be used as identifier names, they are listed in Identifiers (page 213). Neither are MiniZinc operators allowed to be used as identifier names; they are listed in Operators (page 226).

MiniZinc carefully distinguishes between the two kinds of model variables: parameters and decision variables. The kinds of expressions that can be constructed using decision variables are more restricted than those that can be built from parameters. However, in any place that a decision variable can be used, so can a parameter of the same type.

Integer Variable Declarations

An integer parameter variable is declared as either:

\[
\texttt{int : <var-name> \\
<l> .. <u> : <var-name>}
\]

where \(<l>\) and \(<u>\) are fixed integer expressions.

An integer decision variable is declared as either:

\[
\texttt{var int : <var-name> \\
var <l> .. <u> : <var-name>}
\]

where \(<l>\) and \(<u>\) are fixed integer expressions.

Formally the distinction between parameters and decision variables is called the instantiation of the variable. The combination of variable instantiation and type is called a type-inst. As you start to use MiniZinc you will undoubtedly see examples of type-inst errors.

The next component of the model are the constraints. These specify the Boolean expressions
that the decision variables must satisfy to be a valid solution to the model. In this case we have
a number of not equal constraints between the decision variables enforcing that if two states are
adjacent then they must have different colours.

Relational Operators

MiniZinc provides the relational operators:
equal (= or ==), not equal (!=), strictly less than (<), strictly greater than (>), less than or
equal to (<=), and greater than or equal to (>=).

The next line in the model:

solve satisfy;

indicates the kind of problem it is. In this case it is a satisfaction problem: we wish to find a
value for the decision variables that satisfies the constraints but we do not care which one.

The final part of the model is the output statement. This tells MiniZinc what to print when the
model has been run and a solution is found.

Output and Strings

An output statement is followed by a list of strings. These are typically either string literals
which are written between double quotes and use a C like notation for special characters,
or an expression of the form show(e) where e is a MiniZinc expression. In the example \n
represents the newline character and \t a tab.

There are also formatted varieties of show for numbers: show_int(n,X) outputs the value
of integer X in at least |n| characters, right justified if n > 0 and left justified otherwise;
show_float(n,d,X) outputs the value of float X in at least |n| characters, right justified if
n > 0 and left justified otherwise, with .math'd' characters after the decimal point.
String literals must fit on a single line. Longer string literals can be split across multiple
lines using the string concatenation operator ++. For example, the string literal

"Invalid datafile: Amount of flour is non-negative"

is equivalent to the string literal expression

"Invalid datafile: " ++
"Amount of flour is non-negative"

MiniZinc supports interpolated strings. Expressions can be embedded directly in string
literals, where a sub string of the form "\(e)" is replaced by the result of show(e). For example "t=\(t)\n" produces the same string as "t=\n show(t) ++ "\n".

A model can contain multiple output statements. In that case, all outputs are concatenated
in the order they appear in the model.

We can evaluate our model by clicking the Run button in the MiniZinc IDE, or by typing

$ minizinc --solver gecode aust.mzn

where aust.mzn is the name of the file containing our MiniZinc model. We must use the file
extension .mzn to indicate a MiniZinc model. The command minizinc with the option --solver
gecode uses the Gecode finite domain solver to evaluate our model. If you use the MiniZinc binary distribution, this solver is in fact the default, so you can just run `minizinc aust.mzn` instead.

When we run this we obtain the result:

```
wa=3  nt=2  sa=1
q=3   nsw=2  v=3
t=1
----------
```

The line of 10 dashes `----------` is automatically added by the MiniZinc output to indicate a solution has been found.

2.1.2 An Arithmetic Optimisation Example

Our second example is motivated by the need to bake some cakes for a fete at our local school. We know how to make two sorts of cakes (WARNING: please don’t use these recipes at home). A banana cake which takes 250g of self-raising flour, 2 mashed bananas, 75g sugar and 100g of butter, and a chocolate cake which takes 200g of self-raising flour, 75g of cocoa, 150g sugar and 150g of butter. We can sell a chocolate cake for $4.50 and a banana cake for $4.00. And we have 4kg self-raising flour, 6 bananas, 2kg of sugar, 500g of butter and 500g of cocoa. The question is how many of each sort of cake should we bake for the fete to maximise the profit. A possible MiniZinc model is shown in Listing 2.1.2.

Listing 2.1.2: Model for determining how many banana and chocolate cakes to bake for the school fete (`cakes.mzn`)

```
% Baking cakes for the school fete

var 0..100: b; % no. of banana cakes
var 0..100: c; % no. of chocolate cakes

% flour
constraint 250*b + 200*c <= 4000;
% bananas
constraint 2*b  <= 6;
% sugar
constraint 75*b + 150*c <= 2000;
% butter
constraint 100*b + 150*c <= 500;
% cocoa
constraint 75*c <= 500;

% maximize our profit
solve maximize 400*b + 450*c;

output ["no. of banana cakes = \(b)\n",  
        "no. of chocolate cakes = \(c)\n"];```
The first new feature is the use of arithmetic expressions.

### Integer Arithmetic Operators

MiniZinc provides the standard integer arithmetic operators. Addition (+), subtraction (-), multiplication (*), integer division (div) and integer modulus (mod). It also provides + and - as unary operators.

Integer modulus is defined to give a result \( a \mod b \) that has the same sign as the dividend \( a \). Integer division is defined so that \( a = b \left( a \div b \right) + \left( a \mod b \right) \).

MiniZinc provides standard integer functions for absolute value (abs) and power function (pow). For example abs(-4) and pow(2,5) evaluate to 4 and 32 respectively. The syntax for arithmetic literals is reasonably standard. Integer literals can be decimal, hexadecimal or octal. For instance \( 0, 5, 123, 0x1b7, 0o777 \).

The second new feature shown in the example is optimisation. The line

```
solve maximize 400 * b + 450 * c;
```

specifies that we want to find a solution that maximises the expression in the solve statement called the **objective**. The objective can be any kind of arithmetic expression. One can replace the keyword **maximize** by **minimize** to specify a minimisation problem.

When we run this we obtain the result:

```
no. of banana cakes = 2
no. of chocolate cakes = 2

```

The line ========= is output automatically for optimisation problems when the system has proved that a solution is optimal.

### 2.1.3 Datafiles and Assertions

A drawback of this model is that if we wish to solve a similar problem the next time we need to bake cakes for the school (which is often) we need to modify the constraints in the model to reflect the ingredients that we have in the pantry. If we want to reuse the model then we would be better off to make the amount of each ingredient a parameter of the model and then set their values at the top of the model.

Even better would be to set the value of these parameters in a separate **data file**. MiniZinc (like most other modelling languages) allows the use of data files to set the value of parameters declared in the original model. This allows the same model to be easily used with different data by running it with different data files.

Data files must have the file extension .dzn to indicate a MiniZinc data file and a model can be run with any number of data files (though a variable/parameter can only be assigned a value in one file).
Our new model is shown in Listing 2.1.3. We can run it using the command

where the data file pantry.dzn is defined in Listing 2.1.4. This gives the same result as cakes.mzn. The output from running the command

```
$ minizinc cakes2.mzn pantry2.dzn
```

with an alternate data set defined in Listing 2.1.5 is
no. of banana cakes = 3
no. of chocolate cakes = 8

If we remove the output statement from cakes.mzn then MiniZinc will use a default output. In this case the resulting output will be

\[
\begin{align*}
b &= 3; \\
c &= 8;
\end{align*}
\]

Default Output

A MiniZinc model with no output will output a line for each decision variable with its value, unless it is assigned an expression on its declaration. Note how the output is in the form of a correct datafile.

Listing 2.1.4: Example data file for cakes2.mzn (pantry.dzn)

```plaintext
flour = 4000;
banana = 6;
sugar = 2000;
butter = 500;
cocoa = 500;
```

Listing 2.1.5: Example data file for cakes2.mzn (pantry2.dzn)

```plaintext
flour = 8000;
banana = 11;
sugar = 3000;
butter = 1500;
cocoa = 800;
```

Small data files can be entered without directly creating a .dzn file, using the command line flag -D string, where string is the contents of the data file. For example the command

```
$ minizinc cakes2.mzn -D "flour=4000;banana=6;sugar=2000;butter=500;cocoa=500;"
```

will give identical results to

```
$ minizinc cakes2.mzn pantry.dzn
```

Data files can only contain assignment statements for decision variables and parameters in the model(s) for which they are intended.
Defensive programming suggests that we should check that the values in the data file are reasonable. For our example it is sensible to check that the quantity of all ingredients is non-negative and generate a run-time error if this is not true. MiniZinc provides a built-in Boolean operator for checking parameter values. The form is `assert(B, S)`. The Boolean expression B is evaluated and if it is false execution aborts and the string expression S is evaluated and printed as an error message. To check and generate an appropriate error message if the amount of flour is negative we can simply add the line

```plaintext
constraint assert(flour >= 0,"Amount of flour is non-negative");
```

to our model. Notice that the `assert` expression is a Boolean expression and so is regarded as a type of constraint. We can add similar lines to check that the quantity of the other ingredients is non-negative.

### 2.1.4 Real Number Solving

MiniZinc also supports “real number” constraint solving using floating point variables and constraints. Consider a problem of taking out a short loan for one year to be repaid in 4 quarterly instalments. A model for this is shown in `Listing 2.1.6`. It uses a simple interest calculation to calculate the balance after each quarter.

```
% variables
var float: R; % quarterly repayment
var float: P; % principal initially borrowed
var 0.0 .. 10.0: I; % interest rate

% intermediate variables
var float: B1; % balance after one quarter
var float: B2; % balance after two quarters
var float: B3; % balance after three quarters
var float: B4; % balance owing at end

constraint B1 = P * (1.0 + I) - R;
constraint B2 = B1 * (1.0 + I) - R;
constraint B3 = B2 * (1.0 + I) - R;
constraint B4 = B3 * (1.0 + I) - R;

solve satisfy;

output [
"Borrowing ", show_float(0, 2, P), " at ", show(I*100.0),
"% interest, and repaying ", show_float(0, 2, R),
"\nper quarter for 1 year leaves ", show_float(0, 2, B4), " owing\n"];
```

Note that we declare a float variable f similar to an integer variable using the keyword `float`
Instead of int.

We can use the same model to answer a number of different questions. The first question is: If I borrow $1000 at 4% and repay $260 per quarter, how much do I end up owing? This question is encoded by the data file loan1.dzn.

Since we wish to use real number variables and constraint we need to use a solver that supports this type of problem. While Gecode (the default solver in the MiniZinc bundled binary distribution) does support floating point variables, a mixed integer linear programming (MIP) solver may be better suited to this particular type of problem. The MiniZinc distribution contains such a solver. We can invoke it by selecting COIN-BC from the solver menu in the IDE (the triangle below the Run button), or on the command line using the command minizinc --solver cbc:

```bash
$ minizinc --solver cbc loan.mzn loan1.dzn
```

The output is

```
Borrowing 1000.00 at 4.0% interest, and repaying 260.00
per quarter for 1 year leaves 65.78 owing

```

The second question is if I want to borrow $1000 at 4% and owe nothing at the end, how much do I need to repay? This question is encoded by the data file loan2.dzn. The output from running the command

```bash
$ minizinc --solver cbc loan.mzn loan2.dzn
```

is

```
Borrowing 1000.00 at 4.0% interest, and repaying 275.49
per quarter for 1 year leaves 0.00 owing

```

The third question is if I can repay $250 a quarter, how much can I borrow at 4% to end up owing nothing? This question is encoded by the data file loan3.dzn. The output from running the command

```bash
$ minizinc --solver cbc loan.mzn loan3.dzn
```

is

```
Borrowing 907.47 at 4.0% interest, and repaying 250.00
per quarter for 1 year leaves 0.00 owing

```
Float Arithmetic Operators

MiniZinc provides the standard floating point arithmetic operators: addition (+), subtraction (−), multiplication (∗) and floating point division (/). It also provides + and − as unary operators.

MiniZinc can automatically coerce integers to floating point numbers. But to make the coercion explicit, the built-in function \texttt{int2float} can be used. Note that one consequence of the automatic coercion is that an expression $a / b$ is always considered a floating point division. If you need an integer division, make sure to use the \texttt{div} operator!

MiniZinc provides in addition the following floating point functions: absolute value (\texttt{abs}), square root (\texttt{sqrt}), natural logarithm (\texttt{ln}), logarithm base 2 (\texttt{log2}), logarithm base 10 (\texttt{log10}), exponentiation of $e$ (\texttt{exp}), sine (\texttt{sin}), cosine (\texttt{cos}), tangent (\texttt{tan}), arcsine (\texttt{asin}), arc-cosine (\texttt{acos}), arctangent (\texttt{atan}), hyperbolic sine (\texttt{sinh}), hyperbolic cosine (\texttt{cosh}), hyperbolic tangent (\texttt{tanh}), hyperbolic arcsine (\texttt{asinh}), hyperbolic arccosine (\texttt{acosh}), hyperbolic arctangent (\texttt{atanh}), and power (\texttt{pow}) which is the only binary function, the rest are unary.

The syntax for arithmetic literals is reasonably standard. Example float literals are $1.05$, $1.3e-5$ and $1.3E+5$.

2.1.5 Basic structure of a model

We are now in a position to summarise the basic structure of a MiniZinc model. It consists of multiple \texttt{items} each of which has a semicolon ; at its end. Items can occur in any order. For example, identifiers need not be declared before they are used.

There are 8 kinds of items.

- Include items allow the contents of another file to be inserted into the model. They have the form:
include <filename>;

where <filename> is a string literal. They allow large models to be split into smaller sub-models and also the inclusion of constraints defined in library files. We shall see an example in Listing 2.2.4.

- Variable declarations declare new variables. Such variables are global variables and can be referred to from anywhere in the model. Variables come in two kinds. Parameters which are assigned a fixed value in the model or in a data file and decision variables whose value is found only when the model is solved. We say that parameters are fixed and decision variables unfixed. The variable can be optionally assigned a value as part of the declaration. The form is:

```
<type inst expr>: <variable> [=] <expression>;
```

The <type-inst expr> gives the instantiation and type of the variable. These are one of the more complex aspects of MiniZinc. Instantiations are declared using par for parameters and var for decision variables. If there is no explicit instantiation declaration then the variable is a parameter. The type can be a base type, an integer or float range or an array or a set. The base types are float, int, string, bool, ann of which only float, int and bool can be used for decision variables. The base type ann is an annotation – we shall discuss annotations in Search (page 85). Integer range expressions can be used instead of the type int. Similarly float range expressions can be used instead of type float. These are typically used to give the domain of a decision variable but can also be used to restrict the range of a parameter. Another use of variable declarations is to define enumerated types, which we discuss in Enumerated Types (page 48).

- Assignment items assign a value to a variable. They have the form:

```
<variable> = <expression>;
```

Values can be assigned to decision variables in which case the assignment is equivalent to writing constraint <variable> = <expression>.

- Constraint items form the heart of the model. They have the form:

```
constraint <Boolean expression>;
```

We have already seen examples of simple constraints using arithmetic comparison and the built-in assert operator. In the next section we shall see examples of more complex constraints.

- Solve items specify exactly what kind of solution is being looked for. As we have seen they have one of three forms:

```
solve satisfy;
solve maximize <arithmetic expression>;
solve minimize <arithmetic expression>;
```
A model is required to have at most one solve item. If its omitted it is treated as solve satisfy.

- Output items are for nicely presenting the results of the model execution. They have the form:

  ```
 output [<string expression>, ..., <string expression>];
  ```

  If there is no output item, MiniZinc will by default print out the values of all the decision variables which are not optionally assigned a value in the format of assignment items.

- Enumerated type declarations. We discuss these in Arrays and Sets (page 35) and Enumerated Types (page 48).

- Predicate, function and test items are for defining new constraints, functions and Boolean tests. We discuss these in Predicates and Functions (page 61).

- The annotation item is used to define a new annotation. We discuss these in Search (page 85).
CHAPTER 2.2

More Complex Models

In the last section we introduced the basic structure of a MiniZinc model. In this section we introduce the array and set data structures, enumerated types and more complex constraints.

2.2.1 Arrays and Sets

Almost always we are interested in building models where the number of constraints and variables is dependent on the input data. In order to do so we will usually use arrays.

Consider a simple finite element model for modelling temperatures on a rectangular sheet of metal. We approximate the temperatures across the sheet by breaking the sheet into a finite number of elements in a two-dimensional matrix. A model is shown in Listing 2.2.1. It declares the width $w$ and height $h$ of the finite element model. The declaration

```plaintext
set of int: HEIGHT = 0..h;
set of int: CHEIGHT = 1..h-1;
set of int: WIDTH = 0..w;
set of int: CWIDTH = 1..w-1;
array[HEIGHT,WIDTH] of var float: t; % temperature at point (i,j)
```

declares four fixed sets of integers describing the dimensions of the finite element model: \texttt{HEIGHT} is the whole height of the model, while \texttt{CHEIGHT} is the centre of the height omitting the top and bottom, \texttt{WIDTH} is the whole width of the model, while \texttt{CWIDTH} is the centre of the width omitting the left and rightsides, Finally a two dimensional array of float variables $t$ with rows numbered 0 to $h$ (\texttt{HEIGHT}) and columns 0 to $w$ (\texttt{WIDTH}), to represent the temperatures at each point in the metal plate. We can access the element of the array in the $i^{th}$ row and $j^{th}$ column using an expression $t[i,j]$.

Laplace’s equation states that when the plate reaches a steady state the temperature at each internal point is the average of its orthogonal neighbours. The constraint

\begin{align*}
\frac{t[i,j] - t[i-1,j] + t[i+1,j] - t[i,j-1] + t[i,j+1]}{4} &= \text{average of orthogonal neighbours} \\
\end{align*}
ensures that each internal point \((i,j)\) is the average of its four orthogonal neighbours. The constraints

restrict the temperatures on each edge to be equal, and gives these temperatures names: left, right, top and bottom. While the constraints

ensure that the corners (which are irrelevant) are set to 0.0. We can determine the temperatures in a plate broken into \(5 \times 5\) elements with left, right and bottom temperature 0 and top temperature 100 with the model shown in Listing 2.2.1.

Listing 2.2.1: Finite element plate model for determining steady state temperatures (laplace.mzn).

```plaintext
int: w = 4;
int: h = 4;

% arraydec
set of int: HEIGHT = 0..h;
set of int: CHEIGHT = 1..h-1;
set of int: WIDTH = 0..w;
set of int: CWIDTH = 1..w-1;
array[HEIGHT,WIDTH] of var float: t; % temperature at point (i,j)
var float: left; % left edge temperature
var float: right; % right edge temperature
var float: top; % top edge temperature
var float: bottom; % bottom edge temperature

% equation
% Laplace equation: each internal temp. is average of its neighbours
constraint forall(i in CHEIGHT, j in CWIDTH)(
 4.0*t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);
% sides
% edge constraints
```
constraint forall(i in CHEIGHT)(t[i, 0] = left);
constraint forall(i in CHEIGHT)(t[i, w] = right);
constraint forall(j in CWIDTH)(t[0, j] = top);
constraint forall(j in CWIDTH)(t[h, j] = bottom);
% corners
% corner constraints
constraint t[0, 0] = 0.0;
constraint t[0, w] = 0.0;
constraint t[h, 0] = 0.0;
constraint t[h, w] = 0.0;
left = 0.0;
right = 0.0;
top = 100.0;
bottom = 0.0;
solve satisfy;
output [ show_float(6, 2, t[i, j]) ++
  if j == h then "\n" else " " endif |
  i in HEIGHT, j in WIDTH
];

Running the command

$ minizinc --solver cbc laplace.mzn

gives the output

-0.00 100.00 100.00 100.00 -0.00
-0.00 42.86 52.68 42.86 -0.00
-0.00 18.75 25.00 18.75 -0.00
-0.00 7.14 9.82 7.14 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00
----------
Sets variables are declared with a declaration of the form

```mini_zinc
set of <type-inst> : <var-name> ;
```

where sets of integers, enums (see later), floats or Booleans are allowed. The only type allowed for decision variable sets are variable sets of integers or enums. Set literals are of the form

```mini_zinc
{ <expr-1>, ..., <expr-n> }
```

or are range expressions over either integers, enums or floats of the form

```mini_zinc
<expr-1> .. <expr-2>
```

The standard set operations are provided: element membership (`in`), (non-strict) subset relationship (`subset`), (non-strict) superset relationship (`superset`), union (`union`), intersection (`intersect`), set difference (`diff`), symmetric set difference (`symdiff`) and the number of elements in the set (```card```).

As we have seen set variables and set literals (including ranges) can be used as an implicit type in variable declarations in which case the variable has the type of the elements in the set and the variable is implicitly constrained to be a member of the set.

Our cake baking problem is an example of a very simple kind of production planning problem. In this kind of problem we wish to determine how much of each kind of product to make to maximise the profit where manufacturing a product consumes varying amounts of some fixed resources. We can generalise the MiniZinc model in Listing 2.1.3 to handle this kind of problem with a model that is generic in the kinds of resources and products. The model is shown in Listing 2.2.2 and a sample data file (for the cake baking example) is shown in Listing 2.2.3.

Listing 2.2.2: Model for simple production planning (prod-planning.mzn).

```mini_zinc
% Products to be produced
enum Products;
% profit per unit for each product
array[Products] of int: profit;
% Resources to be used
enum Resources;
% amount of each resource available
array[Resources] of int: capacity;
% units of each resource required to produce 1 unit of product
array[Products, Resources] of int: consumption;
constraint assert(forall (r in Resources, p in Products)
 (consumption[p,r] >= 0), "Error: negative consumption");
% bound on number of Products
int: mproducts = max (p in Products)
 (min (r in Resources where consumption[p,r] > 0)
 (capacity[r] div consumption[p,r]));
```
% Variables: how much should we make of each product
array[Products] of var 0..mproducts: produce;
array[Resources] of var 0..max(capacity): used;

% Production cannot use more than the available Resources:
constraint forall (r in Resources) ( used[r] = sum (p in Products)(consumption[p, r] * produce[p]) );
constraint forall (r in Resources) ( used[r] <= capacity[r] );

% Maximize profit
solve maximize sum (p in Products) (profit[p]*produce[p]);

output [ "\(p) = \(produce[p]);\n" | p in Products ] ++
[ "\(r) = \(used[r]);\n" | r in Resources ];

Listing 2.2.3: Example data file for the simple production planning problem
(prod-planning-data.dzn).

% Data file for simple production planning model
Products = { BananaCake, ChocolateCake };% in cents
profit = [400, 450];

Resources = { Flour, Banana, Sugar, Butter, Cocoa };% in cents
capacity = [4000, 6, 2000, 500, 500];

consumption= [ ] 250, 2, 75, 100, 0,
| 200, 0, 150, 150, 75 |];

The new feature in this model is the use of enumerated types. These allow us to treat the choice
of resources and products as parameters to the model. The first item in the model

enum Products;

decrates Products as an unknown set of products.
### Enumerated Types

Enumerated types, which we shall refer to as enums, are declared with a declaration of the form

```plaintext
enum <var-name> ;
```

An enumerated type is defined by an assignment of the form

```plaintext
enum <var-name> = { <var-name-1>, ..., <var-name-n> } ;
```

where `<var-name-1>`, `...`, `<var-name-n>` are the elements of the enumerated type, with name `<var-name>`. Each of the elements of the enumerated type is also effectively declared by this definition as a new constant of that type. The declaration and definition can be combined into one line as usual.

The second item declares an array of integers:

```plaintext
array[Products] of int: profit;
```

The index set of the array `profit` is `Products`. This means that only elements of the set `Products` can be used to index the array.

The elements of an enumerated type of `n` elements act very similar to the integers `1...n`. They can be compared, they are ordered, by the order they appear in the enumerated type definition, they can be iterated over, they can appear as indices of arrays, in fact they can appear anywhere an integer can appear.

In the example data file we have initialized the array using a list of integers

```plaintext
Products = { BananaCake, ChocolateCake };
profit = [400,450];
```

meaning the profit for a banana cake is 400, while for a chocolate cake it is 450. Internally `BananaCake` will be treated like the integer 1, while `ChocolateCake` will be treated like the integer 2. While MiniZinc does not provide an explicit list type, one-dimensional arrays with an index set `1..n` behave like lists, and we will sometimes refer to them as lists.

In a similar fashion, in the next two items we declare a set of resources `Resources`, and an array `capacity` which gives the amount of each resource that is available.

More interestingly, the item

```plaintext
array[Products, Resources] of int: consumption;
```

declares a 2-D array `consumption`. The value of `consumption[p,r]` is the amount of resource `r` required to produce one unit of product `p`. Note that the first index is the row and the second is the column.

The data file contains an example initialization of a 2-D array:
Notice how the delimiter | is used to separate rows.

### Arrays

Thus, MiniZinc provides one- and multi-dimensional arrays which are declared using the type:

```
array [<index-set-1>, ..., <index-set-n>] of <type-inst>
```

MiniZinc requires that the array declaration contains the index set of each dimension and that the index set is either an integer range, a set variable initialised to an integer range, or an enumeration type. Arrays can contain any of the base types: integers, enums, Booleans, floats or strings. These can be fixed or unfixed except for strings which can only be parameters. Arrays can also contain sets but they cannot contain arrays.

One-dimensional array literals are of form

```
[<expr-1>, ..., <expr-n>]
```

while two-dimensional array literals are of form

```
[| <expr-1-1>, ..., <expr-1-n> |
 ...
 | <expr-m-1>, ..., <expr-m-n> |]
```

where the array has m rows and n columns.

The family of built-in functions `array1d`, `array2d`, etc, can be used to initialise an array of any dimension from a list (or more exactly a one-dimensional array). The call:

```
array<n>d(<index-set-1>, ..., <index-set-n>, <list>)
```

returns an n dimensional array with index sets given by the first n arguments and the last argument contains the elements of the array. For instance, `array2d([1..3, 1..2, [1, 2, 3, 4, 5, 6]])` is equivalent to `[| |1, 2 |3, 4 |5, 6 |].

Array elements are accessed in the usual way: `a[i, j]` gives the element in the $i^{th}$ row and $j^{th}$ column.

The concatenation operator `++` can be used to concatenate two one-dimensional arrays together. The result is a list, i.e. a one-dimensional array whose elements are indexed from 1. For instance `[4000, 6] ++ [2000, 500, 500]` evaluates to `[4000, 6, 2000, 500, 500]`. The built-in function `length` returns the length of a one-dimensional array.

---

The next item in the model defines the parameter `mproducts`. This is set to an upper-bound on the number of products of any type that can be produced. This is quite a complex example of nested array comprehensions and aggregation operators. We shall introduce these before we try to understand this item and the rest of the model.

First, MiniZinc provides list comprehensions similar to those provided in many functional programming languages, or Python. For example, the list comprehension
\[ [i + j \mid i, j \text{ in } 1..3 \text{ where } j < i] \text{ evaluates to } [1 + 2, 1 + 3, 2 + 3] \text{ which is } [3, 4, 5]. \text{ Of course } [3, 4, 5] \text{ is simply an array with index set } 1..3. \]

MiniZinc also provides set comprehensions which have a similar syntax: for instance, \{i + j \mid i, j \text{ in } 1..3 \text{ where } j < i\} evaluates to the set \{3, 4, 5\}.

### List and Set Comprehensions

The generic form of a list comprehension is

\[
[ \text{<expr> } \mid \text{<generator-exp>} ]
\]

The expression \text{<expr>} specifies how to construct elements in the output list from the elements generated by \text{<generator-exp>}. The generator \text{<generator-exp>} consists of a comma separated sequence of generator expressions optionally followed by a Boolean expression. The two forms are

\[
\text{<generator>}
\]
\[
\text{<generator>} \text{ where } \text{<bool-exp>}
\]

The optional \text{<bool-exp>} in the second form acts as a filter on the generator expression: only elements satisfying the Boolean expression are used to construct elements in the output list. A generator \text{<generator>} has the form

\[
\text{<identifier>}, \ldots, \text{<identifier>} \text{ in } \text{<array-exp>}
\]

Each identifier is an iterator which takes the values of the array expression in turn, with the last identifier varying most rapidly.

The generators of a list comprehension and \text{<bool-exp>} usually do not involve decision variables. If they do involve decision variables then the list produced is a list of \text{var opt \langle T\rangle} where \langle T\rangle is the type of the \text{<expr>}. See the discussion of option types in \text{Option Types} (page 81) for more details.

Set comprehensions are almost identical to list comprehensions: the only difference is the use of \{ and \} to enclose the expression rather than [ and ]. The elements generated by a set comprehension must be fixed, i.e. free of decision variables. Similarly the generators and optional \text{<bool-exp>} for set comprehensions must be fixed.

Second, MiniZinc provides a number of built-in functions that take a one-dimensional array and aggregate the elements. Probably the most useful of these is \text{mzn:forall}. This takes an array of Boolean expressions (that is, constraints) and returns a single Boolean expression which is the logical conjunction of the Boolean expressions in the array.

For example, consider the expression

\[
\text{forall( } [a[i] != a[j] \mid i, j \text{ in } 1..3 \text{ where } i < j])
\]

where \(a\) is an arithmetic array with index set 1..3. This constrains the elements in \(a\) to be pairwise different. The list comprehension evaluates to \([a[1] != a[2], a[1] != a[3], a[2] != a[3]]\) and so the \text{forall} function returns the logical conjunction \(a[1] != a[2] \land a[1] != a[3] \land a[2] != a[3]\).
Aggregation functions

The aggregation functions for arithmetic arrays are: \texttt{sum} which adds the elements, \texttt{product} which multiplies them together, and \texttt{min} and \texttt{max} which respectively return the least and greatest element in the array. When applied to an empty array, \texttt{min} and \texttt{max} give a run-time error, \texttt{sum} returns 0 and \texttt{product} returns 1.

MiniZinc provides four aggregation functions for arrays containing Boolean expressions. As we have seen, the first of these, \texttt{forall}, returns a single constraint which is the logical conjunction of the constraints. The second function, \texttt{exists}, returns the logical disjunction of the constraints. Thus, \texttt{forall} enforces that all constraints in the array hold, while \texttt{exists} ensures that at least one of the constraints holds. The third function, \texttt{xorall}, ensures that an odd number of constraints hold. The fourth function, \texttt{iffall}, ensures that an even number of constraints holds.

The third, and final, piece in the puzzle is that MiniZinc allows a special syntax for aggregation functions when used with an array comprehension. Instead of writing

\begin{verbatim}
forall([a[i] != a[j] | i,j in 1..3 where i < j])
\end{verbatim}

the modeller can instead write the more mathematical looking

\begin{verbatim}
forall (i,j in 1..3 where i < j) (a[i] != a[j])
\end{verbatim}

The two expressions are completely equivalent: the modeller is free to use whichever they feel looks most natural.

Generator call expressions

A generator call expression has form

\begin{verbatim}
<agg-func> ( <generator-exp> ) ( <exp> )
\end{verbatim}

The round brackets around the generator expression <generator-exp> and the constructor expression <exp> are not optional: they must be there. This is equivalent to writing

\begin{verbatim}
<agg-func> ( [ <exp> | <generator-exp> ] )
\end{verbatim}

The aggregation function <agg-func> is any MiniZinc function expecting a single array as argument.

We are now in a position to understand the rest of the simple production planning model shown in Listing 2.2.2. For the moment ignore the item defining \texttt{mproducts}. The item afterwards:

\begin{verbatim}
array[Products] of var 0..mproducts: produce;
\end{verbatim}

defines a one-dimensional array \texttt{produce} of decision variables. The value of \texttt{produce[p]} will be set to the amount of product \texttt{p} in the optimal solution. The next item

\begin{verbatim}
array[Resources] of var 0..max(capacity): used;
\end{verbatim}
defines a set of auxiliary variables that record how much of each resource is used. The next two constraints

```plaintext
constraint forall (r in Resources)
 (used[r] = sum (p in Products) (consumption[p, r] * produce[p]));
constraint forall (r in Resources)(used[r] <= capacity[r]);
```

compute in `used[r]` the total consumption of the resource `r` and ensure it is less than the available amount. Finally, the item

```plaintext
solve maximize sum (p in Products) (profit[p]*produce[p]);
```

indicates that this is a maximisation problem and that the objective to be maximised is the total profit.

We now return to the definition of `mproducts`. For each product `p` the expression

```plaintext
(min (r in Resources where consumption[p,r] > 0)
 (capacity[r] div consumption[p,r]))
```

determines the maximum amount of `p` that can be produced taking into account the amount of each resource `r` and how much of `r` is required to produce the product. Notice the use of the filter `where consumption[p,r] > 0` to ensure that only resources required to make the product are considered so as to avoid a division by zero error. Thus, the complete expression

```plaintext
int: mproducts = max (p in Products)
 (min (r in Resources where consumption[p,r] > 0)
 (capacity[r] div consumption[p,r]));
```

computes the maximum amount of any product that can be produced, and so this can be used as an upper bound on the domain of the decision variables in `produce`.

Finally notice the output item is more complex, and uses list comprehensions to create an understandable output. Running

```plaintext
$ minizinc --solver gecode prod-planning.mzn prod-planning-data.dzn
```

results in the output

```plaintext
BananaCake = 2;
ChocolateCake = 2;
Flour = 900;
Banana = 4;
Sugar = 450;
Butter = 500;
Cocoa = 150;


```
2.2.2 Global Constraints

MiniZinc includes a library of global constraints which can also be used to define models. An example is the alldifferent constraint which requires all the variables appearing in its argument to be pairwise different.

Listing 2.2.4: Model for the cryptarithmetic problem SEND+MORE=MONEY
(send-more-money.mzn)

include "alldifferent.mzn";

var 1..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 1..9: M;
var 0..9: O;
var 0..9: R;
var 0..9: Y;

constraint 1000 * S + 100 * E + 10 * N + D
            + 1000 * M + 100 * O + 10 * R + E
            = 10000 * M + 1000 * O + 100 * N + 10 * E + Y;

constraint alldifferent([S,E,N,D,M,O,R,Y]);

solve satisfy;

output ["\(S\)\(E\)\(N\)\(D\)\(M\)\(O\)\(R\)\(Y\)\n",
        "\(M\)\(O\)\(N\)\(E\)\n",
        "\(M\)\(O\)\(N\)\(E\)\(Y\)\n"];

The SEND+MORE=MONEY problem requires assigning a different digit to each letter so that the arithmetic constraint holds. The model shown in Listing 2.2.4 uses the constraint expression alldifferent([S,E,N,D,M,O,R,Y]) to ensure that each letter takes a different digit value. The global constraint is made available in the model using include item

include "alldifferent.mzn";

which makes the global constraint alldifferent usable by the model. One could replace this line by

include "globals.mzn";

which includes all globals.

A list of all the global constraints defined for MiniZinc is included in the release documentation. See Global Constraints (page 61) for a description of some important global constraints.
2.2.3 Conditional Expressions

MiniZinc provides a conditional if-then-else-endif expression. An example of its use is

```
int: r = if y != 0 then x div y else 0 endif;
```

which sets \( r \) to \( x \) divided by \( y \) unless \( y \) is zero in which case it sets \( r \) to zero.

### Conditional expressions

The form of a conditional expression is

```
if <bool-exp> then <exp-1> else <exp-2> endif
```

It is a true expression rather than a control flow statement and so can be used in other expressions. It evaluates to \( <exp-1> \) if the Boolean expression \( <bool-exp> \) is true and \( <exp-2> \) otherwise. The type of the conditional expression is that of \( <exp-1> \) and \( <exp-2> \) which must have the same type.

If the \( <bool-exp> \) contains decision variables, then the type-inst of the expression is \( \text{var} \ <T> \) where \( <T> \) is the type of \( <exp-1> \) and \( <exp-2> \) even if both expressions are fixed.

---

### Listing 2.2.5: Model for generalized Sudoku problem (sudoku.mzn)

```plaintext
include "alldifferent.mzn";

int: S;
int: N = S * S;
int: digs = ceil(log(10.0, int2float(N))); % digits for output

set of int: PuzzleRange = 1..N;
set of int: SubSquareRange = 1..S;

array[1..N,1..N] of 0..N: start; % initial board 0 = empty
array[1..N,1..N] of var PuzzleRange: puzzle;

% fill initial board
constraint forall(i,j in PuzzleRange)(
 if start[i,j] > 0 then puzzle[i,j] = start[i,j] else true endif);

% All different in rows
constraint forall (i in PuzzleRange) (
 alldifferent([puzzle[i,j] | j in PuzzleRange]));

% All different in columns.
constraint forall (j in PuzzleRange) (
 alldifferent([puzzle[i,j] | i in PuzzleRange]));

% All different in sub-squares:
constraint forall (a, o in SubSquareRange)(
```

---

Chapter 2.2. More Complex Models
alldifferent([ puzzle[(a-1) *S + a1, (o-1) *S + o1] | a1, o1 in SubSquareRange ]));

solve satisfy;

output [ show_int(digs,puzzle[i,j]) ++ " " ++
    if j mod S == 0 then " " else "" endif ++
    if j == N then
        if i != N then
            if i mod S == 0 then "\n\n" else "\n" endif
        else "" endif else "" endif
    endif else "" endif ++ ["\n"] |
    i,j in PuzzleRange ] ++ ["\n"];

Listing 2.2.6: Example data file for generalised Sudoku problem (sudoku.dzn)

S=3;
start=[]
  0, 0, 0, 0, 0, 0, 0, 0, 0
0, 6, 8, 4, 0, 1, 0, 7, 0
0, 0, 0, 0, 8, 5, 0, 3, 0
0, 2, 6, 8, 0, 9, 0, 4, 0
0, 0, 7, 0, 0, 0, 9, 0, 0
0, 5, 0, 1, 0, 6, 3, 2, 0
0, 4, 0, 6, 1, 0, 0, 0, 0
0, 3, 0, 2, 0, 7, 6, 9, 0
0, 0, 0, 0, 0, 0, 0, 0, 0];

Fig. 2.2.1: The problem represented by data file sudoku.dzn

Conditional expressions are very useful in building complex models, or complex output. Consider the model of Sudoku problems shown in Listing 2.2.5. The initial board positions are given by the start parameter where 0 represents an empty board position. This is converted to constraints on the decision variables puzzle using the conditional expression
constraint forall(i, j in PuzzleRange)(
    if start[i, j] > 0 then puzzle[i, j] = start[i, j] else true endif);

Conditional expressions are also very useful for defining complex output. In the Sudoku model of Listing 2.2.5 the expression

```MiniZinc
if j mod S == 0 then " " else "" endif
```

inserts an extra space between groups of size S. The output expression also uses conditional expressions to add blank lines after each S lines. The resulting output is highly readable.

The remaining constraints ensure that the numbers appearing in each row and column and \( S \times S \) subsquare are all different.

One can use MiniZinc to search for all solutions to a satisfaction problem (solve satisfy) by using the flag -a or --all-solutions. Running

```
$ minizinc --solver gecode --all-solutions sudoku.mzn sudoku.dzn
```

results in

```
 5 9 3 7 6 2 8 1 4
 2 6 8 4 3 1 5 7 9
 7 1 4 9 8 5 2 3 6

 3 2 6 8 5 9 1 4 7
 1 8 7 3 2 4 9 6 5
 4 5 9 1 7 6 3 2 8

 9 4 2 6 1 8 7 5 3
 8 3 5 2 4 7 6 9 1
 6 7 1 5 9 3 4 8 2

==========
```

The line ========== is output when the system has output all possible solutions, here verifying that there is exactly one.

### 2.2.4 Enumerated Types

Enumerated types allows us to build models that depend on a set of objects which are part of the data, or are named in the model, and hence make models easier to understand and debug. We have introduce enumerated types or enums briefly, in this subsection we will explore how we can use them more fully, and show some of the built in functions for dealing with enumerated types.

Let’s revisit the problem of coloring the graph of Australia from *Basic Modelling in MiniZinc* (page 21).
Listing 2.2.7: Model for coloring Australia using enumerated types (aust-enum.mzn).

```plaintext
enum Color;
var Color: wa;
var Color: nt;
var Color: sa;
var Color: q;
var Color: nsw;
var Color: v;
var Color: t;
constraint wa != nt \ wa != sa \ nt != sa \ nt != q \ sa != q;
constraint sa != nsw \ sa != v \ q != nsw \ nsw != v;
solve satisfy;
```

The model shown in Listing 2.2.7 declares an enumerated type `Color` which must be defined in the data file. Each of the state variables is declared to take a value from this enumerated type.

Running this program using

```
$ minizinc --solver gecode -D"Color = { red, yellow, blue };" aust-enum.mzn
```

might result in output

```
wa = blue;
nt = yellow;
sa = red;
q = blue;
nsw = yellow;
v = blue;
t = red;
```

### Enumerated Type Variable Declarations

An enumerated type parameter is declared as either:

```
<enum-name> : <var-name>
<l>..<u> : <var-name>
```

where `<enum-name>` is the name of a enumerated type, and `<l>` and `<u>` are fixed enumerated type expressions of the same enumerated type.

An enumerated type decision variable is declared as either:

```
var <enum-name> : <var-name>
var <l>..<u> : <var-name>
```

where `<enum-name>` is the name of a enumerated type, and `<l>` and `<u>` are fixed enumerated type expressions of the same enumerated type.

A key behaviour of enumerated types is that they are automatically coerced to integers when they are used in a position expecting an integer. For example, this allows us to use global constraints
defined on integers, such as

```plaintext
global_cardinality_low_up([wa,nt,sa,q,nsw,v,t],
 [red,yellow,blue],[2,2,2],[2,2,3]);
```

This requires at least two states to be colored each color and three to be colored blue.

### Enumerated Type Operations

There are a number of built-in operations on enumerated types:

- **enum_next**\((X,x)\): returns the next value in after \(x\) in the enumerated type \(X\). This is a partial function, if \(x\) is the last value in the enumerated type \(X\) then the function returns \(\perp\) causing the Boolean expression containing the expression to evaluate to false.
- **enum_prev**\((X,x)\): returns the previous value before \(x\) in the enumerated type \(X\). Similarly **enum_prev** is a partial function.
- **to_enum**\((X,i)\): maps an integer expression \(i\) to an enumerated type value in type \(X\) or evaluates to \(\perp\) if \(i\) is less than or equal to 0 or greater than the number of elements in \(X\).

Note also that a number of standard functions are applicable to enumerated types:

- **card**\((X)\): returns the cardinality of an enumerated type \(X\).
- **min**\((X)\): returns the minimum element of of an enumerated type \(X\).
- **max**\((X)\): returns the maximum element of of an enumerated type \(X\).

### 2.2.5 Complex Constraints

Constraints are the core of the MiniZinc model. We have seen simple relational expressions but constraints can be considerably more powerful than this. A constraint is allowed to be any Boolean expression. Imagine a scheduling problem in which we have two tasks that cannot overlap in time. If \(s_1\) and \(s_2\) are the corresponding start times and \(d_1\) and \(d_2\) are the corresponding durations we can express this as:

```plaintext
constraint s1 + d1 <= s2 \/
 s2 + d2 <= s1;
```

which ensures that the tasks do not overlap.

### Boolean

Boolean expressions in MiniZinc can be written using a standard mathematical syntax. The Boolean literals are \texttt{true} and \texttt{false} and the Boolean operators are conjunction, i.e. and (\(/\))\), disjunction, i.e. or (\(\lor\)), only-if (\(<\to\)), implies (\(<\to\)), if-and-only-if (\(<\leftrightarrow\)) and negation (\(\texttt{not}\)). Booleans can be automatically coerced to integers, but to make this coercion explicit the built-in function \texttt{bool2int} can be used: it returns 1 if its argument is true and 0 otherwise.
Listing 2.2.8: Model for job-shop scheduling problems (jobshop.mzn).

```plaintext
enum JOB;
enum TASK;
TASK: last = max(TASK);
array [JOB,TASK] of int: d; % task durations
int: total = sum(i in JOB, j in TASK)(d[i,j]); % total duration
int: digs = ceil(log(10.0, int2float(total))); % digits for output
array [JOB,TASK] of var 0..total: s; % start times
var 0..total: end; % total end time

constraint %% ensure the tasks occur in sequence
 forall(i in JOB) (
 forall(j in TASK where j < last)
 (s[i,j] + d[i,j] <= s[i,enum_next(TASK,j)]) \/
 s[i,last] + d[i,last] <= end
);

constraint %% ensure no overlap of tasks
 forall(j in TASK) (
 forall(i,k in JOB where i < k) (
 s[i,j] + d[i,j] <= s[k,j] \/
 s[k,j] + d[k,j] <= s[i,j]
)
);

solve minimize end;

output ["end = \(end)\n"] ++
 [show_int(digs,s[i,j]) ++ " " ++
 if j == last then "\n" else "" endif |
 i in JOB, j in TASK];
```

2.2.5. Complex Constraints
The job shop scheduling model given in Listing 2.2.8 gives a realistic example of the use of this disjunctive modelling capability. In job shop scheduling we have a set of jobs, each consisting of a sequence of tasks on separate machines: so task \([i,j]\) is the task in the \(i^{th}\) job performed on the \(j^{th}\) machine. Each sequence of tasks must be completed in order, and no two tasks on the same machine can overlap in time. Even small instances of this problem can be quite challenging to find optimal solutions.

The command

```
$ minizinc --solver gecode --all-solutions jobshop.mzn jdata.dzn
```

solves a small job shop scheduling problem, and illustrates the behaviour of `all-solutions` for optimisation problems. Here the solver outputs each better solutions as it finds it, rather than all possible optimal solutions. The output from this command is:

```
end = 39
 5 9 13 22 30
 6 13 18 25 36
 0 4 8 12 16
 4 8 12 16 22
 9 16 25 27 38

end = 37
 4 8 12 17 20
 5 13 18 26 34
 0 4 8 12 16
 8 12 17 20 26
 9 16 25 27 36

end = 34
 0 1 5 10 13
 6 10 15 23 31
 2 6 11 19 27
 1 5 10 13 19
 9 16 22 24 33

end = 30
 5 9 13 18 21
 6 13 18 25 27
```
indicating an optimal solution with end time 30 is finally found, and proved optimal. We can generate all optimal solutions by adding a constraint that $end = 30$ and changing the solve item to `solve satisfy` and then executing

```bash
$ minizinc --solver gecode --all-solutions jobshop.mzn jobshop.dzn
```

For this problem there are 3,444,375 optimal solutions.

Listing 2.2.10: Model for the stable marriage problem (stable-marriage.mzn).

```plaintext
int: n;
enum Men = anon_enum(n);
enum Women = anon_enum(n);
array[Women, Men] of int: rankWomen;
array[Men, Women] of int: rankMen;
array[Men] of var Women: wife;
array[Women] of var Men: husband;

% assignment
constraint forall (m in Men) (husband[wife[m]] = m);
constraint forall (w in Women) (wife[husband[w]] = w);

% ranking
constraint forall (m in Men, o in Women) (rankMen[m,o] < rankMen[m, wife[m]] ->
 rankWomen[o, husband[o]] < rankWomen[o, m]);
constraint forall (w in Women, o in Men) (rankWomen[w,o] < rankWomen[w, husband[w]] ->
 rankMen[o, wife[o]] < rankMen[o, w]);
solve satisfy;
output ["wives= \
 (wife)\nhusbands= (husband)\n"];
```

Listing 2.2.11: Example data for the stable marriage problem (stable-marriage.dzn).

```plaintext
n = 5;
rankWomen =
[[1, 2, 4, 3, 5],
 [3, 5, 1, 2, 4],
 [5, 4, 2, 1, 3],
```

2.2.5. Complex Constraints
Another powerful modelling feature in MiniZinc is that decision variables can be used for array access. As an example, consider the (old-fashioned) stable marriage problem. We have \( n \) (straight) women and \( n \) (straight) men. Each man has a ranked list of women and vice versa. We want to find a husband/wife for each woman/man so that all marriages are stable in the sense that:

- whenever \( m \) prefers another woman \( o \) to his wife \( w \), \( o \) prefers her husband to \( m \), and
- whenever \( w \) prefers another man \( o \) to her husband \( m \), \( o \) prefers his wife to \( w \).

This can be elegantly modelled in MiniZinc. The model and sample data is shown in Listing 2.2.10 and Listing 2.2.11.

The first three items in the model declare the number of men/women and the set of men and women. Here we introduce the use of anonymous enumerated types. Both Men and Women are sets of size \( n \), but we do not wish to mix them up so we use an anonymous enumerated type. This allows MiniZinc to detect modelling errors where we use Men for Women or vice versa.

The matrices \( \text{rankWomen} \) and \( \text{rankMen} \), respectively, give the women's ranking of the men and the men's ranking of the women. Thus, the entry \( \text{rankWomen}[w,m] \) gives the ranking by woman \( w \) of man \( m \). The lower the number in the ranking, the more the man or women is preferred.

There are two arrays of decision variables: \( \text{wife} \) and \( \text{husband} \). These, respectively, contain the wife of each man and the husband of each woman.

The first two constraints

```pseudo
constraint forall (m in Men) (husband[wife[m]]==m);
constraint forall (w in Women) (wife[husband[w]]==w);
```

ensure that the assignment of husbands and wives is consistent: \( w \) is the wife of \( m \) implies \( m \) is the husband of \( w \) and vice versa. Notice how in \( \text{husband[wife[m]]} \) the index expression \( \text{wife[m]} \) is a decision variable, not a parameter.

The next two constraints are a direct encoding of the stability condition:

```pseudo
constraint forall (m in Men, o in Women) (
 rankMen[m,o] < rankMen[m,\text{wife[m]}] ->
 rankWomen[o,\text{husband[o]}] < rankWomen[o,m]);

constraint forall (w in Women, o in Men) (
 rankWomen[w,o] < rankWomen[w,\text{husband[w]}] ->
 rankMen[o,\text{wife[o]}] < rankMen[o,w]);
```
This natural modelling of the stable marriage problem is made possible by the ability to use decision variables as array indices and to construct constraints using the standard Boolean connectives. The alert reader may be wondering at this stage, what happens if the array index variable takes a value that is outside the index set of the array. MiniZinc treats this as failure: an array access a[e] implicitly adds the constraint e in index_set(a) to the closest surrounding Boolean context where index_set(a) gives the index set of a.

### Anonymous Enumerated Types

An *anonymous enumerated type* is of the form `anon_enum(<n>)` where `<n>` is a fixed integer expression defining the size of the enumerated type. An anonymous enumerated type is just like any other enumerated type except that we have no names for its elements. When printed out, they are given unique names based on the enumerated type name.

Thus for example, consider the variable declarations

```plaintext
array[1..2] of int: a= [2,3];
var 0..2: x;
var 2..3: y;
```

The constraint `a[x] = y` will succeed with `x = 1 ∧ y = 2` and `x = 2 ∧ y = 3`. And the constraint `not a[x] = y` will succeed with `x = 0 ∧ y = 2`, `x = 0 ∧ y = 3`, `x = 1 ∧ y = 3` and `x = 2 ∧ y = 2`. In the case of invalid array accesses by a parameter, the formal semantics of MiniZinc treats this as failure so as to ensure that the treatment of parameters and decision variables is consistent, but a warning is issued since it is almost always an error.

### Listing 2.2.12: Model solving the magic series problem (magic-series.mzn).

```plaintext
int: n;
array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));
solve satisfy;
output ["s = \(s\);\n"];
```

The coercion function `bool2int` can be called with any Boolean expression. This allows the MiniZinc modeller to use so called *higher order constraints*. As a simple example consider the *magic series problem*: find a list of numbers `s = [s_0, ..., s_{n-1}]` such that `s_i` is the number of occurrences of `i` in `s`. An example is `s = [1, 2, 1, 0]`.

A MiniZinc model for this problem is shown in Listing 2.2.12. The use of `bool2int` allows us to sum up the number of times the constraint `s[j]=i` is satisfied. Executing the command

```plaintext
$ minizinc --solver gecode --all-solutions magic-series.mzn -D "n=4;"
```

leads to the output
s = [1, 2, 1, 0];
----------
s = [2, 0, 2, 0];
----------
==========
indicating exactly two solutions to the problem.

Note that MiniZinc will automatically coerce Booleans to integers and integers to floats when required. We could replace the the constraint item in Listing 2.2.12 with

```
constraint forall(i in 0..n-1) (s[i] = (sum(j in 0..n-1)(s[j]=i)));
```

and get identical results, since the Boolean expression \(s[j] = i\) will be automatically coerced to an integer, effectively by the MiniZinc system automatically adding the missing `bool2int`.

### Coercion

In MiniZinc one can coerce a Boolean value to an integer value using the `bool2int` function. Similarly one can coerce an integer value to a float value using `int2float` function. The instantiation of the coerced value is the same as the argument, e.g. `par bool` is coerced to `par int`, while `var bool` is coerced to `var int`. MiniZinc automatically coerces Boolean expressions to integer expressions and integer expressions to float expressions, by inserting `bool2int` and `int2float` in the model appropriately. Note that it will also coerce Booleans to floats using two steps.

### 2.2.6 Set Constraints

Another powerful modelling feature of MiniZinc is that it allows sets containing integers to be decision variables: this means that when the model is evaluated the solver will find which elements are in the set.

As a simple example, consider the 0/1 knapsack problem. This is a restricted form of the knapsack problem in which we can either choose to place the item in the knapsack or not. Each item has a weight and a profit and we want to find which choice of items leads to the maximum profit subject to the knapsack not being too full.

It is natural to model this in MiniZinc with a single decision variable: `var set of ITEM: knapsack` where `ITEM` is the set of possible items. If the arrays `weight[i]` and `profit[i]` respectively give the weight and profit of item `i`, and the maximum weight the knapsack can carry is given by `capacity` then a natural model is given in Listing 2.2.13.

Listing 2.2.13: Model for the 0/1 knapsack problem (`knapsack.mzn`).

```
enum ITEM;
int: capacity;

array[ITEM] of int: profits;
```
array[ITEM] of int: weights;

var set of ITEM: knapsack;

constraint sum (i in knapsack) (weights[i]) <= capacity;

solve maximize sum (i in knapsack) (profits[i]) ;

output ["knapsack = \{(knapsack)\n"];

Notice that the var keyword comes before the set declaration indicating that the set itself is the decision variable. This contrasts with an array in which the var keyword qualifies the elements in the array rather than the array itself since the basic structure of the array is fixed, i.e. its index set.

Listing 2.2.14: Model for the social golfers problems (social-golfers.mzn).

```mini
include "partition_set.mzn";
int: weeks; set of int: WEEK = 1..weeks;
int: groups; set of int: GROUP = 1..groups;
int: size; set of int: SIZE = 1..size;
int: ngolfers = groups*size;
set of int: GOLFER = 1..ngolfers;

array[WEEK, GROUP] of var set of GOLFER: Sched;

% constraints
constraint
 forall (i in WEEK, j in GROUP) (
 card(Sched[i,j]) = size
) /
 forall (i in WEEK) (
 partition_set([Sched[i,j] | j in GROUP], GOLFER)
) /
 forall (i in 1..weeks-1, j in i+1..weeks) (
 forall (x,y in GROUP) (
 card(Sched[i,x] intersect Sched[j,y]) <= 1
)
);
% symmetry
constraint
 % Fix the first week %
 forall (i in GROUP, j in SIZE) (
 ((i-1)*size + j) in Sched[1,i]
) /
 % Fix first group of second week %
 forall (i in SIZE) (
```
As a more complex example of set constraint consider the social golfers problem shown in Listing 2.2.14. The aim is to schedule a golf tournament over weeks using groups × size golfers. Each week we have to schedule groups different groups each of size size. No two pairs of golfers should ever play in two groups.

The variables in the model are sets of golfers Sched[i,j] for the ith week and jth group.

The constraints shown in lines 11-32 first enforces an ordering on the first set in each week to remove symmetry in swapping weeks. Next they enforce an ordering on the sets in each week, and make each set have a cardinality of size. They then ensure that each week is a partition of the set of golfers using the global constraint partition_set. Finally the last constraint ensures that no two players play in two groups together (since the cardinality of the intersection of any two groups is at most 1).

There are also symmetry breaking initialisation constraints shown in lines 34-46: the first week is fixed to have all players in order; the second week is made up of the first players of each of the first groups in the first week; finally the model forces the first size players to appear in their corresponding group number for the remaining weeks.

Executing the command

```
$ minizinc --solver gecode social-golfers.mzn social-golfers.dzn
```

where the data file defines a problem with 4 weeks, with 4 groups of size 3 leads to the output

```
1..3 4..6 7..9 10..12
{1,4,7} {2,9,12} {3,5,10} {6,8,11}
{1,6,9} {2,8,10} {3,4,11} {5,7,12}
{1,5,8} {2,7,11} {3,6,12} {4,9,10}

```

Notice how sets which are ranges may be output in range format.

### 2.2.7 Putting it all together

We finish this section with a complex example illustrating most of the features introduced in this chapter including enumerated types, complex constraints, global constraints, and complex
output.

Listing 2.2.15: Planning wedding seating using enumerated types (wedding.mzn).

```
enum Guests = { bride, groom, bestman, bridesmaid, bob, carol,
 ted, alice, ron, rona, ed, clara};
set of int: Seats = 1..12;
set of int: Hatreds = 1..5;
array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];
array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];
set of Guests: Males = {groom, bestman, bob, ted, ron, ed};
set of Guests: Females = {bride, bridesmaid, carol, alice, rona, clara};

array[Guests] of var Seats: pos; % seat of guest
array[Hatreds] of var Seats: p1; % seat of guest 1 in hatred
array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred
array[Hatreds] of var 0..1: sameside; % seats of hatred on same side
array[Hatreds] of var Seats: cost; % penalty of hatred

include "alldifferent.mzn";
constraint alldifferent(pos);
constraint forall(g in Males)(pos[g] mod 2 == 1);
constraint forall(g in Females)(pos[g] mod 2 == 0);
constraint not (pos[ed] in {1,6,7,12});
constraint abs(pos[bride] - pos[groom]) <= 1 /
 (pos[bride] <= 6 <-> pos[groom] <= 6);
constraint forall(h in Hatreds)(
 p1[h] = pos[h1[h]] /
 p2[h] = pos[h2[h]] /
 sameside[h] = bool2int(p1[h] <= 6 <-> p2[h] <= 6) /
 cost[h] = sameside[h] * abs(p1[h] - p2[h]) +
 (1 - sameside[h]) * (abs(13 - p1[h] - p2[h]) + 1));
solve maximize sum(h in Hatreds)(cost[h]);

output [show(g)++" ", s in Seats, g in Guests where fix(pos[g]) == s]
++ ["\n"];
```

The model of Listing 2.2.15 arranges seats at the wedding table. The table has 12 numbered seats in order around the table, 6 on each side. Males must sit in odd numbered seats, and females in even. Ed cannot sit at the end of the table because of a phobia, and the bride and groom must sit next to each other. The aim is to maximize the distance between known hatreds. The distance between seats is the difference in seat number if on the same side, otherwise its the distance to the opposite seat + 1.

Note that in the output statement we consider each seat s and search for a guest g who is assigned to that seat. We make use of the built in function fix which checks if a decision variable is fixed and returns its fixed value, and otherwise aborts. This is always safe to use in output statements, since by the time the output statement is run all decision variables should be fixed.

Running

```
2.2.7. Putting it all together
59
```
$ minizinc --solver gecode wedding.mzn

Results in the output

<table>
<thead>
<tr>
<th>ted</th>
<th>bride</th>
<th>groom</th>
<th>rona</th>
<th>bob</th>
<th>bridesmaid</th>
<th>bestman</th>
<th>clara</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The resulting table placement is illustrated in Fig. 2.2.2 where the lines indicate hatreds. The total distance is 22.

Fig. 2.2.2: Seating arrangement at the wedding table

Fix

In output items the built-in function `fix` checks that the value of a decision variable is fixed and coerces the instantiation from decision variable to parameter.
Predicates in MiniZinc allow us to capture complex constraints of our model in a succinct way. Predicates in MiniZinc are used to model with both predefined global constraints, and to capture and define new complex constraints by the modeller. Functions are used in MiniZinc to capture common structures of models. Indeed a predicate is just a function with output type \texttt{var bool}.

### 2.3.1 Global Constraints

There are many global constraints defined in MiniZinc for use in modelling. The definitive list is to be found in the documentation for the release, as the list is slowly growing. Below we discuss some of the most important global constraints.

#### 2.3.1.1 Alldifferent

The \texttt{alldifferent} constraint takes an array of variables and constrains them to take different values. A use of the \texttt{alldifferent} has the form

\[
\text{alldifferent(array[int] of var int: x)}
\]

The argument is an array of integer variables.

The \texttt{alldifferent} constraint is one of the most studied and used global constraints in constraint programming. It is used to define assignment subproblems, and efficient global propagators for \texttt{alldifferent} exist. The models \texttt{send-more-money.mzn} (Listing 2.2.4) and \texttt{sudoku.mzn} (Listing 2.2.5) are examples of models using \texttt{alldifferent}.

#### 2.3.1.2 Cumulative

The \texttt{cumulative} constraint is used for describing cumulative resource usage.
It requires that a set of tasks given by start times $s$, durations $d$, and resource requirements $r$, never require more than a global resource bound $b$ at any one time.

Listing 2.3.1: Model for moving furniture using cumulative (moving.mzn).

```plaintext
include "cumulative.mzn";

enum OBJECTS;
array[OBJECTS] of int: duration; % duration to move
array[OBJECTS] of int: handlers; % number of handlers required
array[OBJECTS] of int: trolleys; % number of trolleys required

int: available_handlers;
int: available_trolleys;
int: available_time;

array[OBJECTS] of var 0..available_time: start;
var 0..available_time: end;

constraint cumulative(start, duration, handlers, available_handlers);
constraint cumulative(start, duration, trolleys, available_trolleys);

constraint forall(o in OBJECTS)(start[o] + duration[o] <= end);

solve minimize end;

output ['"start = \nstart = ' start '\nend = \nend = ' end '\nend =\n"];
```

Listing 2.3.2: Data for moving furniture using cumulative (moving.dzn).

```plaintext
OBJECTS = {piano, fridge, doublebed, singlebed, wardrobe, chair1, chair2, table};

duration = [60, 45, 30, 30, 20, 15, 15, 15];
handlers = [3, 2, 2, 1, 2, 1, 1, 2];
trolleys = [2, 1, 2, 2, 0, 0, 1];

available_time = 180;
available_handlers = 4;
available_trolleys = 3;
```

The model in Listing 2.3.1 finds a schedule for moving furniture so that each piece of furniture has enough handlers (people) and enough trolleys available during the move. The available time, handlers and trolleys are given, and the data gives for each object the move duration, the number of handlers and the number of trolleys required. Using the data shown in ex-movingd, the command
may result in the output

```plaintext
start = [0, 60, 60, 90, 120, 0, 15, 105]
end = 140
```

Fig. 2.3.1 and Fig. 2.3.2 show the requirements for handlers and trolleys at each time in the move for this solution.

![Histogram of usage of handlers in the move.](image)

![Histogram of usage of trolleys in the move.](image)

### 2.3.1.3 Table

The table constraint enforces that a tuple of variables takes a value from a set of tuples. Since there are no tuples in MiniZinc this is encoded using arrays. The usage of table has one of the forms

```plaintext
table(array[int] of var bool: x, array[int, int] of bool: t)
table(array[int] of var int: x, array[int, int] of int: t)
```

depending on whether the tuples are Boolean or integer. The constraint enforces \( x \in t \) where we consider \( x \) and each row in \( t \) to be a tuple, and \( t \) to be a set of tuples.
Listing 2.3.3: Model for meal planning using table constraint (meal.mzn).

```plaintext
% Planning a balanced meal
include "table.mzn";
int: min_energy;
int: min_protein;
int: max_salt;
int: max_fat;
set of FOOD: desserts;
set of FOOD: mains;
set of FOOD: sides;
enum FEATURE = { name, energy, protein, salt, fat, cost};
enum FOOD;
array[FOOD,FEATURE] of int: dd; % food database

array[FEATURE] of var int: main;
array[FEATURE] of var int: side;
array[FEATURE] of var int: dessert;
var int: budget;

constraint main[name] in mains;
constraint side[name] in sides;
constraint dessert[name] in desserts;
constraint table(main, dd);
constraint table(side, dd);
constraint table(dessert, dd);
constraint main[energy] + side[energy] + dessert[energy] >= min_energy;
constraint main[salt] + side[salt] + dessert[salt] <= max_salt;
constraint budget = main[cost] + side[cost] + dessert[cost];

solve minimize budget;

output ["main = ",show(to_enum(FOOD,main[name])),",
 side = ",show(to_enum(FOOD,side[name])),
 dessert = ",show(to_enum(FOOD,dessert[name])),
 cost = "show(budget), "\n"];```

Listing 2.3.4: Data for meal planning defining the table used (meal.dzn).

```plaintext
FOODS = { icecream, banana, chocolatecake, lasagna,
    steak, rice, chips, brocolli, beans };

dd = [ |
    icecream, 1200, 50, 10, 120, 400 % icecream
    | banana, 800, 120, 5, 20, 120 % banana
    | chocolatecake, 2500, 400, 20, 100, 600 % chocolate cake
    | lasagna, 3000, 200, 100, 250, 450 % lasagna
    | steak, 1800, 800, 50, 100, 1200 % steak
```
The model in Listing 2.3.3 searches for balanced meals. Each meal item has a name (encoded as an integer), a kilojoule count, protein in grams, salt in milligrams, and fat in grams, as well as cost in cents. The relationship between these items is encoded using a table constraint. The model searches for a minimal cost meal which has a minimum kilojoule count \(\text{min_energy}\), a minimum amount of protein \(\text{min_protein}\), maximum amount of salt \(\text{max_salt}\) and fat \(\text{max_fat}\).

2.3.1.4 Regular

The \textit{regular} constraint is used to enforce that a sequence of variables takes a value defined by a finite automaton. The usage of \textit{regular} has the form

\[
\text{regular}(\text{array[int] of var int: } x, \text{ int: } Q, \text{ int: } S, \\
\text{ array[int,int] of int: } d, \text{ int: } q_0, \text{ set of int: } F)
\]

It constrains that the sequence of values in array \(x\) (which must all be in the range 1..\(S\)) is accepted by the DFA of \(Q\) states with input 1..\(S\) and transition function \(d\) (which maps \(<1..Q, 1..S>\) to 0..\(Q\)) and initial state \(q_0\) (which must be in 1..\(Q\)) and accepting states \(F\) (which all must be in 1..\(Q\)). State 0 is reserved to be an always failing state.

Consider a nurse rostering problem. Each nurse is scheduled for each day as either: (d) on day shift, (n) on night shift, or (o) off. In each four day period a nurse must have at least one day off, and no nurse can be scheduled for 3 night shifts in a row. This can be encoded using the incomplete DFA shown in Fig. 2.3.3. We can encode this DFA as having start state 1, final states 1..6, and transition function

\[
\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 4 \\
3 & 4 & 5 \\
4 & 6 & 6 \\
5 & 6 & 0 \\
6 & 0 & 0 \\
\end{array}
\]

Note that state 0 in the table indicates an error state. The model shown in Listing 2.3.5 finds a schedule for \textit{num_nurses} nurses over \textit{num_days} days, where we require \textit{req_day} nurses on day
Fig. 2.3.3: A DFA determining correct rosters.
shift each day, and \(\text{req_night}\) nurses on night shift, and that each nurse takes at least \(\text{min_night}\) night shifts.

Listing 2.3.5: Model for nurse rostering using regular constraint (nurse.mzn)

```plaintext
% Simple nurse rostering
include "regular.mzn";
enum NURSE;
enum DAY;
int: req_day;
int: req_night;
int: min_night;

enum SHIFT = { d, n, o };
int: S = card(SHIFT);

int: Q = 6; int: q0 = 1; set of int: STATE = 1..Q;
array[STATE,SHIFT] of int: t =
  [[2,3,1], % state 1
   [4,4,1], % state 2
   [4,5,1], % state 3
   [6,6,1], % state 4
   [6,0,1], % state 5
   [0,0,1]]; % state 6

array[NURSE,DAY] of var SHIFT: roster;

costRAINT forall(j in SHIFT):
        sum(i in NURSE)(roster[i,j] == d) == req_day /
    sum(i in NURSE)(roster[i,j] == n) == req_night;

costRAINT forall(i in NURSE):
        regular([roster[i,j] | j in DAY], Q, S, t, q0, STATE) /
    sum(j in DAY)(roster[i,j] == n) >= min_night;

solve satisfy;

output [ show(roster[i,j]) ++ if j==card(DAY) then "\n" else " " endif |
          i in NURSE, j in DAY ];
```

Running the command

```
$ minizinc nurse.mzn nurse.dzn
```

finds a 10 day schedule for 7 nurses, requiring 3 on each day shift and 2 on each night shift, with a minimum 2 night shifts per nurse. A possible output is

2.3.1. Global Constraints
There is an alternate form of the regular constraint `regular_nfa` which specifies the regular expression using an NFA (without ϵ arcs). This constraint has the form

```
regular_nfa(array[int] of var int: x, int: Q, int: S,
            array[int,int] of set of int: d, int: q0, set of int: F)
```

It constrains that the sequence of values in array x (which must all be in the range $1..S$) is accepted by the NFA of Q states with input $1..S$ and transition function d (which maps \(<1..Q, 1..S>\) to subsets of $1..Q$) and initial state $q0$ (which must be in $1..Q$) and accepting states F (which all must be in $1..Q$). There is no need for a failing state 0, since the transition function can map to an empty set of states.

2.3.2 Defining Predicates

One of the most powerful modelling features of MiniZinc is the ability for the modeller to define their own high-level constraints. This allows them to abstract and modularise their model. It also allows re-use of constraints in different models and allows the development of application specific libraries defining the standard constraints and types.

Listing 2.3.6: Model for job shop scheduling using predicates (jobshop2.mzn)

```mini
int: jobs; % no of jobs
set of int: JOB = 1..jobs;
int: tasks; % no of tasks per job
set of int: TASK = 1..tasks;
array [JOB,TASK] of int: d; % task durations
int: total = sum(i in JOB, j in TASK)(d[i,j]); % total duration
int: digs = ceil(log(10.0,total)); % digits for output
array [JOB,TASK] of var 0..total: s; % start times
var 0..total: end; % total end time

% nooverlap
predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =
    s1 + d1 <= s2 \/ s2 + d2 <= s1;

constraint % ensure the tasks occur in sequence
    forall(i in JOB) (forall(j in 1..tasks-1)
        (s[i,j] + d[i,j] <= s[i,j+1]) \/
    
```
We start with a simple example, revisiting the job shop scheduling problem from the previous section. The model is shown in Listing 2.3.6. The item of interest is the predicate item:

```plaintext
predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =
    s1 + d1 <= s2 \ s2 + d2 <= s1;
```

This defines a new constraint that enforces that a task with start time \(s1 \) and duration \(d1 \) does not overlap with a task with start time \(s2 \) and duration \(d2 \). This can now be used inside the model anywhere any other Boolean expression (involving decision variables) can be used.

As well as predicates the modeller can define new constraints that only involve parameters. These are useful to write fixed tests for a conditional expression. These are defined using the keyword `test`. For example

```plaintext
test even(int:x) = x mod 2 = 0;
```
Predicate definitions

Predicates are defined by a statement of the form

```
predicate <pred-name> ( <arg-def>, ..., <arg-def> ) = <bool-exp>
```

The `<pred-name>` must be a valid MiniZinc identifier, and each `<arg-def>` is a valid MiniZinc type declaration. One relaxation of argument definitions is that the index types for arrays can be unbounded, written `int`.

```
test <pred-name> ( <arg-def>, ..., <arg-def> ) = <bool-exp>
```

The `<bool-exp>` of the body must be fixed. We also introduce a new form of the `assert` command for use in predicates.

```
assert ( <bool-exp>, <string-exp>, <exp> )
```

The type of the `assert` expression is the same as the type of the last argument. The `assert` expression checks whether the first argument is false, and if so prints the second argument string. If the first argument is true it returns the third argument.

Note that assert expressions are lazy in the third argument, that is if the first argument is false they will not be evaluated. Hence, they can be used for checking:

```
predicate lookup(array[int] of var int:x, int: i, var int: y) =
    assert(i in index_set(x), "index out of range in lookup"
    y = x[i]
); 
```

This code will not evaluate `x[i]` if `i` is out of the range of the array `x`.

2.3.3 Defining Functions

Functions are defined in MiniZinc similarly to predicates, but with a more general return type. The function below defines the index in a Sudoku matrix of the `a`th row (or column) of the `a`th subsquare.

```
function int: posn(int: a, int: a1) = (a-1) * S + a1;
```

With this definition we can replace the last constraint in the Sudoku problem shown in Listing 2.2.5 by

```
constraint forall(a, o in SubSquareRange)(
    alldifferent([ puzzle [ posn(a,a1), posn(o,o1) ] |
        a1, o1 in SubSquareRange ])); 
```
Functions are useful for encoding complex expressions that are used frequently in the model. For example, imagine placing the numbers 1 to \(n \) in different positions in an \(n \times n \) grid such that the Manhattan distance between any two numbers \(i \) and \(j \) is greater than the maximum of the two numbers minus 1. The aim is to minimize the total of the Manhattan distances between the pairs. The Manhattan distance function can be expressed as:

\[
\text{function } \text{var int: manhattan(var int: x1, var int: y1, var int: x2, var int: y2) = abs(x1 - x2) + abs(y1 - y2);}
\]

The complete model is shown in Listing 2.3.7.

Listing 2.3.7: Model for a number placement problem illustrating the use of functions (manhattan.mzn).

```mzn
int: n;
set of int: NUM = 1..n;

array[NUM] of var NUM: x;
array[NUM] of var NUM: y;
array[NUM,NUM] of var 0..2*n-2: dist =
    array2d(NUM,NUM,[
        if i < j then manhattan(x[i],y[i],x[j],y[j]) else 0 endif
        | i,j in NUM ]);

% manf
function var int: manhattan(var int: x1, var int: y1, var int: x2, var int: y2) =
    abs(x1 - x2) + abs(y1 - y2);

costume forall(i,j in NUM where i < j)
    (dist[i,j] >= max(i,j)-1);

var int: obj = sum(i,j in NUM where i < j)(dist[i,j]);
solve minimize obj;

% simply to display result
include "alldifferent_except_0.mzn";
array[NUM,NUM] of var 0..n: grid;
constraint forall(i in NUM)(grid[x[i],y[i]] = i);
constraint alldifferent_except_0([grid[i,j] | i,j in NUM]);

output ["obj = \(\$(obj)\);\n"
    | if fix(grid[i,j]) > 0 then show(grid[i,j]) else "." endif
    ++ if j = n then "\n" else " " endif
    | i,j in NUM ];
```

2.3.3. Defining Functions
Function definitions

Functions are defined by a statement of the form

```
function <ret-type> : <func-name> ( <arg-def>, ..., <arg-def> ) = <exp>
```

The `<func-name>` must be a valid MiniZinc identifier, and each `<arg-def>` is a valid MiniZinc type declaration. The `<ret-type>` is the return type of the function which must be the type of `<exp>`. Arguments have the same restrictions as in predicate definitions.

Functions in MiniZinc can have any return type, not just fixed return types. Functions are useful for defining and documenting complex expressions that are used multiple times in a model.

2.3.4 Reflection Functions

To help write generic tests and predicates, various reflection functions return information about array index sets, var set domains and decision variable ranges. Those for index sets are `index_set(<1-D array>)`, `index_set_1of2(<2-D array>)`, `index_set_2of2(<2-D array>)`, and so on for higher dimensional arrays.

A better model of the job shop conjoins all the non-overlap constraints for a single machine into a single disjunctive constraint. An advantage of this approach is that while we may initially model this simply as a conjunction of non-overlap constraints, if the underlying solver has a better approach to solving disjunctive constraints we can use that instead, with minimal changes to our model. The model is shown in Listing 2.3.8.

Listing 2.3.8: Model for job shop scheduling using disjunctive predicate (jobshop3.mzn).

```plaintext
include "disjunctive.mzn";

int: jobs; % no of jobs
set of int: JOB = 1..jobs;
int: tasks; % no of tasks per job
set of int: TASK = 1..tasks;
array [JOB,TASK] of int: d; % task durations
int: total = sum(i in JOB, j in TASK)(d[i,j]); % total duration
int: digs = ceil(log(10.0,total)); % digits for output
array [JOB,TASK] of var 0..total: s; % start times
var 0..total: end; % total end time

constraint % ensure the tasks occur in sequence
  forall(i in JOB) (%
    forall(j in 1..tasks-1)
      (s[i,j] + d[i,j] <= s[i,j+1]) \/
      s[i,tasks] + d[i,tasks] <= end
    );

constraint % ensure no overlap of tasks
  forall(j in TASK) (%
```
The disjunctive constraint takes an array of start times for each task and an array of their durations and makes sure that only one task is active at any one time. We define the disjunctive constraint as a predicate with signature

```plaintext
predicate disjunctive(array[int] of var int: s, array[int] of int: d);
```

We can use the disjunctive constraint to define the non-overlap of tasks as shown in Listing 2.3.8. We assume a definition for the disjunctive predicate is given by the file disjunctive.mzn which is included in the model. If the underlying system supports disjunctive directly, it will include a file disjunctive.mzn in its globals directory (with contents just the signature definition above). If the system we are using does not support disjunctive directly we can give our own definition by creating the file disjunctive.mzn. The simplest implementation simply makes use of the no_overlap predicate defined above. A better implementation is to make use of a global cumulative constraint assuming it is supported by the underlying solver. Listing 2.3.9 shows an implementation of disjunctive. Note how we use the index_set reflection function to (a) check that the arguments to disjunctive make sense, and (b) construct the array of resource utilisation of the appropriate size for cumulative. Note also that we use a ternary version of assert here.

Listing 2.3.9: Defining a disjunctive predicate using cumulative (disjunctive.mzn).

```plaintext
include "cumulative.mzn";

predicate disjunctive(array[int] of var int: s, array[int] of int: d) =
    assert(index_set(s) == index_set(d), "disjunctive: " ++
    "first and second arguments must have the same index set",
    cumulative(s, d, [ 1 | i in index_set(s) ], 1))
);
```

2.3.5 Local Variables

It is often useful to introduce local variables in a predicate, function or test. The let expression allows you to do so. It can be used to introduce both decision variables and parameters, but parameters must be initialised. For example:

```plaintext
var s..e: x;
let {int: l = s div 2; int: u = e div 2; var l .. u: y;} in x = 2*y
```
introduces parameters l and u and variable y. While most useful in predicate, function and test definitions, let expressions can also be used in other expressions, for example for eliminating common subexpressions:

```minizinc
constraint let \{ var int: s = x1 + x2 + x3 + x4 \} in
 l <= s \land s <= u;
```

Local variables can be used anywhere and can be quite useful for simplifying complex expressions. Listing 2.3.10 gives a revised version of the wedding model, using local variables to define the objective function, rather than adding lots of variables to the model explicitly.

Listing 2.3.10: Using local variables to define a complex objective function (wedding2.mzn).

```minizinc
enum Guests = { bride, groom, bestman, bridesmaid, bob, carol, 
    ted, alice, ron, rona, ed, clara};
set of int: Seats = 1..12;
set of int: Hatreds = 1..5;
array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];
array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];
set of Guests: Males = {groom, bestman, bob, ted, ron,ed};
set of Guests: Females = {bride, bridesmaid, carol, alice, rona, clara};

array[Guests] of var Seats: pos; % seat of guest

include "alldifferent.mzn";
constraint alldifferent(pos);

constraint forall(g in Males)( pos[g] mod 2 == 1 );
constraint forall(g in Females)( pos[g] mod 2 == 0 );

constraint not (pos[ed] in {1,6,7,12});
constraint abs(pos[bride] - pos[groom]) <= 1 \land
    (pos[bride] <= 6 <-> pos[groom] <= 6);

solve maximize sum(h in Hatreds)(
    let \{ var Seats: p1 = pos[h1[h]]; 
        var Seats: p2 = pos[h2[h]]; 
        var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6); \} in
        same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1));

output [ show(g)++" " | s in Seats, g in Guests where fix(pos[g]) == s ]
    ++ ["\n"];
```

Using let expressions, it is possible to define a function whose result is not well-defined. For example, we could write the following:

```minizinc
function var int: x_or_x_plus_1(var int: x) = let { 
    var 0..1: y;
} in x+y; % result is not well-defined!
```
The result, \(x + y\), is indeed not functionally defined by the argument of the function, \(x\). The MiniZinc compiler does not detect this, and the behaviour of the resulting model is undefined. In particular, calling this function twice with the same argument may or may not return the same result. It is therefore important to make sure that any function you define is indeed a function!

If you need non-deterministic behaviour, use a predicate:

```mini
predicate x_or_x_plus_1(var int: x, var int: z) = let {
    var 0..1: y;
} in z=x+y;
```

2.3.6 Context

One limitation is that predicates and functions containing decision variables that are not initialised in the declaration cannot be used inside a negative context. The following is illegal:

```mini
predicate even(var int:x) =
    let { var int: y } in x = 2 * y;

constraint not even(z);
```

The reason for this is that solvers only solve existentially constrained problems, and if we introduce a local variable in a negative context, then the variable is universally quantified and hence out of scope of the underlying solvers. For example the \(\neg\)even\(\) is equivalent to \(\exists y. z = 2y\) which is equivalent to \(\forall y. z \neq 2y\).

If local variables are given values, then they can be used in negative contexts. The following is legal

```mini
predicate even(var int:x) =
    let { var int: y = x div 2; } in x = 2 * y;

constraint not even(z);
```

Note that the meaning of even is correct, since if \(x\) is even then \(x = 2 * (x \div 2)\). Note that for this definition \(\neg\)even\(\) is equivalent to \(\exists y. y = z \div 2 \land z = 2y\) which is equivalent to \(\exists y. y = z \div 2 \land \neg z \neq 2y\), because \(y\) is functionally defined by \(z\).

Every expression in MiniZinc appears in one of the four contexts: root, positive, negative, or mixed. The context of a non-Boolean expression is simply the context of its nearest enclosing Boolean expression. The one exception is that the objective expression appears in a root context (since it has no enclosing Boolean expression).

For the purposes of defining contexts we assume implication expressions \(e_1 \rightarrow e_2\) are rewritten equivalently as \(\not e_1 \lor e_2\), and similarly \(e_1 \leftarrow e_2\) is rewritten as \(e_1 \lor \not e_2\).

The context for a Boolean expression is given by:

- **root** root context is the context for any expression \(e\) appearing as the argument of \(\text{constraint}\) or as an assignment item, or appearing as a sub expression \(e_1\) or \(e_2\) in an expression \(e_1 \lor e_2\) occurring in a root context.
Root context Boolean expressions must hold in any model of the problem.

positive positive context is the context for any expression appearing as a sub expression \(e_1 \) or \(e_2 \) in an expression \(e_1 \lor e_2 \) occurring in a root or positive context, appearing as a sub expression \(e_1 \) or \(e_2 \) in an expression \(e_1 \lor e_2 \) occurring in a positive context, or appearing as a sub expression \(e \) in an expression \(\neg e \) appearing in a negative context.

Positive context Boolean expressions need not hold in a model, but making them hold will only increase the possibility that the enclosing constraint holds. A positive context expression has an even number of negations in the path from the enclosing root context to the expression.

negative negative context is the context for any expression appearing as a sub expression \(e_1 \) or \(e_2 \) in an expression \(e_1 \lor e_2 \) or \(e_1 \land e_2 \) occurring in a negative context, or appearing as a sub expression \(e \) in an expression \(\neg e \) appearing in a positive context.

Negative context Boolean expressions need not hold in a model, but making them false will increase the possibility that the enclosing constraint holds. A negative context expression has an odd number of negations in the path from the enclosing root context to the expression.

mixed mixed context is the context for any Boolean expression appearing as a subexpression \(e_1 \) or \(e_2 \) in \(e_1 \leftrightarrow e_2 \), \(e_1 = e_2 \), or \(\text{bool2int}(e) \).

Mixed context expressions are effectively both positive and negative. This can be seen from the fact that \(e_1 \leftrightarrow e_2 \) is equivalent to \((e_1 \land e_2) \lor (\neg e_1 \land \neg e_2) \) and \(x = \text{bool2int}(e) \) is equivalent to \((e \land x=1) \lor (\neg e \land x=0) \).

Consider the code fragment

```plaintext
constraint x > 0 \lor (i <= 4 -> x + \text{bool2int}(x > i) = 5);
```

then \(x > 0 \) is in the root context, \(i <= 4 \) is in a negative context, \(x + \text{bool2int}(x > i) = 5 \) is in a positive context, and \(x > i \) is in a mixed context.

2.3.7 Local Constraints

Let expressions can also be used to include local constraints, usually to constrain the behaviour of local variables. For example, consider defining an integer square root function making use of only multiplication:

```plaintext
function var int: mysqrt(var int:x) =
  let { var 0..infinity: y;
    constraint x = y * y;
  } in y;
```

The local constraints ensure \(y \) takes the correct value; which is then returned by the function.

Local constraints can be used in any let expression, though the most common usage is in defining functions. A function with local constraints is often *partial*, which means that it is not defined for all possible inputs. For example, the `mysqrt` function above constrains its argument \(x \) to take a value that is in fact the square of an integer. The MiniZinc compiler handles these cases according to the *relational semantics*, which means that the result of applying a partial function may become false in its enclosing Boolean context. For example, consider the following model:
Clearly, the intention of the modeller is that \(x=3 \), \(y=0 \) should be a solution. This requires the compiler to take care not to “lift” the constraint \(x=y\times y \) out of the context of the function, because that would prevent it from finding any solution with \(x=3 \). You can verify that the set of solutions contains \(x=3 \), \(y=0 \) as well as the expected \(x=1 \), \(y=1 \), \(x=4 \), \(y=2 \) and \(x=9 \), \(y=3 \).

If you define a total function using local constraints, you can give the compiler a hint that allows it to produce more efficient code. For example, you could write the square function (not square root, note the subtle difference) as follows:

```plaintext
function var int: mysqr(var int: x) ::promise_total =
let { var 0..infinity: y;
    constraint y = x * x; } in y;
```

This function is indeed defined for any input value \(x \). The ::promise_total annotation tells the compiler that it can safely lift all local constraints out of the context of the function call.

Let expressions

Local variables can be introduced in any expression with a let expression of the form:

```plaintext
let { <dec>; ... <dec> ; } in <exp>
```

The declarations <dec> can be declarations of decision variables and parameters (which must be initialised) or constraint items. No declaration can make use of a newly declared variable before it is introduced.

Note that local variables and constraints cannot occur in tests. Local variables cannot occur in predicates or functions that appear in a negative or mixed context, unless the variable is defined by an expression.

2.3.8 Domain Reflection Functions

Other important reflection functions are those that allow us to access the domains of variables. The expression \(\text{lb}(x) \) returns a value that is lower than or equal to any value that \(x \) may take in a solution of the problem. Usually it will just be the declared lower bound of \(x \). If \(x \) is declared as a non-finite type, e.g. simply \text{var int} then it is an error. Similarly the expression \(\text{dom}(x) \) returns a (non-strict) superset of the possible values of \(x \) in any solution of the problem. Again it is usually the declared values, and again if it is not declared as finite then there is an error.

Listing 2.3.11: Using reflection predicates (reflection.mzn).

```plaintext
var -10..10: x;
constraint x in 0..4;
int: y = lb(x);
set of int: D = dom(x);
```
solve satisfy;
output ["y = ", show(y), "\nD = ", show(D), "\n"];

For example, the model show in Listing 2.3.11 may output

\[
\begin{align*}
y &= -10 \\
D &= -10..10
\end{align*}
\]

or

\[
\begin{align*}
y &= 0 \\
D &= \{0, 1, 2, 3, 4\}
\end{align*}
\]

or any answer with $-10 \leq y \leq 0$ and $\{0, \ldots, 4\} \subseteq D \subseteq \{-10, \ldots, 10\}$.

Variable domain reflection expressions should be used in a manner where they are correct for any safe approximations, but note this is not checked! For example the additional code

\[
\begin{align*}
\text{var } -10..10: \ z; \\
\text{constraint } z \leq y;
\end{align*}
\]

is not a safe usage of the domain information. Since using the tighter (correct) approximation leads to more solutions than the weaker initial approximation.

Domain reflection

There are reflection functions to interrogate the possible values of expressions containing variables:

- \(\text{dom}(\text{<exp>}) \) returns a safe approximation to the possible values of the expression.
- \(\text{lb}(\text{<exp>}) \) returns a safe approximation to the lower bound value of the expression.
- \(\text{ub}(\text{<exp>}) \) returns a safe approximation to the upper bound value of the expression.

The expressions for \(\text{lb} \) and \(\text{ub} \) can only be of types int, bool, float or set of int. For \(\text{dom} \) the type cannot be float. If one of the variables appearing in \(\text{<exp>} \) has a non-finite declared type (e.g. \text{var int} or \text{var float}) then an error can occur.

There are also versions that work directly on arrays of expressions (with similar restrictions):

- \(\text{dom}_{\text{array}}(\text{<array-exp>}) \): returns a safe approximation to the union of all possible values of the expressions appearing in the array.
- \(\text{lb}_{\text{array}}(\text{<array-exp>}) \) returns a safe approximation to the lower bound of all expressions appearing in the array.
- \(\text{ub}_{\text{array}}(\text{<array-exp>}) \) returns a safe approximation to the upper bound of all expressions appearing in the array.

The combinations of predicates, local variables and domain reflection allows the definition of complex global constraints by decomposition. We can define the time based decomposition of the \text{cumulative} constraint using the code shown in Listing 2.3.12.
Listing 2.3.12: Defining a cumulative predicate by decomposition (cumulative.mzn).

```minizinc
cumulative(array[int] of var int: s, array[int] of var int: d, array[int] of var int: r, var int: b) =
assert(index_set(s) == index_set(d) \/
    index_set(s) == index_set(r),
    "cumulative: the array arguments must have identical index sets",
assert(lb_array(d) >= 0 \/
    lb_array(r) >= 0,
    "cumulative: durations and resource usages must be non-negative",
let {
    set of int: times =
    lb_array(s) ..
    max([ ub(s[i]) + ub(d[i]) | i in index_set(s) ])
} in
forall( t in times ) (b >= sum( i in index_set(s) ) (bool2int( s[i] <= t \ t < s[i] + d[i] ) * r[i]))
);```

The decomposition uses $lb$ and $ub$ to determine the set of times $times$ over which tasks could range. It then asserts for each time $t$ in $times$ that the sum of resources for the active tasks at time $t$ is less than the bound $b$.

### 2.3.9 Scope

It is worth briefly mentioning the scope of declarations in MiniZinc. MiniZinc has a single namespace, so all variables appearing in declarations are visible in every expression in the model. MiniZinc introduces locally scoped variables in a number of ways:

- as iterator variables in comprehension expressions
- using `let` expressions
- as predicate and function arguments

Any local scoped variable overshadows the outer scoped variables of the same name.
Listing 2.3.13: A model for illustrating scopes of variables (scope.mzn).

```
int: x = 3;
int: y = 4;
predicate smallx(var int:y) = -x <= y \Ax y <= x;
predicate p(int: u, var bool:y) =
 exists(x in 1..u)(y \Ax smallx(x));
constraint p(x,false);
solve satisfy;
```

For example, in the model shown in Listing 2.3.13 the \( x \) in \(-x \leq y\) is the global \( x \), the \( x \) in \( \text{smallx}(x) \) is the iterator \( x \) in \( 1..u \), while the \( y \) in the disjunction is the second argument of the predicate.
CHAPTER 2.4

Option Types

Option types are a powerful abstraction that allows for concise modelling. An option type decision variable represents a decision that has another possibility $\top$, represented in MiniZinc as $\langle$ indicating the variable is absent. Option type decisions are useful for modelling problems where a decision is not meaningful unless other decisions are made first.

2.4.1 Declaring and Using Option Types

An option type variable is declared as:

```
var opt <type> : <var-name>;
```

where `<type>` is one of `int`, `float` or `bool` or a fixed range expression. Option type variables can be parameters but this is rarely useful.

An option type variable can take the additional value $\langle$ indicating absent.

Three built-in functions are provided for option type variables: `absent(v)` returns true iff option type variable `v` takes the value $\langle$, `occurs(v)` returns true iff option type variable `v` does not take the value $\langle$, and `deopt(v)` returns the normal value of `v` or fails if it takes the value $\langle$.

The most common use of option types is for optional tasks in scheduling. In the flexible job shop scheduling problem we have $n$ tasks to perform on $k$ machines, and the time to complete each task on each machine may be different. The aim is to minimize the completion time of all tasks. A model using option types to encode the problem is given in Listing 2.4.1. We model the problem using $n \times k$ optional tasks representing the possibility of each task run on each machine. We require that start time of the task and its duration spans the optional tasks that make it up, and require only one actually runs using the alternative global constraint. We require that at most one task runs on any machine using the disjunctive global constraint extended to optional
tasks. Finally we constrain that at most \( k \) tasks run at any time, a redundant constraint that holds on the actual (not optional) tasks.

Listing 2.4.1: Model for flexible job shop scheduling using option types (flexible-js.mzn).

```plaintext
int: horizon; % time horizon
set of int: Time = 0..horizon;
enum Task;
enum Machine;

array[Task,Machine] of int: d; % duration on each machine
int: maxd = max([d[t,m] | t in Task, m in Machine]);
int: mind = min([d[t,m] | t in Task, m in Machine]);

array[Task] of var Time: S; % start time
array[Task] of var mind..maxd: D; % duration
array[Task,Machine] of var opt Time: O; % optional task start

constraint forall(t in Task)(alternative(S[t],D[t],
 [O[t,m]|m in Machine],[d[t,m]|m in Machine]));
constraint forall(m in Machine)
 (disjunctive([O[t,m]|t in Task],[d[t,m]|t in Task]));
constraint cumulative(S,D,[1|i in Task],k);
solve minimize max(t in Task)(S[t] + D[t]);
```

2.4.2 Hidden Option Types

Option type variable arise implicitly when list comprehensions are constructed with iteration over variable sets, or where the expressions in `where` clauses are not fixed.

For example the model fragment

```plaintext
var set of 1..n: x;
constraint sum(i in x)(i) <= limit;
```

is syntactic sugar for

```plaintext
var set of 1..n: x;
constraint sum(i in 1..n)(if i in x then i else <> endif) <= limit;
```

The `sum` builtin function actually operates on a list of type-inst `var opt int`. Since the `<>` acts as the identity 0 for + this gives the expected results.

Similarly the model fragment

```plaintext
```
array[1..n] of var int: x;
constraint forall(i in 1..n where x[i] >= 0)(x[i] <= limit);

is syntactic sugar for

array[1..n] of var int: x;
constraint forall(i in 1..n)(if x[i] >= 0 then x[i] <= limit else <> endif);

Again the **forall** function actually operates on a list of type-inst `var opt bool`. Since <> acts as identity true for /\ this gives the expected results.

The hidden uses can lead to unexpected behaviour though so care is warranted. Consider

```
var set of 1..9: x;
constraint card(x) <= 4;
constraint length([i | i in x]) > 5;
solve satisfy;
```

which would appear to be unsatisfiable. It returns `x = {1,2,3,4}` as example answer. This is correct since the second constraint is equivalent to

```
constraint length([if i in x then i else <> endif | i in 1..9]) > 5;
```

and the length of the list of optional integers is always 9 so the constraint always holds!

One can avoid hidden option types by not constructing iteration over variables sets or using unfixed where clauses. For example the above two examples could be rewritten without option types as

```
var set of 1..n: x;
constraint sum(i in 1..n)(bool2int(i in x)*i) <= limit;
```

and

```
array[1..n] of var int: x;
constraint forall(i in 1..n)(x[i] >= 0 -> x[i] <= limit);
```
By default in MiniZinc there is no declaration of how we want to search for solutions. This leaves the search completely up to the underlying solver. But sometimes, particularly for combinatorial integer problems, we may want to specify how the search should be undertaken. This requires us to communicate to the solver a search strategy. Note that the search strategy is not really part of the model. Indeed it is not required that each solver implements all possible search strategies. MiniZinc uses a consistent approach to communicating extra information to the constraint solver using annotations.

### 2.5.1 Finite Domain Search

Search in a finite domain solver involves examining the remaining possible values of variables and choosing to constrain some variables further. The search then adds a new constraint that restricts the remaining values of the variable (in effect guessing where the solution might lie), and then applies propagation to determine what other values are still possible in solutions. In order to guarantee completeness, the search leaves another choice which is the negation of the new constraint. The search ends either when the finite domain solver detects that all constraints are satisfied, and hence a solution has been found, or that the constraints are unsatisfiable. When unsatisfiability is detected the search must proceed down a different set of choices. Typically finite domain solvers use depth first search where they undo the last choice made and then try to make a new choice.

**Listing 2.5.1: Model for n-queens (nqueens.mzn).**

```plaintext
int: n;
array [1..n] of var 1..n: q; % queen is column i is in row q[i]

include "alldifferent.mzn";

constraint alldifferent(q); % distinct rows
constraint alldifferent([q[i] + i | i in 1..n]); % distinct diagonals
```
A simple example of a finite domain problem is the $n$ queens problem which requires that we place $n$ queens on an $n \times n$ chessboard so that none can attack another. The variable $q[i]$ records in which row the queen in column $i$ is placed. The `alldifferent` constraints ensure that no two queens are on the same row, or diagonal. A typical (partial) search tree for $n = 9$ is illustrated in Fig. 2.5.1. We first set $q[1] = 1$, this removes values from the domains of other variables, so that e.g. $q[2]$ cannot take the values 1 or 2. We then set $q[2] = 3$, this further removes values from the domains of other variables. We set $q[3] = 5$ (its earliest possible value). The state of the chess board after these three decisions is shown in Fig. 2.5.2 where the queens indicate the position of the queens fixed already and the stars indicate positions where we cannot place a queen since it would be able to take an already placed queen.
Fig. 2.5.2: The state after the addition of $q[1] = 1$, $q[2] = 4$, $q[3] = 5$
Fig. 2.5.3: The initial propagation on adding further \( q[6] = 4 \)
the simple strategy of picking the first variable which is not fixed yet, and try to set it to its least possible value. Following this strategy the next decision would be \( q[4] = 7 \). An alternate strategy for variable selection is to choose the variable whose current set of possible values (domain) is smallest. Under this so called first-fail variable selection strategy the next decision would be \( q[6] = 4 \). If we make this decision, then initially propagation removes the additional values shown in Fig. 2.5.3. But this leaves only one value for \( q[8] \), \( q[8] = 7 \), so this is forced, but then this leaves only one possible value for \( q[7] \) and \( q[9] \), that is 2. Hence a constraint must be violated. We have detected unsatisfiability, and the solver must backtrack undoing the last decision \( q[6] = 4 \) and adding its negation \( q[6] \neq 4 \) (leading us to state (c) in the tree in Fig. 2.5.1) which forces \( q[6] = 8 \). This removes some values from the domain and then we again reinvoke the search strategy to decide what to do.

Many finite domain searches are defined in this way: choose a variable to constrain further, and then choose how to constrain it further.

### 2.5.2 Search Annotations

Search annotations in MiniZinc specify how to search in order to find a solution to the problem. The annotation is attached to the solve item, after the keyword solve. The search annotation

```plaintext
solve :: int_search(q, first_fail, indomain_min)
satisfy;
```

appears on the solve item. Annotations are attached to parts of the model using the connector ::. This search annotation means that we should search by selecting from the array of integer variables \( q \), the variable with the smallest current domain (this is the first_fail rule), and try setting it to its smallest possible value (indomain_min value selection).
Basic search annotations

There are three basic search annotations corresponding to different basic variable types:

- `int_search(<variables>, <varchoice>, <constrainchoice> )` where `<variables>` is a one dimensional array of `var int`, `<varchoice>` is a variable choice annotation discussed below, `<constrainchoice>` is a choice of how to constrain a variable, discussed below.
- `bool_search(<variables>, <varchoice>, <constrainchoice> )` where `<variables>` is a one dimensional array of `var bool` and the rest are as above.
- `set_search(<variables>, <varchoice>, <constrainchoice> )` where `<variables>` is a one dimensional array of `var set of int` and the rest are as above.
- `float_search(<variables>, <precision>, <varchoice>, <constrainchoice> )` where `<variables>` is a one dimensional array of `var float`, `<precision>` is a fixed float specifying the $\epsilon$ below which two float values are considered equal, and the rest are as above.

Example variable choice annotations are:

- `input_order`: choose in order from the array
- `first_fail`: choose the variable with the smallest domain size, and
- `smallest`: choose the variable with the smallest value in its domain.
- `dom_w_deg`: choose the variable with the smallest value of domain size divided by weighted degree, which is the number of times it has been in a constraint that caused failure earlier in the search.

Example ways to constrain a variable are:

- `indomain_min`: assign the variable its smallest domain value,
- `indomain_median`: assign the variable its median domain value,
- `indomain_random`: assign the variable a random value from its domain, and
- `indomain_split` bisect the variables domain excluding the upper half.

For backwards compatibility with older version of MiniZinc, the search annotations can be called with an additional argument that represents the search strategy to use. The only such strategy that is currently supported is `complete`, meaning an exhaustive exploration of the search space. With the additional argument, an annotation might then look like this: `::int_search(x, input_order, indomain_min, complete).

For a complete list of variable and constraint choice annotations see the FlatZinc specification in the MiniZinc reference documentation.

We can construct more complex search strategies using search constructor annotations. There is only one such annotation at present:

```
seq_search([<search-ann>, ..., <search-ann>])
```

The sequential search constructor first undertakes the search given by the first annotation in its list, when all variables in this annotation are fixed it undertakes the second search annotation, etc. until all search annotations are complete.

Consider the jobshop scheduling model shown in Listing 2.3.8. We could replace the solve item with

```
solve :: seq_search([
 int_search([s, smallest, indomain_min],
 int_search([[end], input_order, indomain_min]])
])
```
which tries to set start times \( s \) by choosing the job that can start earliest and setting it to that time. When all start times are complete the end time \( end \) may not be fixed. Hence we set it to its minimal possible value.

### 2.5.3 Annotations

Annotations are a first class object in MiniZinc. We can declare new annotations in a model, and declare and assign to annotation variables.

**Annotations**

Annotations have a type `ann`. You can declare an annotation parameter (with optional assignment):

```plaintext
ann : <ident> ;
ann : <ident> = <ann-expr> ;
```

and assign to an annotation variable just as any other parameter. Expressions, variable declarations, and `solve` items can all be annotated using the `::` operator.

We can declare a new annotation using the `annotation` item:

```plaintext
annotation <annotation-name> (<arg-def>, ... , <arg-def>) ;
```

**Listing 2.5.2: Annotated model for n-queens (nqueens-ann.mzn).**

```plaintext
annotation bitdomain(int:nwords);

include "alldifferent.mzn";

int: n;
array [1..n] of var 1..n: q :: bitdomain(n div 32 + 1);

constraint alldifferent(q) :: domain;
constraint alldifferent([q[i] + i | i in 1..n]) :: domain;
constraint alldifferent([q[i] - i | i in 1..n]) :: domain;

ann: search_ann;

solve :: search_ann satisfy;

output [if fix(q[j]) == i then "Q" else "." endif ++
 if j == n then "\n" else "" endif | i,j in 1..n]
```

The program in Listing 2.5.2 illustrates the use of annotation declarations, annotations and annotation variables. We declare a new annotation `bitdomain` which is meant to tell the solver
that variables domains should be represented via bit arrays of size $n$\texttt{words}. The annotation is
attached to the declarations of the variables $q$. Each of the \texttt{alldifferent} constraints is annotated
with the built in annotation \texttt{domain} which instructs the solver to use the domain propagating
version of \texttt{alldifferent} if it has one. An annotation variable \texttt{search\_ann} is declared and used
to define the search strategy. We can give the value to the search strategy in a separate data file.

Example search annotations might be the following (where we imagine each line is in a separate
data file)

```plaintext
search_ann = int_search(q, input_order, indomain_min);
search_ann = int_search(q, input_order, indomain_median);
search_ann = int_search(q, first_fail, indomain_min);
search_ann = int_search(q, first_fail, indomain_median);
search_ann = int_search(q, input_order, indomain_random);
```

The first just tries the queens in order setting them to the minimum value, the second tries the
queens variables in order, but sets them to their median value, the third tries the queen variable
with smallest domain and sets it to the minimum value, and the final strategy tries the queens
variable with smallest domain setting it to its median value.

Different search strategies can make a significant difference in how easy it is to find solutions.
A small comparison of the number of failures made to find the first solution of the $n$-queens
problems using the 5 different search strategies is shown in the table below (where — means
more than 100,000 failures). Clearly the right search strategy can make a significant difference,
and variables selection is more important than value selection, except that for this problem
random value selection is very powerful.

<table>
<thead>
<tr>
<th>$n$</th>
<th>input-min</th>
<th>input-median</th>
<th>ff-min</th>
<th>ff-median</th>
<th>input-random</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>22</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>191</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>20511</td>
<td>32</td>
<td>27</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>2212</td>
<td>345</td>
<td>51</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>—</td>
<td>137</td>
<td>22</td>
<td>66</td>
<td>9</td>
</tr>
<tr>
<td>35</td>
<td>—</td>
<td>1722</td>
<td>52</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>—</td>
<td>—</td>
<td>16</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>—</td>
<td>—</td>
<td>41</td>
<td>18</td>
<td>6</td>
</tr>
</tbody>
</table>

### 2.5.4 Restart

Any kind of depth first search for solving optimization problems suffers from the problem that
wrong decisions made at the top of the search tree can take an exponential amount of search
to undo. One common way to ameliorate this problem is to restart the search from the top thus
having a chance to make different decisions.

MiniZinc includes annotations to control restart behaviour. These annotations, like other search
annotations, are attached to the solve item of the model.
Restart search annotations

The different restart annotations control how frequently a restart occurs. Restarts occur when a limit in nodes is reached, where search returns to the top of the search tree and begins again. The possibilities are

- **restart_constant** (<scale>) where <scale> is an integer defining after how many nodes to restart.
- **restart_linear** (<scale>) where <scale> is an integer defining the initial number of nodes before the first restart. The second restart gets twice as many nodes, the third gets three times, etc.
- **restart_geometric** (<base>, <scale>) where <base> is a float and <scale> is an integer. The k-th restart has a node limit of <scale> * <base>^k.
- **restart_luby** (<scale>) where <scale> is an integer. The k-th restart gets <scale>*L[k] where `mzn'L[k]' is the k-th number in the Luby sequence. The Luby sequence looks like 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 ..., that is it repeats two copies of the sequence ending in 2^i before adding the number 2^{i+1}.
- **restart_none** don't apply any restart (useful for setting a **ann** parameter that controls restart).

Solvers behaviour where two or more restart annotations are used is undefined.

Restart search is much more robust in finding solutions, since it can avoid getting stuck in a non-productive area of the search. Note that restart search does not make much sense if the underlying search strategy does not do something different the next time it starts at the top. For example the search annotation

```MiniZinc
solve :: int_search(q, input_order, indomain_min);
:: restart_linear(1000)
satisfy
```

does not very much sense since the underlying search is deterministic and each restart will just redo the same search as the previous search. Some solvers record the parts of the search tree that have already been searched and avoid them. This will mean deterministic restarts will simply effectively continue the search from the previous position. This gives no benefit to restarts, whose aim is to change decisions high in the search tree.

The simplest way to ensure that something is different in each restart is to use some randomization, either in variable choice or value choice. Alternatively some variable selection strategies make use of information gathered from earlier search and hence will give different behaviour, for example `dom_w_deg`.

To see the effectiveness of restart lets examine the n-queens problem again with the underlying search strategy

```MiniZinc
int_search(q, first_fail, indomain_random);
```

with one of four restart strategies

```MiniZinc
r1 = restart_constant(100);
r2 = restart_linear(100);
r3 = restart_geometric(1.5,100);
r4 = restart_luby(100);
```
r5 = restart_none;

<table>
<thead>
<tr>
<th>n</th>
<th>constant</th>
<th>linear</th>
<th>geometric</th>
<th>luby</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2212</td>
<td>345</td>
<td>51</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>—</td>
<td>137</td>
<td>22</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>—</td>
<td>1722</td>
<td>52</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>148</td>
<td>148</td>
<td>194</td>
<td>148</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>103</td>
</tr>
<tr>
<td>500</td>
<td>1480</td>
<td>1480</td>
<td>1480</td>
<td>1480</td>
<td>1434</td>
</tr>
<tr>
<td>1000</td>
<td>994</td>
<td>994</td>
<td>994</td>
<td>994</td>
<td>994</td>
</tr>
</tbody>
</table>

THE CURRENT EXPERIMENT IS USELESS!

2.5.5 Warm Starts

In many cases when solving an optimization or satisfaction problem we may have solved a previous version of the problem which is very similar. In this case it can be advantageous to use the previous solution found when searching for solution to the new problem. This is currently supported by some MIP backends.

The warm start annotations are attached to the solve item, just like other search annotations.

**Warm start search annotations**

The different restart annotations control how frequently a restart occurs. Restarts occur when a limit in nodes is reached, where search returns to the top of the search tree and begins again. The possibilities are

- **warm_start**(<vars>,<vals>) where <vars> is a one dimensional array of integer variables, and <vals> is a one dimensional array of integer of the same length giving the warm start values for each integer variable in <vars>.
- **warm_start**(<vars>,<vals>) where <vars> is a one dimensional array of float variables, and <vals> is a one dimensional array of floats of the same length giving the warm start values for each float variable in <vars>.
- **warm_start**(<vars>,<vals>) where <vars> is a one dimensional array of Boolean variables, and <vals> is a one dimensional array of Booleans of the same length giving the warm start values for each Boolean variable in <vars>.
- **warm_start**(<vars>,<vals>) where <vars> is a one dimensional array of set variables, and <vals> is a one dimensional array of sets of integers of the same length giving the warm start values for each set variable in <vars>.

The warm start annotation can be used by the solver as part of value selection. For example, if the selected variable v[i] has in its current domain the warm start value w[i] then this is the value selected for the variable. If not the solver uses the existing value selection rule applicable to that variable. The order of warm_starts, relative to other search annotations, can be important (especially for CP), so they all might need to be put into a seq_search as below:
array[1..3] of int: x;
array[1..3] of int: xf;
var bool: b;
array[1..3] of var 0..10.5: xs;

constraint b + sum(x) = 1;
constraint b + sum(xf) = 2.4;
constraint 5 == sum( [ card(xs[i]) | i in index_set(xs) ] );

solve ::
  warm_start_array( [
    warm_start( x, [<>], 8, 4 ),
    warm_start( xf, array1d([-5..-3, [5.6,<>], 4.7] ) ),
    warm_start( xs, array1d( -3..-2, [ 6..8, 5..7 ] ) )
  ] )
  seq_search( [
    warm_start_array( [
      warm_start( x, [<>], 5, 2 ),
      warm_start( xf, array1d([-5..-3, [5.6,<>], 4.7] ) ),
      warm_start( xs, array1d( -3..-2, [ 6..8, 5..7 ] ) )
    ] ),
    warm_start( [b], [true] ),
    int_search(x, first_fail, indomain_min)
  ] )

If you'd like to provide a most complete warmstart information, please provide values for all variables which are output when there is no output item or when compiled with --output-mode dzn. .. Still, this excludes auxiliary variables introduced by let expressions. To capture them, you can customize the output item, or try the FlatZinc level, see below.
Effective Modelling Practices in MiniZinc

There are almost always multiple ways to model the same problem, some of which generate models which are efficient to solve, and some of which are not. In general it is very hard to tell a priori which models are the most efficient for solving a particular problem, and indeed it may critically depend on the underlying solver used, and search strategy. In this chapter we concentrate on modelling practices that avoid inefficiency in generating models and generated models.

### 2.6.1 Variable Bounds

Finite domain propagation engines, which are the principle type of solver targeted by MiniZinc, are more effective the tighter the bounds on the variables involved. They can also behave badly with problems which have subexpressions that take large integer values, since they may implicitly limit the size of integer variables.

**Listing 2.6.1: A model with unbounded variables (grocery.mzn).**

```plaintext
var int: item1;
var int: item2;
var int: item3;
var int: item4;

constraint item1 + item2 + item3 + item4 == 711;
constraint item1 * item2 * item3 * item4 == 711 * 100 * 100 * 100;

constraint 0 < item1 \&\& item1 <= item2
 \&\& item2 <= item3 \&\& item3 <= item4;

solve satisfy;

output ["\n", show(item1), ",", show(item2), ",", show(item3), ",", show(item4),
```
The grocery problem shown in Listing 2.6.1 finds 4 items whose prices in dollars add up to 7.11 and multiply up to 7.11. The variables are declared unbounded. Running

```
$ minizinc --solver chuffed grocery.mzn
```

yields

```
=====UNSATISFIABLE=====
```

This is because the intermediate expressions in the multiplication are also var int and are given default bounds in the solver −1,000,000...1,000,000, and these ranges are too small to hold the values that the intermediate expressions may need to take.

Modifying the model so that the items are declared with tight bounds

```
var 1..711: item1;
var 1..711: item2;
var 1..711: item3;
var 1..711: item4;
```

results in a better model, since now MiniZinc can infer bounds on the intermediate expressions and use these rather than the default bounds. With this modification, executing the model gives

```
{120,125,150,316}
```

Note however that even the improved model may be too difficult for some solvers. Running

```
$ minizinc --solver g12lazy grocery.mzn
```

does not return an answer, since the solver builds a huge representation for the intermediate product variables.

### Bounding variables

Always try to use bounded variables in models. When using let declarations to introduce new variables, always try to define them with correct and tight bounds. This will make your model more efficient, and avoid the possibility of unexpected overflows. One exception is when you introduce a new variable which is immediately defined as equal to an expression. Usually MiniZinc will be able to infer effective bounds from the expression.

### 2.6.2 Effective Generators

Imagine we want to count the number of triangles ($K_3$ subgraphs) appearing in a graph. Suppose the graph is defined by an adjacency matrix: $adj[i,j]$ is true if nodes $i$ and $j$ are adjacent.
We might write

```mini
int: count = sum ([1 | i,j,k in NODES where i < j \ j < k \ adj[i,j] \ adj[i,k] \ adj[j,k]]);
```

which is certainly correct, but it examines all triples of nodes. If the graph is sparse we can do better by realising that some tests can be applied as soon as we select `i` and `j`.

```mini
int: count = sum ([1 | i,j in NODES where i < j \ adj[i,j], k in NODES where j < k \ adj[i,k] \ adj[j,k]]);
```

You can use the built-in `trace` function to help determine what is happening inside generators.

### Tracing

The function `trace(s,e)` prints the string `s` before evaluating the expression `e` and returning its value. It can be used in any context.

For example, we can see how many times the test is performed in the inner loop for both versions of the calculation.

```mini
int:count=sum([1 | i,j,k in NODES where
 trace("+") i<j \ j<k \ adj[i,j] \ adj[i,k] \ adj[j,k]]);
adj = [false, true, true, false | true, false, true, false | true, true, false, true | false, false, true, false |];
constraint trace("\n",true);
solve satisfy;
```

Produces the output:

```
+--+
 --
```

indicating the inner loop is evaluated 64 times while

```mini
int: count = sum ([1 | i,j in NODES where i < j \ adj[i,j],
 k in NODES where trace("+") j < k \ adj[i,k] \ adj[j,k]])
```

Produces the output:

```
+----------+
 --
```

indicating the inner loop is evaluated 16 times.
Note that you can use the dependent strings in `trace` to understand what is happening during model creation.

```plaintext
int: count = sum(i,j in NODES where i < j /\ adj[i,j])(
 sum(trace(""++show(i)++","++show(j)++","++show(k)++"",1) | k in NODES where j < k /\ adj[i,k] /\ adj[j,k])));
```

will print out each of triangles that is found in the calculation. It produces the output

```
(1,2,3)

```

We have to admit that we cheated a bit here: In certain circumstances, the MiniZinc compiler is in fact able to re-order the arguments in a `where` clause automatically, so that they are evaluated as early as possible. In this case, adding the `trace` function in fact prevented this optimisation. In general, it is however a good idea to help the compiler get it right, by splitting the `where` clauses and placing them as close to the generators as possible.

### 2.6.3 Redundant Constraints

The form of a model will affect how well the constraint solver can solve it. In many cases adding constraints which are redundant, i.e. are logically implied by the existing model, may improve the search for solutions by making more information available to the solver earlier.

Consider the magic series problem from Complex Constraints (page 50). Running this for $n = 16$ as follows:

```
$ minizinc --solver gecode --all-solutions --statistics magic-series.mzn -D "n=16;"
```

might result in output

```
s = [12, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0];

```

and the statistics showing 89 failures required.

We can add redundant constraints to the model. Since each number in the sequence counts the number of occurrences of a number we know that they sum up to $n$. Similarly we know that the sum of $s[i] * i$ must also add up to $n$ because the sequence is magic. Adding these constraints gives the model in Listing 2.6.2.

```plaintext
Listing 2.6.2: Model solving the magic series problem with redundant constraints (magic-series2.mzn).

int: n;
array[0..n-1] of var 0..n: s;
```

Chapter 2.6. Effective Modelling Practices in MiniZinc
constraint forall(i in 0..n-1) ( 
    s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));
% redundant
constraint sum(i in 0..n-1)(s[i]) = n;
constraint sum(i in 0..n-1)(s[i] * i) = n;
solve satisfy;
output [ "s = ", show(s), ";\n" ];

Running the same problem as before

$ minizinc --solver gecode --all-solutions --statistics magic-series2.mzn -D 
  \"n=16;\"

results in the same output, but with statistics showing just 14 failures explored. The redundant constraints have allowed the solver to prune the search much earlier.

2.6.4 Modelling Choices

There are many ways to model the same problem in MiniZinc, although some may be more natural than others. Different models may have very different efficiency of solving, and worse yet, different models may be better or worse for different solving backends. There are however some guidelines for usually producing better models:

Choosing between models

The better model is likely to have some of the following features
- smaller number of variables, or at least those that are not functionally defined by other variables
- smaller domain sizes of variables
- more succinct, or direct, definition of the constraints of the model
- uses global constraints as much as possible
In reality all this has to be tempered by how effective the search is for the model. Usually the effectiveness of search is hard to judge except by experimentation.

Consider the problem of finding permutations of \( n \) numbers from 1 to \( n \) such that the differences between adjacent numbers also form a permutation of numbers 1 to \( n - 1 \). Note that the \( u \) variables are functionally defined by the \( x \) variables so the raw search space is \( n^n \). The obvious way to model this problem is shown in Listing 2.6.3.

Listing 2.6.3: A natural model for the all interval series problem prob007 in CSPlib (allinterval.mzn).

```minizinc
include "alldifferent.mzn";

int: n;
```
array[1..n] of var 1..n: x;  % sequence of numbers
array[1..n-1] of var 1..n-1: u;  % sequence of differences

constraint alldifferent(x);
constraint alldifferent(u);
constraint forall(i in 1..n-1)(u[i] = abs(x[i+1] − x[i]));

solve :: int_search(x, first_fail, indomain_min)
satisfy;
output ["x = \(x)\];

In this model the array \(x\) represents the permutation of the \(n\) numbers and the constraints are naturally represented using \texttt{alldifferent}.

Running the model

```
$ minizinc --solver gecode --all-solutions --statistics allinterval.mzn -D \n"n=10;"
```

finds all solutions in 16077 nodes and 71ms

An alternate model uses array \(y\) where \(y[i]\) gives the position of the number \(i\) in the sequence. We also model the positions of the differences using variables \(v\). \(v[i]\) is the position in the sequence where the absolute difference \(i\) occurs. If the values of \(y[i]\) and \(y[j]\) differ by one where \(j > i\), meaning the positions are adjacent, then \(v[j-i]\) is constrained to be the earliest of these positions. We can add two redundant constraints to this model: since we know that a difference of \(n-1\) must result, we know that the positions of 1 and \(n\) must be adjacent (\(abs( y[1] - y[n] ) = 1\)), which also tell us that the position of difference \(n-1\) is the earlier of \(y[1]\) and \(y[n]\), i.e. \(v[n-1] = min(y[1], y[n])\). With this we can model the problem as shown in Listing 2.6.4. The output statement recreates the original sequence \(x\) from the array of positions \(y\).

Listing 2.6.4: An inverse model for the all interval series problem prob007 in CSPlib (allinterval2.mzn).

```
include "alldifferent.mzn";

int: n;

array[1..n] of var 1..n: y; % position of each number
array[1..n-1] of var 1..n-1: v; % position of difference i

constraint alldifferent(y);
constraint alldifferent(v);
constraint forall(i,j in 1..n where i < j)(
 (y[i] - y[j] = 1 -> v[j-i] = y[j]) /
 (y[j] - y[i] = 1 -> v[j-i] = y[i])
);

constraint abs(y[1] - y[n]) = 1 \ v[n-1] = min(y[1], y[n]);
```
solve :: int_search(y, first_fail, indomain_min)
    satisfy;

array[1..n] of 1..n: x :: output_only
    = [ sum(i in 1..n)(i*(fix(y[j]) = i) | j in 1..n ];
output [ "x = \(x);\n"

The inverse model has the same size as the original model, in terms of number of variables and domain sizes. But the inverse model has a much more indirect way of modelling the relationship between the \(y\) and \(v\) variables as opposed to the relationship between \(x\) and \(u\) variables. Hence we might expect the original model to be better.

The command

```bash
$ minizinc --solver gecode --all-solutions --statistics allinterval2.mzn -D
"n=10;"
```

finds all the solutions in 98343 nodes and 640 ms. So the more direct modelling of the constraints is clearly paying off.

Note that the inverse model prints out the answers using the same \(x\) view of the solution. The way this is managed is using `output_only` annotations. The array \(x\) is defined as a fixed array and annotated as `output_only`. This means it will only be evaluated, and can only be used in output statements. Once a solution for \(y\) is discovered the value of \(x\) is calculated during output processing, and hence can be displayed in the output.

### Output_only annotation

The `output_only` annotation can be applied to variable definitions. The variable defined must not be a `var` type, it can only be `par`. The variable must also have a right hand side definition giving its value. This right hand side definition can make use of `fix` functions to access the values of decision variables, since it is evaluated at solution processing time.

#### 2.6.5 Multiple Modelling and Channels

When we have two models for the same problem it may be useful to use both models together by tying the variables in the two models together, since each can give different information to the solver.

**Listing 2.6.5: A dual model for the all interval series problem prob007 in CSPlib (allinterval3.mzn).**

```plaintext
include "inverse.mzn";

int: n;

array[1..n] of var 1..n: x; % sequence of numbers
array[1..n-1] of var 1..n-1: u; % sequence of differences
```
Listing 2.6.6 gives a dual model combining features of allinterval.mzn and allinterval2.mzn. The beginning of the model is taken from allinterval.mzn. We then introduce the y and v variables from allinterval2.mzn. We tie the variables together using the global inverse constraint: inverse(x,y) holds if y is the inverse function of x (and vice versa), that is x[i] = j <-> y[j] = i. A definition is shown in Listing 2.6.6. The model does not include the constraints relating the y and v variables, they are redundant (and indeed propagation redundant) so they do not add information for a propagation solver. The alldifferent constraints are also missing since they are made redundant (and propagation redundant) by the inverse constraints. The only constraints are the relationships of the x and u variables and the redundant constraints on y and v.

Listing 2.6.6: A definition of the inverse global constraint (inverse.mzn).

```
predicate inverse(array[int] of var int: f,
 array[int] of var int: invf) =
 forall(j in index_set(invf))(invf[j] in index_set(f)) \/
 forall(i in index_set(f))(f[i] in index_set(invf) \/
 forall(j in index_set(invf))(j == f[i] <-> i == invf[j])
);
```

One of the benefits of the dual model is that there is more scope for defining different search strategies. Running the dual model,

```
$ minizinc --solver g12fd --all-solutions --statistics allinterval3.mzn -D
 "n=10;"
```

which uses the search strategy of the inverse model, labelling the y variables, finds all solutions in 1714 choice points and 0.5s. Note that running the same model with labelling on the x variables requires 13142 choice points and 1.5s.
2.6.6 Symmetry

Symmetry is very common in constraint satisfaction and optimisation problems. To illustrate this, let us look again at the n-queens problem from Listing 2.5.1. The top left chess board in Fig. 2.6.1 shows a solution to the 8-queens problems (labeled “original”). The remaining chess boards show seven symmetric variants of the same solution: rotated by 90, 180 and 270 degrees, and flipped vertically.

![Fig. 2.6.1: Symmetric variants of an 8-queens solution](image)

If we wanted to enumerate all solutions to the 8-queens problem, we could obviously save the solver some work by only enumerating non-symmetric solutions, and then generating the symmetric variants ourselves. This is one reason why we want to get rid of symmetry in constraint models. The other, much more important reason, is that the solver may also explore symmetric variants of non-solution states!

For example, a typical constraint solver may try to place the queen in column 1 into row 1 (which is fine), and then try to put the column 2 queen into row 3, which, at first sight, does not violate any of the constraints. However, this configuration cannot be completed to a full solution (which the solver finds out after a little search). Fig. 2.6.2 shows this configuration on the top left chess board. Now nothing prevents the solver from trying, e.g., the second configuration from the left in the bottom row of Fig. 2.6.2, where the queen in column 1 is still in row 1, and the queen in column 3 is placed in row 2. Therefore, even when only searching for a single solution, the solver may explore many symmetric states that it has already seen and proven unsatisfiable before!

2.6.6.1 Static Symmetry Breaking

The modelling technique for dealing with symmetry is called symmetry breaking, and in its simplest form, involves adding constraints to the model that rule out all symmetric variants of a (partial) assignment to the variables except one. These constraints are called static symmetry breaking constraints.

The basic idea behind symmetry breaking is to impose an order. For example, to rule out any vertical flips of the chess board, we could simply add the constraint that the queen in the first column must be in the top half of the board:
Fig. 2.6.2: Symmetric variants of an 8-queens unsatisfiable partial assignment

`constraint q[1] <= n div 2;`

Convince yourself that this would remove exactly half of the symmetric variants in Fig. 2.6.1. In order to remove all symmetry, we need to work a bit harder.

Whenever we can express all symmetries as permutations of the array of variables, a set of **lexicographic ordering constraints** can be used to break all symmetry. For example, if the array of variables is called `x`, and reversing the array is a symmetry of the problem, then the following constraint will break that symmetry:

`constraint lex_lesseq(x, reverse(x));`

How about two-dimensional arrays? Lexicographic ordering works just the same, we only have to coerce the arrays into one dimension. For example, the following breaks the symmetry of flipping the array along one of the diagonals (note the swapped indices in the second comprehension):

```
array[1..n,1..n] of var int: x;
constraint lex_lesseq([x[i,j] | i,j in 1..n], [x[j,i] | i,j in 1..n]);```

The great thing about using lexicographic ordering constraints is that we can add multiple ones (to break several symmetries simultaneously), without them interfering with each other, as long as we keep the order in the first argument the same.

For the n-queens problem, unfortunately this technique does not immediately apply, because some of its symmetries cannot be described as permutations of the `q` array. The trick to overcome this is to express the n-queens problem in terms of Boolean variables that model, for each field of the board, whether it contains a queen or not. Now all the symmetries can be modeled as permutations of this array. Since the main constraints of the n-queens problem are much easier to express with the integer `q` array, we simply use both models together and add channeling constraints between them, as explained in *Multiple Modelling and Channels* (page 103).

The full model, with added Boolean variables, channeling constraints and symmetry breaking
constraints is shown in Listing 2.6.7. We can conduct a little experiment to check whether it successfully breaks all the symmetry. Try running the model with increasing values for \(n \), e.g. from 1 to 10, counting the number of solutions (e.g., by using the \(-s\) flag with the Gecode solver, or selecting “Print all solutions” as well as “Statistics for solving” in the IDE). You should get the following sequence of numbers of solutions: 1, 0, 0, 1, 2, 1, 6, 12, 46, 92. To verify the sequence, you can search for it in the On-Line Encyclopedia of Integer Sequences (http://oeis.org).

Listing 2.6.7: Partial model for \(n \)-queens with symmetry breaking (full model: nqueens_sym.mzn).

```plaintext
% Map each position i,j to a Boolean telling us whether there is a queen at
array[1..n,1..n] of var bool: qb;

% Channeling constraint
constraint forall (i,j in 1..n) ( qb[i,j] <-> (q[i]=j) );

% Lexicographic symmetry breaking constraints
constraint lex_lesseq(array1d(qb), [ qb[j,i] | i,j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i in 1..n, j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i in reverse(1..n), j in 1..n ])
/\ lex_lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ])
/\ lex_lesseq(array1d(qb), [ qb[j,i] | i,j in reverse(1..n) ])
```

2.6.6.2 Other Examples of Symmetry

Many other problems have inherent symmetries, and breaking these can often make a significant difference in solving performance. Here is a list of some common cases:

- Bin packing: when trying to pack items into bins, any two bins that have the same capacity are symmetric.

- Graph colouring: When trying to assign colours to nodes in a graph such that adjacent nodes must have different colours, we typically model colours as integer numbers. However, any permutation of colours is again a valid graph colouring.

- Vehicle routing: if the task is to assign customers to certain vehicles, any two vehicles with the same capacity may be symmetric (this is similar to the bin packing example).

- Rostering/time tabling: two staff members with the same skill set may be interchangeable, just like two rooms with the same capacity or technical equipment.
CHAPTER 2.7

Boolean Satisfiability Modelling in MiniZinc

MiniZinc can be used to model Boolean satisfiability problems where the variables are restricted to be Boolean (bool). MiniZinc can be used with efficient Boolean satisfiability solvers to solve the resulting models efficiently.

2.7.1 Modelling Integers

Many times although we wish to use a Boolean satisfiability solver we may need to model some integer parts of our problem.

There are three common ways of modelling an integer variables \(I \) in the range \(0 \ldots m \) where \(m = 2^k - 1 \) using Boolean variables.

- **Binary**: \(I \) is represented by \(k \) binary variables \(i_0, \ldots, i_{k-1} \) where \(I = 2^{k-1}i_{k-1} + 2^{k-2}i_{k-2} + \cdots + 2i_1 + i_0 \). This can be represented in MiniZinc as

  ```
  array[0..k-1] of var bool: i;
  var 0..pow(2,k)-1: I = sum(j in 0..k-1)(bool2int(i[j])*pow(2,j));
  ```

- **Unary**: where \(I \) is represented by \(m \) binary variables \(i_1, \ldots, i_m \) and \(i = \sum_{j=1}^{m} \text{bool2int}(i_j) \). Since there is massive redundancy in the unary representation we usually require that \(i_j \rightarrow i_{j-1}, 1 < j \leq m \). This can be represented in MiniZinc as

  ```
  array[1..m] of var bool: i;
  constraint forall(j in 2..m)(i[j] -> i[j-1]);
  var 0..m: I = sum(j in 1..m)(bool2int(i[j]));
  ```

- **Value**: where \(I \) is represented by \(m + 1 \) binary variables \(i_0, \ldots, i_m \) where \(i = k \iff i_k \), and at most one of \(i_0, \ldots, i_m \) is true. This can be represented in MiniZinc as
There are advantages and disadvantages to each representation. It depends on what operations on integers are to required in the model as to which is preferable.

2.7.2 Modelling Disequality

Let us consider modelling a latin squares problem. A latin square is an \(n \times n \) grid of numbers from 1..\(n \) such that each number appears exactly once in every row and column. An integer model for latin squares is shown in Listing 2.7.1.

Listing 2.7.1: Integer model for Latin Squares (latin.mzn).

```plaintext
int: n; % size of latin square
array[1..n,1..n] of var 1..n: a;

include "alldifferent.mzn";
constraint forall(i in 1..n)(
  alldifferent(j in 1..n)(a[i,j]) /
  alldifferent(j in 1..n)(a[j,i])
);
solve satisfy;
output [ show(a[i,j]) ++ if j == n then "\n" else " " endif |
  i in 1..n, j in 1..n ];
```

The only constraint on the integers is in fact disequality, which is encoded in the `alldifferent` constraint. The value representation is the best way of representing disequality. A Boolean only model for latin squares is shown in Listing 2.7.2. Note each integer array element `a[i,j]` is replaced by an array of Booleans. We use the `exactlyone` predicate to encode that each value is used exactly once in every row and every column, as well as to encode that exactly one of the Booleans corresponding to integer array element `a[i,j]` is true.

Listing 2.7.2: Boolean model for Latin Squares (latinbool.mzn).

```plaintext
int: n; % size of latin square
array[1..n,1..n,1..n] of var bool: a;

predicate atmostone(array[int] of var bool:x) =
  forall(i,j in index_set(x) where i < j)(
    not x[i] \| not x[j]);
predicate exactlyone(array[int] of var bool:x) =
  atmostone(x) \| exists(x);
constraint forall(i,j in 1..n)(
  exactlyone(k in 1..n)(a[i,j,k]) /
```
exactlyone(k in 1..n)(a[i,k,j]) /
exactlyone(k in 1..n)(a[k,i,j])

); solve satisfy;
output [if fix(a[i,j,k]) then
 show(k) ++ if j == n then "\n" else " " endif
 else "" endif | i,j,k in 1..n];

2.7.3 Modelling Cardinality

Let us consider modelling the Light Up puzzle. The puzzle consists of a rectangular grid of squares which are blank, or filled. Every filled square may contain a number from 1 to 4, or may have no number. The aim is to place lights in the blank squares so that

- Each blank square is “illuminated”, that is can see a light through an uninterrupted line of blank squares
- No two lights can see each other
- The number of lights adjacent to a numbered filled square is exactly the number in the filled square.

An example of a Light Up puzzle is shown in Fig. 2.7.1 with its solution in Fig. 2.7.2.

![Fig. 2.7.1: An example of a Light Up puzzle](image)

It is natural to model this problem using Boolean variables to determine which squares contain a light and which do not, but there is some integer arithmetic to consider for the filled squares.
Fig. 2.7.2: The completed solution of the Light Up puzzle

Listing 2.7.3: SAT Model for the Light Up puzzle (lightup.mzn).

```plaintext
int: h; set of int: H = 1..h; % board height
int: w; set of int: W = 1..w; % board width
array[H,W] of -1..5: b; % board
int: E = -1; % empty square
set of int: N = 0..4; % filled and numbered square
int: F = 5; % filled unnumbered square

% position (i1,j1) is visible to (i2,j2)
test visible(int: i1, int: j1, int: i2, int: j2) =
    ((i1 == i2) /\forall all(j in min(j1,j2)..max(j1,j2))(b[i1,j] == E))
  \lor ((j1 == j2) /\forall all(i in min(i1,i2)..max(i1,i2))(b[i,j1] == E));

array[H,W] of var bool: l; % is there a light

% filled squares have no lights
constraint forall(i in H, j in W, where b[i,j] != E)(l[i,j] == false);

% lights next to filled numbered square agree
include "boolsum.mzn";
constraint forall(i in H, j in W where b[i,j] in N)(
    bool_sum_eq([ l[i1,j1] | i1 in i-1..i+1, j1 in j-1..j+1 where
                  abs(i1 - i) + abs(j1 - j) == 1 \/
                  i1 in H \/ j1 in W ], b[i,j]));

% each blank square is illuminated
constraint forall(i in H, j in W where b[i,j] == E)(
    exists(j1 in W where visible(i,j,i,j))(l[i,j1]) \/
    exists(i1 in H where visible(i,j,i,j))(l[i1,j]));

% no two lights see each other
```

Chapter 2.7. Boolean Satisfiability Modelling in MiniZinc
constraint forall(i1,i2 in H, j1,j2 in W where
 (i1 != i2 \| j1 != j2) \(\land\) b[i1,j1] == E
 \(\land\) b[i2,j2] == E \(\land\) visible(i1,j1,i2,j2))((
 not l[i1,j1] \(\lor\) not l[i2,j2]
)
); solve satisfy;
output [if b[i,j] != E then show(b[i,j])
 else if fix(l[i,j]) then "L" else "." endif
 endif ++ if j == w then "\n" else " " endif | i in H, j in W];

A model for the problem is given in Listing 2.7.3. A data file for the problem shown in Fig. 2.7.1 is shown in Listing 2.7.4.

Listing 2.7.4: Datafile for the Light Up puzzle instance shown in Fig. 2.7.1.

```plaintext
h = 7;
w = 7;
b = [[-1,-1,-1,-1,0,-1,-1]
    [-1,-1,-1,-1,-1,-1,-1]
    [0,-1,-1,3,-1,-1,-1]
    [-1,-1,2,-1,4,-1,-1]
    [-1,-1,-1,5,-1,-1,1]
    [-1,-1,-1,-1,-1,1,-1]
    [1,-1,2,-1,-1,-1,-1]];
```

The model makes use of a Boolean sum predicate

```plaintext
predicate bool_sum_eq(array[int] of var bool:x, int:s);
```

which requires that the sum of an array of Boolean equals some fixed integer. There are a number of ways of modelling such cardinality constraints using Booleans.

- Adder networks: we can use a network of adders to build a binary Boolean representation of the sum of the Booleans
- Sorting networks: we can use a sorting network to sort the array of Booleans to create a unary representation of the sum of the Booleans
- Binary decision diagrams: we can create a binary decision diagram (BDD) that encodes the cardinality constraint.

Listing 2.7.5: Cardinality constraints by binary adder networks (bboolsum.mzn).

```plaintext
% the sum of booleans x = s
predicate bool_sum_eq(array[int] of var bool:x, int:s) =
    let { int: c = length(x) } in
    if s < 0 then false
    elseif s == 0 then
        forall(i in 1..c)(x[i] == false)
```
elseif s < c then
 let { % cp = number of bits required for representing 0..c
 int: cp = floor(log2(int2float(c))),
 % z is sum of x in binary
 array[0..cp] of var bool:z } in
 binary_sum(x, z) /
 % z == s
 forall(i in 0..cp)(z[i] == ((s div pow(2,i)) mod 2 == 1))
else s == c then
 forall(i in 1..c)(x[i] == true)
else false endif;

include "binarysum.mzn";

Listing 2.7.6: Code for building binary addition networks (binarysum.mzn).

% the sum of bits x = s in binary.
% s[0], s[1], ..., s[k] where 2^k >= length(x) > 2^(k-1)
predicate binary_sum(array[int] of var bool:x,
 array[int] of var bool:s)=
 let { int: l = length(x) } in
 if l == 1 then s[0] = x[1]
 elseif l == 2 then
 s[0] = (x[1] xor x[2]) \ s[1] = (x[1] /\ x[2])
 else let { int: ll = (l div 2),
 array[1..ll] of var bool: f = [x[i] | i in 1..ll],
 array[1..ll] of var bool: t = [x[i] | i in ll+1..2*ll],
 var bool: b = if 1l*2 == l then false else x[1] endif,
 int: cp = floor(log2(int2float(ll))),
 array[0..cp] of var bool: fs,
 array[0..cp] of var bool: ts } in
 binary_sum(f, fs) \ binary_sum(t, ts) \/
 binary_add(fs, ts, b, s)
 endif;

% add two binary numbers x, and y and carry in bit ci to get binary s
predicate binary_add(array[int] of var bool: x,
 array[int] of var bool: y,
 var bool: ci,
 array[int] of var bool: s) =
 let { int:l = length(x),
 int:n = length(s), } in
 assert(l == length(y),
 "length of binary_add input args must be same",
 assert(n == l \ n == l+1, "length of binary_add output " ++
 "must be equal or one more than inputs",
 let { array[0..l] of var bool: c } in
 full_adder(x[0], y[0], ci, s[0], c[0]) \/
 forall(i in 1..l)(full_adder(x[i], y[i], c[i-1], s[i], c[i]) \/
 if n > 1 then s[n] = c[1] else c[1] == false endif);
We can implement `bool_sum_eq` using binary adder networks using the code shown in Listing 2.7.5. The predicate `binary_sum` defined in Listing 2.7.6 creates a binary representation of the sum of `x` by splitting the list into two, summing up each half to create a binary representation and then summing these two binary numbers using `binary_add`. If the list `x` is odd the last bit is saved to use as a carry in to the binary addition.

Listing 2.7.7: Cardinality constraints by sorting networks (uboolsum.mzn).

```plaintext
predicate full_adder(var bool: x, var bool: y, var bool: ci,
    var bool: s, var bool: co) =
    let { var bool: xy = x xor y } in
    s = (xy xor ci) \\ co = ((x \ y) \\ (ci \ xy));
```

We can implement `bool_sum_eq` using binary adder networks using the code shown in Listing 2.7.5. The predicate `binary_sum` defined in Listing 2.7.6 creates a binary representation of the sum of `x` by splitting the list into two, summing up each half to create a binary representation and then summing these two binary numbers using `binary_add`. If the list `x` is odd the last bit is saved to use as a carry in to the binary addition.

Listing 2.7.8: Odd-even merge sorting networks (oesort.mzn).

```plaintext
%% odd-even sort
%% y is the sorted version of x, all trues before falses
predicate oesort(array[int] of var bool:x, array[int] of var bool:y)=
    let { int: c = card(index_set(x)) } in
    if c == 1 then x[1] == y[1]
    elseif c == 2 then comparator(x[1],x[2],y[1],y[2])
    else let {
        array[1..c div 2] of var bool:xf = [x[i] | i in 1..c div 2],
        array[1..c div 2] of var bool:x1 = [x[i] | i in c div 2 +1..c],
        array[1..c div 2] of var bool:tf,
        array[1..c div 2] of var bool:tl } in
        oesort(xf,tf) \ oesort(x1,tl) \ oemerge(tf ++ tl, y)
    endif;
```
%% odd-even merge
%% y is the sorted version of x, all trues before false
%% assumes first half of x is sorted, and second half of x
predicate oemerge(array[int] of var bool:x, array[int] of var bool:y)=
let { int: c = card(index_set(x)) } in
if c == 1 then x[1] == y[1]
else if c == 2 then comparator(x[1],x[2],y[1],y[2])
else
let { array[1..c div 2] of var bool:xo =
 [x[i] | i in 1..c where i mod 2 == 1],
array[1..c div 2] of var bool:xe =
 [x[i] | i in 1..c where i mod 2 == 0],
array[1..c div 2] of var bool:to,
array[1..c div 2] of var bool:te } in
 oemerge(xo,to) \ oemerge(xe,te) \%
y[1] = to[1] /\%
forall(i in 1..c div 2 -1)(
 comparator(te[i],to[i+1],y[2*i],y[2*i+1]) /\%
y[c] = te[c div 2]
 endif);

% predicate comparator(var bool:x1,var bool:x2,var bool:o1,var bool:o2)=
% (o1 = (x1 \ x2)) /\ (o2 = (x1 / x2));
%
We can implement bool_sum_eq using unary sorting networks using the code shown in Listing
2.7.7. The cardinality constraint is defined by expanding the input x to have length a power of
2, and sorting the resulting bits using an odd-even merge sorting network. The odd-even merge
sorter shown in ex-oesort works recursively by splitting the input list in 2, sorting each list and
merging the two sorted lists.

Listing 2.7.9: Cardinality constraints by binary decision diagrams (bddsum.mzn).

% the sum of booleans x = s
predicate bool_sum_eq(array[int] of var bool:x, int:s) =
let { int: c = length(x),
 array[1..c] of var bool: y = [x[i] | i in index_set(x)]
} in
 rec_bool_sum_eq(y, 1, s);

predicate rec_bool_sum_eq(array[int] of var bool:x, int: f, int:s) =
let { int: c = length(x) } in
if s < 0 then false
else if s == 0 then
 forall(i in f..c)(x[i] == false)
else if s < c - f + 1 then
 (x[f] == true \ rec_bool_sum_eq(x,f+1,s-1)) /\
 (x[f] == false \ rec_bool_sum_eq(x,f+1,s))
else s == c - f + 1 then
 forall(i in f..c)(x[i] == true

Chapter 2.7. Boolean Satisfiability Modelling in MiniZinc
We can implement bool_sum_eq using binary decision diagrams using the code shown in ex:bdsum. The cardinality constraint is broken into two cases: either the first element \(x[1]\) is true, and the sum of the remaining bits is \(s-1\), or \(x[1]\) is false and the sum of the remaining bits is \(s\). For efficiency this relies on common subexpression elimination to avoid creating many equivalent constraints.
Chapter 2.7. Boolean Satisfiability Modelling in MiniZinc
Constraint solvers do not directly support MiniZinc models, rather in order to run a MiniZinc model, it is translated into a simple subset of MiniZinc called FlatZinc. FlatZinc reflects the fact that most constraint solvers only solve satisfaction problems of the form \(\exists x_1 \land \cdots \land x_m \) or optimization problems of the form minimize \(z \) subject to \(c_1 \land \cdots \land c_m \), where \(c_i \) are primitive constraints and \(z \) is an integer or float expression in a restricted form.

The minizinc tool includes the MiniZinc compiler, which takes a MiniZinc model and data files and creates a flattened FlatZinc model which is equivalent to the MiniZinc model with the given data, and that appears in the restricted form discussed above. Normally the construction of a FlatZinc model which is sent to a solver is hidden from the user but you can view the result of flattening a model model.mzn with its data data.dzn as follows:

```
minizinc -c model.mzn data.dzn
```

which creates a FlatZinc model called model.fzn.

In this chapter we explore the process of translation from MiniZinc to FlatZinc.

2.8.1 Flattening Expressions

The restrictions of the underlying solver mean that complex expressions in MiniZinc need to be flattened to only use conjunctions of primitive constraints which do not themselves contain structured terms.

Consider the following model for ensuring that two circles in a rectangular box do not overlap:

```
Listing 2.8.1: Modelling non overlap of two circles (cnonoverlap.mzn).
float: width;  % width of rectangle to hold circles
float: height;  % height of rectangle to hold circles
float: r1;
```
var r1..width-r1: x1; % (x1,y1) is center of circle of radius r1
var r1..height-r1: y1;
float: r2;
var r2..width-r2: x2; % (x2,y2) is center of circle of radius r2
var r2..height-r2: y2;

% centers are at least r1 + r2 apart
constraint (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) >= (r1+r2)*(r1+r2);
solve satisfy;

2.8.1.1 Simplification and Evaluation

Given the data file

```plaintext
width = 10.0;
height = 8.0;
r1 = 2.0;
r2 = 3.0;
```

the translation to FlatZinc first simplifies the model by replacing all the parameters by their values, and evaluating any fixed expression. After this simplification the values of parameters are not longer needed. An exception to this is large arrays of parametric values. If they are used more than once, then the parameter is retained to avoid duplicating the large expression.

After simplification the variable and parameter declarations parts of the model of Listing 2.8.1 become

```plaintext
var 2.0 .. 8.0: x1;
var 2.0 .. 6.0: y1;
var 3.0 .. 7.0: x2;
var 3.0 .. 5.0: y2;
```

2.8.1.2 Defining Subexpressions

Now no constraint solver directly handles complex constraint expressions like the one in Listing 2.8.1. Instead, each subexpression in the expression is named, and we create a constraint to construct the value of each expression. Let’s examine the subexpressions of the constraint expression. \((x1 - x2)\) is a subexpression, if we name it \(\text{FLOAT01} = x1 - x2\); Notice that this expression occurs twice in the model. We only need to construct the value once, we can then reuse it. This is called **common subexpression elimination**. The subexpression \((x1 - x2)\) can be named \(\text{FLOAT02} = \text{FLOAT01} \times \text{FLOAT01}\); We can similarly name \(\text{FLOAT03} = y1 - y2\); and \(\text{FLOAT04} = \text{FLOAT03} \times \text{FLOAT03}\); and finally \(\text{FLOAT05} = \text{FLOAT02} \times \text{FLOAT04}\). The inequality constraint itself becomes \(\text{FLOAT05} \geq 25.0\); since \((r1+r2)\) is calculated as \(25.0\). The flattened constraint is hence

```plaintext
constraint FLOAT05 >= 25.0;
```
constraint FLOAT01 = x1 - x2;
constraint FLOAT02 = FLOAT01 * FLOAT01;
constraint FLOAT03 = y1 - y2;
constraint FLOAT04 = FLOAT03 * FLOAT03;
constraint FLOAT05 = FLOAT02 * FLOAT04;
constraint FLOAT05 >= 25.0

2.8.1.3 FlatZinc constraint form

Flattening as its final step converts the form of the constraint to a standard FlatZinc form which is always \(p(a_1, \ldots, a_n) \) where \(p \) is the name of the primitive constraint and \(a_1, \ldots, a_n \) are the arguments. FlatZinc tries to use a minimum of different constraint forms so for example the constraint \(FLOAT01 = x1 - x2 \) is first rewritten to \(FLOAT01 + x2 = x1 \) and then output using the \texttt{float_plus} primitive constraint. The resulting constraint form is as follows:

```plaintext
constraint float_plus(FLOAT01, x2, x1);
constraint float_plus(FLOAT03, y2, y1);
constraint float_plus(FLOAT02, FLOAT04, FLOAT05);
constraint float_times(FLOAT01, FLOAT01, FLOAT02);
constraint float_times(FLOAT03, FLOAT03, FLOAT04);
```

2.8.1.4 Bounds analysis

We are still missing one thing, the declarations for the introduced variables \(FLOAT01, \ldots, FLOAT05 \). While these could just be declared as \texttt{var float}, in order to make the solver’s task easier MiniZinc tries to determine upper and lower bounds on newly introduced variables, by a simple bounds analysis. For example since \(FLOAT01 = x1 - x2 \) and \(2.0 \leq x1 \leq 8.0 \) and \(3.0 \leq x2 \leq 7.0 \) then we can see that \(-5.0 \leq FLOAT01 \leq 5.0\). Given this information we can see that \(-25.0 \leq FLOAT02 \leq 25.0\) (although note that if we recognized that the multiplication was in fact a squaring we could give the much more accurate bounds \(0.0 \leq FLOAT02 \leq 25.0\)).

The alert reader may have noticed a discrepancy between the flattened form of the constraints in Defining Subexpressions (page 120) and FlatZinc constraint form (page 121). In the latter there is no inequality constraint. Since unary inequalities can be fully represented by the bounds of a variable, the inequality forces the lower bound of \(FLOAT05 \) to be \texttt{25.0} and is then redundant. The final flattened form of the model of Listing 2.8.1 is:

```plaintext
% Variables
var 2.0 .. 8.0: x1;
var 2.0 .. 6.0: y1;
var 3.0 .. 7.0: x2;
var 3.0 .. 5.0: y2;
% var -5.0..5.0: FLOAT01;
var -25.0..25.0: FLOAT02;
var -3.0..3.0: FLOAT03;
var -9.0..9.0: FLOAT04;
```
MiniZinc Handbook, Release 2.3.1

2.8.1.5 Objectives

MiniZinc flattens minimization or maximization objectives just like constraints. The objective expression is flattened and a variable is created for it, just as for other expressions. In the FlatZinc output the solve item is always on a single variable. See Let Expressions (page 131) for an example.

2.8.2 Linear Expressions

One of the most important form of constraints, widely used for modelling, are linear constraints of the form

\[
\sum_{i=1}^{n} a_i x_i \leq a_0
\]

where \(a_i\) are integer or floating point constants, and \(x_i\) are integer or floating point variables. They are highly expressive, and are the only class of constraint supported by (integer) linear programming constraint solvers. The translator from MiniZinc to FlatZinc tries to create linear constraints, rather than break up linear constraints into many subexpressions.

Consider the model shown in Listing 2.8.2. Rather than create variables for all the subexpressions \(3 \times x, 3 \times x - y, x \times z, 3 \times x - y + x \times z, x + y + z, d \times (x + y + z), 19 + d \times (x + y + z), \) and \(19 + d \times (x + y + z) - 4 \times d\) translation will attempt to create a large linear constraint which captures as much as possible of the constraint in a single FlatZinc constraint.

Flattening creates linear expressions as a single unit rather than building intermediate variables for each subexpression. It also simplifies the linear expression created. Extracting the linear expression from the constraints leads to

```plaintext
var 25.0..34.0: FLOAT05;
% Constraints
constraint float_plus(FLOAT01, x2, x1);
constraint float_plus(FLOAT03, y2, y1);
constraint float_plus(FLOAT02, FLOAT04, FLOAT05);
constraint float_times(FLOAT01, FLOAT01, FLOAT02);
constraint float_times(FLOAT03, FLOAT03, FLOAT04);
% solve satisfy;
```

Listing 2.8.2: A MiniZinc model to illustrate linear constraint flattening (linear.mzn).

```plaintext
int: d = -1;
var 0..10: x;
var -3..6: y;
var 3..8: z;
constraint 3*x - y + x * z <= 19 + d * (x + y + z) - 4*d;
solve satisfy;
```
Notice how the nonlinear expression \(x \times z \) is extracted as a new subexpression and given a name, while the remaining terms are collected together so that each variable appears exactly once (and indeed variable \(y \) whose terms cancel is eliminated).

Finally each constraint is written to FlatZinc form obtaining:

```
var 0..80: INT01;
constraint 4*x + z + INT01 <= 23;
constraint INT01 = x * z;
```

2.8.3 Unrolling Expressions

Most models require creating a number of constraints which is dependent on the input data. MiniZinc supports these models with array types, list and set comprehensions, and aggregation functions.

Consider the following aggregate expression from the production scheduling example of Listing 2.2.2.

```
int: mproducts = max (p in Products)
    (min (r in Resources where consumption[p,r] > 0)
    (capacity[r] div consumption[p,r]));
```

Since this uses generator call syntax we can rewrite it to equivalent form which is processed by the compiler:

```
int: mproducts = max([ min [ capacity[r] div consumption[p,r]
    | r in Resources where consumption[p,r] > 0]
    | p in Products]);
```

Given the data

```
nproducts = 2;
nresources = 5;
capacity = [4000, 6, 2000, 500, 500];
consumption= [[] 250, 2, 75, 100, 0,
    | 200, 0, 150, 150, 75 |];
```

this first builds the array for \(p = 1 \)

```
[ capacity[r] div consumption[p,r]
    | r in 1..5 where consumption[p,r] > 0]
```
which is [16, 3, 26, 5] and then calculates the minimum as 3. It then builds the same array for \(p = 2 \) which is [20, 13, 3, 6] and calculates the minimum as 3. It then constructs the array [3, 3] and calculates the maximum as 3. There is no representation of \(m \) products in the output FlatZinc, this evaluation is simply used to replace \(m \) products by the calculated value 3.

The most common form of aggregate expression in a constraint model is \(\text{forall} \). For all expressions are unrolled into multiple constraints.

Consider the MiniZinc fragment

```MiniZinc
array[1..8] of var 0..9: v = [S,E,N,D,M,O,R,Y];
constraint forall(i,j in 1..8 where i < j)(v[i] != v[j])
```

which arises from the SEND-MORE-MONEY example of Listing 2.2.4 using a default decomposition for \text{alldifferent}. The \text{forall} expression creates a constraint for each \(i, j \) pair which meet the requirement \(i < j \), thus creating

```MiniZinc
constraint v[1] != v[2]; % S != E
constraint v[1] != v[3]; % S != N
... constraint v[1] != v[8]; % S != Y
constraint v[2] != v[3]; % E != N
... constraint v[7] != v[8]; % R != Y
```

In FlatZinc form this is

```MiniZinc
constraint int_neq(S,E);
constraint int_neq(S,N);
... constraint int_neq(S,Y);
constraint int_neq(E,N);
... constraint int_neq(R,Y);
```

Notice how the temporary array variables \(v[i] \) are replaced by the original variables in the output FlatZinc.

2.8.4 Arrays

One dimensional arrays in MiniZinc can have arbitrary indices as long as they are contiguous integers. In FlatZinc all arrays are indexed from 1..\(l \) where \(l \) is the length of the array. This means that array lookups need to be translated to the FlatZinc view of indices.

Consider the following MiniZinc model for balancing a seesaw of length \(2 \times 12 \), with a child of weight \(\text{cw} \) kg using exactly \(m \) 1kg weights.

```MiniZinc
int: cw; % child weight
int: 12; % half seesaw length
```
2.2.1 Consider the Laplace equation constraints defined for a finite element plate model in array access.

Singledimensionalarrays, and multidimensionalarray access must bemapped to singledimension ported by FlatZinc (at present). This meansthat multidimensional arrays must bemapped to

Multidimensionalarraysaresupported by MiniZinc, but only singledimension arrays are supported by FlatZinc (at present). This means that multidimensional arrays must be mapped to single dimension arrays, and multidimensional array access must be mapped to single dimension array access.

Consider the Laplace equation constraints defined for a finite element plate model in Listing 2.2.1:

Given \(cw = 2, 12 = 2 \) and \(m = 3 \) the unrolling produces the constraints

But FlatZinc insists that the \(w \) array starts at index 1. This means we need to rewrite all the array accesses to use the new index value. For fixed array lookups this is easy, for variable array lookups we may need to create a new variable. The result for the equations above is

Finally we rewrite the constraints into FlatZinc form. Note how the variable array index lookup is mapped to `array_var_int_element`.

Multidimensional arrays are supported by MiniZinc, but only single dimension arrays are supported by FlatZinc (at present). This means that multidimensional arrays must be mapped to single dimension arrays, and multidimensional array access must be mapped to single dimension array access.

Consider the Laplace equation constraints defined for a finite element plate model in Listing 2.2.1:
set of int: HEIGHT = 0..h;
set of int: CHEIGHT = 1..h-1;
set of int: WIDTH = 0..w;
set of int: CWIDTH = 1..w-1;
array[HEIGHT, WIDTH] of var float: t; % temperature at point (i,j)
var float: left; % left edge temperature
var float: right; % right edge temperature
var float: top; % top edge temperature
var float: bottom; % bottom edge temperature

% equation
% Laplace equation: each internal temp. is average of its neighbours
constraint forall(i in CHEIGHT, j in CWIDTH)(
 4.0 * t[i,j] = t[i-1,j] + t[i,j-1] + t[i+1,j] + t[i,j+1]);

Assuming \(w = 4 \) and \(h = 4 \) this creates the constraints

```
array[0..4, 0..4] of var float: t; % temperature at point (i,j)
constraint 4.0*t[0,1] = t[0,0] + t[1,0] + t[2,1] + t[1,2];
constraint 4.0*t[1,2] = t[0,2] + t[1,1] + t[2,2] + t[1,3];
constraint 4.0*t[1,3] = t[0,3] + t[1,2] + t[2,3] + t[1,4];
constraint 4.0*t[2,1] = t[1,1] + t[2,0] + t[3,1] + t[2,2];
constraint 4.0*t[2,2] = t[1,2] + t[2,1] + t[3,2] + t[2,3];
constraint 4.0*t[2,3] = t[1,3] + t[2,2] + t[3,3] + t[2,4];
constraint 4.0*t[3,1] = t[2,1] + t[3,0] + t[4,1] + t[3,2];
constraint 4.0*t[3,2] = t[2,2] + t[3,1] + t[4,2] + t[3,3];
constraint 4.0*t[3,3] = t[2,3] + t[3,2] + t[4,3] + t[3,4];
```

The 2 dimensional array of 25 elements is converted to a one dimensional array and the indices are changed accordingly: so index \([i, j]\) becomes \([i * 5 + j + 1]\).

```
array[1..25] of var float: t;
```

2.8.5 Reification

FlatZinc models involve only variables and parameter declarations and a series of primitive constraints. Hence when we model in MiniZinc with Boolean connectives other than conjunction, something has to be done. The core approach to handling complex formulae that use connec-
tives other than conjunction is by *reification*. Reifying a constraint c creates a new constraint equivalent to $b \leftrightarrow c$ where the Boolean variable b is `true` if the constraint holds and `false` if it doesn’t hold.

Once we have the capability to reify constraints the treatment of complex formulae is not different from arithmetic expressions. We create a name for each subexpression and a flat constraint to constrain the name to take the value of its subexpression.

Consider the following constraint expression that occurs in the jobshop scheduling example of Listing 2.2.8.

```plaintext
constraint %% ensure no overlap of tasks
    forall(j in 1..tasks) (
        forall(i,k in 1..jobs where i < k) (  
            s[i,j] + d[i,j] <= s[k,j] \/
            s[k,j] + d[k,j] <= s[i,j]
        )
    );
```

Given the data file

```plaintext
class jobshop {  
    int tasks = 3;
    int jobs = 2;
    array[1..jobs] of int d = [5, 3, 4, 2, 6, 3];
}
```

then the unrolling creates

```plaintext
constraint s[1,1] + 5 <= s[2,1] \/ s[2,1] + 2 <= s[1,1];
constraint s[1,2] + 3 <= s[2,2] \/ s[2,2] + 6 <= s[1,2];
constraint s[1,3] + 4 <= s[2,3] \/ s[2,3] + 3 <= s[1,3];
```

Reification of the constraints that appear in the disjunction creates new Boolean variables to define the values of each expression.

```plaintext
array[1..6, 1..3] of var 0..23: s;
constraint BOOL01 <-> s[1,1] + 5 <= s[2,1];
constraint BOOL02 <-> s[2,1] + 2 <= s[1,1];
constraint BOOL03 <-> s[1,2] + 3 <= s[2,2];
constraint BOOL04 <-> s[2,2] + 6 <= s[1,2];
constraint BOOL05 <-> s[1,3] + 4 <= s[2,3];
constraint BOOL06 <-> s[2,3] + 3 <= s[1,3];
constraint BOOL01 \/ BOOL02;
constraint BOOL03 \/ BOOL04;
constraint BOOL05 \/ BOOL06;
```

Each primitive constraint can now be mapped to the FlatZinc form. Note how the two dimensional array s is mapped to a one dimensional form.

```plaintext
array[1..6] of var 0..23: s;
constraint int_lin_le_reif([1, -1], [s[1], s[4]], -5, BOOL01);
```

2.8.5. Reification
constraint int_lin_le_reif([-1, 1], [s[1], s[4]], -2, BOOL02);
constraint int_lin_le_reif([1, -1], [s[2], s[5]], -3, BOOL03);
constraint int_lin_le_reif([-1, 1], [s[2], s[5]], -6, BOOL04);
constraint int_lin_le_reif([1, -1], [s[3], s[6]], -4, BOOL05);
constraint int_lin_le_reif([-1, 1], [s[3], s[6]], -3, BOOL06);
constraint array_bool_or([BOOL01, BOOL02], true);
constraint array_bool_or([BOOL03, BOOL04], true);
constraint array_bool_or([BOOL05, BOOL06], true);

The int_lin_le_reif is the reified form of the linear constraint int_lin_le.

Most FlatZinc primitive constraints \(p(x) \) have a reified form \(p_{\text{reif}}(x, b) \) which takes an additional final argument \(b \) and defines the constraint \(b \leftrightarrow p(x) \). FlatZinc primitive constraints which define functional relationships, like int_plus and int_plus, do not need to support reification. Instead, the equality with the result of the function is reified.

Another important use of reification arises when we use the coercion function bool2int (either explicitly, or implicitly by using a Boolean expression as an integer expression). Flattening creates a Boolean variable to hold the value of the Boolean expression argument, as well as an integer variable (restricted to \(0..1 \)) to hold this value.

Consider the magic series problem of Listing 2.2.12.

```miniZinc
int: n;
array[0..n-1] of var 0..n: s;

constraint forall(i in 0..n-1) (s[i] = (sum(j in 0..n-1)(bool2int(s[j]=i))));
```

Given \(n = 2 \) the unrolling creates

```miniZinc
constraint s[0] = bool2int(s[0] = 0) + bool2int(s[1] = 0);
constraint s[1] = bool2int(s[0] = 1) + bool2int(s[1] = 1);
```

and flattening creates

```miniZinc
constraint BOOL01 <-> s[0] = 0;
constraint BOOL03 <-> s[1] = 0;
constraint BOOL05 <-> s[0] = 1;
constraint BOOL07 <-> s[1] = 1;
constraint INT02 = bool2int(BOOL01);
constraint INT04 = bool2int(BOOL03);
constraint INT06 = bool2int(BOOL05);
constraint INT08 = bool2int(BOOL07);
constraint s[0] = INT02 + INT04;
constraint s[1] = INT06 + INT08;
```

The final FlatZinc form is
An important factor in the support for MiniZinc by many different solvers is that global constraints (and indeed FlatZinc constraints) can be specialized for the particular solver. Each solver will either specify a predicate without a definition, or with a definition. For example a solver that has a builtin global \texttt{alldifferent} predicate, will include the definition

\begin{verbatim}
predicate alldifferent(array[int] of var int:x);
\end{verbatim}

in its globals library, while a solver using the default decomposition will have the definition

\begin{verbatim}
predicate alldifferent(array[int] of var int:x) = forall(i,j in index_set(x) where i < j)(x[i] != x[j]);
\end{verbatim}

Predicate calls \(p(\bar{t}) \) are flattened by first constructing variables \(\bar{v} \) for each argument terms \(t_i \). If the predicate has no definition we simply use a call to the predicate with the constructed arguments: \(p(\bar{v}) \). If the predicate has a definition \(p(\bar{x}) = \phi(\bar{x}) \) then we replace the predicate call \(p(\bar{t}) \) with the body of the predicate with the formal arguments replaced by the argument variables, that is \(\phi(\bar{v}) \). Note that if a predicate call \(p(\bar{t}) \) appears in a reified position and it has no definition, we check for the existence of a reified version of the predicate \(p_\text{reif}(\bar{x}, b) \) in which case we use that.

Consider the \texttt{alldifferent} constraint in the \texttt{SEND-MORE-MONEY} example of Listing 2.2.4

\begin{verbatim}
constraint alldifferent([S,E,N,D,M,O,R,Y]);
\end{verbatim}
If the solver has a builtin `alldifferent` we simply construct a new variable for the argument, and replace it in the call.

```plaintext
array[1..8] of var 0..9: v = [S,E,N,D,M,O,R,Y];
constraint alldifferent(v);
```

Notice that bounds analysis attempts to find tight bounds on the new array variable. The reason for constructing the array argument is if we use the same array twice the FlatZinc solver does not have to construct it twice. In this case since it is not used twice a later stage of the translation will replace `v` by its definition.

What if the solver uses the default definition of `alldifferent`? Then the variable `v` is defined as usual, and the predicate call is replaced by a renamed copy where `v` replaces the formal argument `x`. The resulting code is

```plaintext
array[1..8] of var 0..9: v = [S,E,N,D,M,O,R,Y];
constraint forall(i,j in 1..8 where i < j)(v[i] != v[j])
```

which we examined in *Unrolling Expressions* (page 123).

Consider the following constraint, where `alldifferent` appears in a reified position.

```plaintext
constraint alldifferent([A,B,C]) \or alldifferent([B,C,D]);
```

If the solver has a reified form of `alldifferent` this will be flattened to

```plaintext
constraint alldifferent_reif([A,B,C],BOOL01);
constraint alldifferent_reif([B,C,D],BOOL02);
constraint array_bool_or([BOOL01,BOOL02],true);
```

Using the default decomposition, the predicate replacement will first create

```plaintext
array[1..3] of var int: v1 = [A,B,C];
array[1..3] of var int: v2 = [B,C,D];
constraint forall(i,j in 1..3 where i<j)(v1[i] != v1[j]) \or
    forall(i,j in 1..3 where i<j)(v2[i] != v2[j]);
```

which will eventually be flattened to the FlatZinc form

```plaintext
constraint int_neq_reif(A,B,BOOL01);
constraint int_neq_reif(A,C,BOOL02);
constraint int_neq_reif(B,C,BOOL03);
constraint array_bool_and([BOOL01,BOOL02,BOOL03],BOOL04);
constraint int_neq_reif(B,D,BOOL05);
constraint int_neq_reif(C,D,BOOL06);
constraint array_bool_and([BOOL03,BOOL05,BOOL06],BOOL07);
constraint array_bool_or([BOOL04,BOOL07],true);
```
Note how common subexpression elimination reuses the reified inequality $B \neq C$ (although there is a better translation which lifts the common constraint to the top level conjunction).

2.8.7 Let Expressions

Let expressions are a powerful facility of MiniZinc to introduce new variables. This is useful for creating common sub expressions, and for defining local variables for predicates. During flattening let expressions are translated to variable and constraint declarations. The relational semantics of MiniZinc means that these constraints must appear as if conjoined in the first enclosing Boolean expression.

A key feature of let expressions is that each time they are used they create new variables.

Consider the flattening of the code

```plaintext
constraint even(u) \or even(v);
predicate even(var int: x) =
    let { var int: y } in x = 2 * y;
```

First the predicate calls are replaced by their definition.

```plaintext
constraint (let { var int: y } in u = 2 * y) \or
            (let { var int: y } in v = 2 * y);
```

Next let variables are renamed apart

```plaintext
constraint (let { var int: y1 } in u = 2 * y1) \or
            (let { var int: y2 } in v = 2 * y2);
```

Finally variable declarations are extracted to the top level

```plaintext
var int: y1;
var int: y2;
constraint u = 2 * y1 \or v = 2 * y2;
```

Once the let expression is removed we can flatten as usual.

Remember that let expressions can define values for newly introduced variables (and indeed must do so for parameters). These implicitly define constraints that must also be flattened.

Consider the complex objective function for wedding seating problem of Listing 2.3.10.

```plaintext
solve maximize sum(h in Hatreds)(
    let { var Seats: p1 = pos[h1[h]],
          var Seats: p2 = pos[h2[h]],
          var 0..1: same = bool2int(p1 <= 6 <=> p2 <= 6) } in
    same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1)));
```

For conciseness we assume only the first two Hatreds, so
The first step of flattening is to unroll the `sum` expression, giving (we keep the guest names and parameter `Seats` for clarity only, in reality they would be replaced by their definition):

```
solve maximize
  (let { var Seats: p1 = pos[groom],
         var Seats: p2 = pos[clara],
         var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6) } in
      same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1))
  +
  (let { var Seats: p1 = pos[carol],
         var Seats: p2 = pos[bestman],
         var 0..1: same = bool2int(p1 <= 6 <-> p2 <= 6) } in
      same * abs(p1 - p2) + (1-same) * (abs(13 - p1 - p2) + 1));
```

Next each new variable in a let expression is renamed to be distinct

```
solve maximize
  (let { var Seats: p11 = pos[groom],
         var Seats: p21 = pos[clara],
         var 0..1: same1 = bool2int(p11 <= 6 <-> p21 <= 6) } in
      same1 * abs(p11 - p21) + (1-same1) * (abs(13 - p11 - p21) + 1))
  +
  (let { var Seats: p12 = pos[carol],
         var Seats: p22 = pos[bestman],
         var 0..1: same2 = bool2int(p12 <= 6 <-> p22 <= 6) } in
      same2 * abs(p12 - p22) + (1-same2) * (abs(13 - p12 - p22) + 1));
```

Variables in the let expression are extracted to the top level and defining constraints are extracted to the correct level (which in this case is also the top level).

```
var Seats: p11;
var Seats: p21;
var 0..1: same1;
constraint p12 = pos[clara];
constraint p11 = pos[groom];
constraint same1 = bool2int(p11 <= 6 <-> p21 <= 6);
var Seats p12;
var Seats p22;
var 0..1: same2;
constraint p12 = pos[carol];
constraint p22 = pos[bestman];
constraint same2 = bool2int(p12 <= 6 <-> p22 <= 6) } in
solve maximize
  same1 * abs(p11 - p21) + (1-same1) * (abs(13 - p11 - p21) + 1))
```
Now we have constructed equivalent MiniZinc code without the use of let expressions and the flattening can proceed as usual.

As an illustration of let expressions that do not appear at the top level consider the following model

```mini
var 0..9: x;
constraint x >= 1 -> let { var 2..9: y = x - 1 } in
    y + (let { var int: z = x * y } in z * z) < 14;
```

We extract the variable definitions to the top level and the constraints to the first enclosing Boolean context, which here is the right hand side of the implication.

```mini
var 0..9: x;
var 2..9: y;
var int: z;
constraint x >= 1 -> (y = x - 1 /\ z = x * y /\ y + z * z < 14);
```

Note that if we know that the equation defining a variable definition cannot fail we can extract it to the top level. This will usually make solving substantially faster.

For the example above the constraint \(y = x - 1\) can fail since the domain of \(y\) is not big enough for all possible values of \(x - 1\). But the constraint \(z = x \cdot y\) cannot (indeed bounds analysis will give \(z\) bounds big enough to hold all possible values of \(x \cdot y\)). A better flattening will give

```mini
var 0..9: x;
var 2..9: y;
var int: z;
constraint z = x \cdot y;
constraint x >= 1 -> (y = x - 1 /\ y + z \cdot z < 14);
```

Currently the MiniZinc compiler does this by always defining the declared bounds of an introduced variable to be big enough for its defining equation to always hold and then adding bounds constraints in the correct context for the let expression. On the example above this results in

```mini
var 0..9: x;
var -1..8: y;
var -9..72: z;
constraint y = x - 1;
constraint z = x \cdot y;
constraint x >= 1 -> (y >= 2 /\ y + z \cdot z < 14);
```

This translation leads to more efficient solving since the possibly complex calculation of the let variable is not reified.

Another reason for this approach is that it also works when introduced variables appear in negative contexts (as long as they have a definition). Consider the following example similar to the
previous one

```mini
var 0..9: x;

constraint (let { var 2..9: y = x - 1 } in
    y + (let { var int: z = x * y } in z * z) > 14) -> x >= 5;
```

The let expressions appear in a negated context, but each introduced variable is defined. The flattened code is

```mini
var 0..9: x;
var -1..8: y;
var -9..72: z;
constraint y = x - 1;
constraint z = x * y;
constraint (y >= 2 \ y + z * z > 14) -> x >= 5;
```

Note the analog to the simple approach to let elimination does not give a correct translation:

```mini
var 0..9: x;
var 2..9: y;
var int: z;
constraint (y = x - 1 \ z = x * y \ y + z * z > 14) -> x >= 5;
```

gives answers for all possible values of \(x \), whereas the original constraint removes the possibility that \(x = 4 \).

The treatment of `constraint items` in let expressions is analogous to defined variables. One can think of a constraint as equivalent to defining a new Boolean variable. The definitions of the new Boolean variables are extracted to the top level, and the Boolean remains in the correct context.

```mini
constraint z > 1 -> let { var int: y,
    constraint (x >= 0) -> y = x,
    constraint (x < 0) -> y = -x
} in y * (y - 2) >= z;
```

is treated like

```mini
constraint z > 1 -> let { var int: y,
    var bool: b1 = ((x >= 0) -> y = x),
    var bool: b2 = ((x < 0) -> y = -x),
    constraint b1 \ b2
} in y * (y - 2) >= z;
```

and flattens to

```mini
constraint b1 = ((x >= 0) -> y = x);
constraint b2 = ((x < 0) -> y = -x);
constraint z > 1 -> (b1 \ b2 \ y * (y - 2) >= z);
```
Part 3

User Manual
The core of the MiniZinc constraint modelling system is the minizinc tool. You can use it directly from the command line, through the MiniZinc IDE, or through a programmatic interface (API). This chapter summarises the options accepted by the tool, and explains how it interacts with target solvers.

3.1.1 Basic Usage

The minizinc tool performs three basic functions: it compiles a MiniZinc model (plus instance data), it runs an external solver, and it translates solver output into the form specified in the model. Most users would use all three functions at the same time. For example, let us assume that we want to solve the following simple problem, given as two files (model.mzn and data.dzn):

```
int: n;
array[1..n] of var 1..2*n: x;
include "alldifferent.mzn";
constraint alldifferent(x);
solve maximize sum(x);
output ["The resulting values are \(x).\n"];
```

To run the model file model.mzn with data file data.dzn using the Gecode solver, you can use the following command line:

```
$ minizinc --solver Gecode model.mzn data.dzn
```

This would result in the output
The resulting values are \([10, 9, 8, 7, 6]\).

However, each of the three functions can also be accessed individually. For example, to compile the same model and data, use the `-c` option:

```plaintext
$ minizinc -c --solver Gecode model.mzn data.dzn
```

This will result in two new files, `model.fzn` and `model.ozn`, being output in the same directory as `model.mzn`. You could then run a target solver directly on the `model.fzn` file, or use `minizinc`:

```plaintext
$ minizinc --solver Gecode model.fzn
```

You will see that the solver produces output in a standardised form, but not the output prescribed by the output item in the model:

```plaintext
x = array1d(1..5 ,[10, 9, 8, 7, 6]);
```

The translation from this output to the form specified in the model is encoded in the `model.ozn` file. You can use `minizinc` to execute the `.ozn` file. In this mode, it reads a stream of solutions from standard input, so we need to pipe the solver output into `minizinc`:

```plaintext
$ minizinc --solver Gecode model.fzn | minizinc --ozn-file model.ozn
```

These are the most basic command line options that you need in order to compile and run models and translate their output. The next section lists all available command line options in detail. Section 4.3.5 explains how new solvers can be added to the system.

3.1.2 Adding Solvers

Solvers that support MiniZinc typically consist of two parts: a solver executable, which can be run on the FlatZinc output of the MiniZinc compiler, and a solver library, which consists of a set of MiniZinc files that define the constraints that the solver supports natively. This section deals with making existing solvers available to the MiniZinc tool chain. For information on how to add FlatZinc support to a solver, refer to Section 4.3.

3.1.2.1 Configuration files

In order for MiniZinc to be able to find both the solver library and the executable, the solver needs to be described in a solver configuration file (see Section 4.3.5 for details). If the solver you want to install comes with a configuration file (which has the file extension `.msc` for MiniZinc Solver Configuration), it has to be in one of the following locations:
• In the minizinc/solvers/ directory of the MiniZinc installation. If you install MiniZinc from the binary distribution, this directory can be found at /usr/share/minizinc/solvers on Linux systems, inside the MiniZincIDE application on macOS system, and in the Program Files\MiniZinc IDE (bundled) folder on Windows.

• In the directory $HOME/.minizinc/solvers on Linux and macOS systems, and the Application Data directory on Windows systems.

• In any directory listed on the MZN_SOLVER_PATH environment variable (directories are separated by : on Linux and macOS, and by ; on Windows systems).

• In any directory listed in the mzn_solver_path option of the global or user-specific configuration file (see Section 3.1.4)

• Alternatively, you can use the MiniZinc IDE to create solver configuration files, see Section 3.2.5.2 for details.

After adding a solver, it will be listed in the output of the minizinc --solvers command.

3.1.2.2 Configuration for MIP solvers

Some solvers require additional configuration flags before they can be used. For example, the binary bundle of MiniZinc comes with interfaces to the CPLEX and Gurobi Mixed Integer Programming solvers. However, due to licensing restrictions, the solvers themselves are not part of the bundled release. Depending on where CPLEX or Gurobi is installed on your system, MiniZinc may be able to find the solvers automatically, or it may require an additional option to point it to the shared library.

In case the libraries cannot be found automatically, you can use one of the following:

• CPLEX: Specify the location of the shared library using the --cplex-dll command line option. On Windows, the library is called cplexXXXX.dll and typically found in same directory as the cplex executable. On Linux it is libcplexXXX.so, and on macOS libcplexXXXX.jnilib, where XXX and XXXX stand for the version number.

• Gurobi: The command line option for Gurobi is --gurobi-dll. On Windows, the library is called gurobiXXXX.dll (in the same directory as the gurobi executable), and on Linux and macOS is it libgurobiXX.so (in the lib directory of your Gurobi installation).

• You can define these paths as defaults in your user configuration file, see Section 3.1.4.

3.1.3 Options

You can get a list of all the options supported by the minizinc tool using the --help flag.

3.1.3.1 General options

These options control the general behaviour of the minizinc tool.

--help, -h
 Print a help message.

--version
 Print version information.
--solvers
 Print list of available solvers.

--solver <id>, --solver <solver configuration file>.msc
 Select solver to use. The first form of the command selects one of the solvers known to
 MiniZinc (that appear in the list of the --solvers command). You can select a solver
 by name, id, or tag, and add a specific version. For example, to select a mixed-integer
 programming solver, identified by the mip tag, you can use --solver mip. To select
 a specific version of Gurobi (in case you have two versions installed), use --solver
 Gurobi@7.5.2. Instead of the name you can also use the solver's identifier, e.g. --solver
 org.gecode.gecode.

 The second form of the command selects the solver from the given configuration file (see
 Section 4.3.5).

--help <id>
 Print help for a particular solver. The scheme for selecting a solver is the same as for the
 --solver option.

-v, -l, --verbose
 Print progress/log statements (for both compilation and solver). Note that some solvers
 may log to stdout.

--verbose-compilation
 Print progress/log statements for compilation only.

-s, --statistics
 Print statistics (for both compilation and solving).

--compiler-statistics
 Print statistics for compilation.

-c, --compile
 Compile only (do not run solver).

--config-dirs
 Output configuration directories.

--solvers-json
 Print configurations of available solvers as a JSON array.

3.1.3.2 Solving options

Each solver may support specific command line options for controlling its behaviour. These can
be queried using the --help <id> flag, where <id> is the name or identifier of a particular solver.
Most solvers will support some or all of the following options.

-a, --all-solutions
 Report all solutions in the case of satisfaction problems, or print intermediate solutions of
 increasing quality in the case of optimisation problems.

-n <i>, --num-solutions <i>
 Stop after reporting i solutions (only used with satisfaction problems).

-f, --free-search
 Instructs the solver to conduct a “free search”, i.e., ignore any search annotations. The
 solver is not required to ignore the annotations, but it is allowed to do so.
--solver-statistics
Print statistics during and/or after the search for solutions.

--verbose-solving
Print log messages (verbose solving) to the standard error stream.

-p <i>, --parallel <i>
Run with i parallel threads (for multi-threaded solvers).

-r <i>, --random-seed <i>
Use i as the random seed (for any random number generators the solver may be using).

3.1.3.3 Flattener input options

These options control aspects of the MiniZinc compiler.

--ignore-stdlib
Ignore the standard libraries stdlib.mzn and builtins.mzn

--instance-check-only
Check the model instance (including data) for errors, but do not convert to FlatZinc.

-e, --model-check-only
Check the model (without requiring data) for errors, but do not convert to FlatZinc.

--model-interface-only
Only extract parameters and output variables.

--model-types-only
Only output variable (enum) type information.

--no-optimize
Do not optimize the FlatZinc

-d <file>, --data <file>
File named <file> contains data used by the model.

-D <data>, --cmdline-data <data>
Include the given data assignment in the model.

--stdlib-dir <dir>
Path to MiniZinc standard library directory

-G --globals-dir --mzn-globals-dir <dir>
Search for included globals in stdlib/<dir>.

-I --input-from-stdin
Read problem from standard input

-I --search-dir
Additionally search for included files in <dir>.

-D "fMIPdomains=false"
No domain unification for MIP

--MIPDMaxIntvEE <n>
Max integer domain subinterval length to enforce equality encoding, default 0
Flattener two-pass options

Two-pass compilation means that the MiniZinc compiler will first compile the model in order to collect some global information about it, which it can then use in a second pass to improve the resulting FlatZinc. For some combinations of model and target solver, this can lead to substantial improvements in solving time. However, the additional time spent on the first compilation pass does not always pay off.

--two-pass

Flatten twice to make better flattening decisions for the target

--use-gecode

Perform root-node-propagation with Gecode (adds --two-pass)

--shave

Probe bounds of all variables at the root node (adds --use-gecode)

--sac

Probe values of all variables at the root node (adds --use-gecode)

--pre-passes <n>

Number of times to apply shave/sac pass (0 = fixed-point, 1 = default)

-O<n>

Two-pass optimisation levels:

-0: Disable optimize (--no-optimize) -O1: Single pass (default) -O2: Same as: --two-pass -O3: Same as: --use-gecode -O4: Same as: --shave -O5: Same as: --sac

Flattener output options

These options control how the MiniZinc compiler produces the resulting FlatZinc output. If you run the solver directly through the minizinc command or the MiniZinc IDE, you do not need to use any of these options.

--no-output-ozn, -0-

Do not output ozn file

--output-base <name>

Base name for output files

--fzn <file>, --output-fzn-to-file <file>

Filename for generated FlatZinc output
These options control how solutions are output. Some of these options only apply if `minizinc` is used to translate a stream of solutions coming from a solver into readable output (using a .ozn file generated by the compiler).

--ozn-file <file>
Read output specification from ozn file.

-o <file>, --output-to-file <file>
Filename for generated output.

-i <n>, --ignore-lines <n>, --ignore-leading-lines <n>
Ignore the first <n> lines in the FlatZinc solution stream.

--soln-sep <s>, --soln-separator <s>, --solution-separator <s>
Specify the string printed after each solution (as a separate line). The default is to use the same as FlatZinc, “———-“.

--soln-comma <s>, --solution-comma <s>
Specify the string used to separate solutions. The default is the empty string.

--unsat-msg (--unsatisfiable-msg)
Specify status message for unsatisfiable problems (default: "=====UNSATISFIABLE=====")

--unbounded-msg
Specify status message for unbounded problems (default: "=====UNBOUNDED=====")
MiniZinc Handbook, Release 2.3.1

--unsatorunbnd-msg
Specify status message for unsatisfiable or unbounded problems (default: "=====UNSATOrUNBOUNDED=====")

--unknown-msg
Specify status message if search finished before determining status (default: "=====UNKNOWN=====")

--error-msg
Specify status message if search resulted in an error (default: "=====ERROR=====")

--search-complete-msg <msg>
Specify status message if when search exhausted the entire search space (default: "==========")

--non-unique
Allow duplicate solutions.

-c, --canonicalize
Canonicalize the output solution stream (i.e., buffer and sort).

--output-non-canonical <file>
Non-buffered solution output file in case of canonicalization.

--output-raw <file>
File to dump the solver's raw output (not for hard-linked solvers)

--no-output-comments
Do not print comments in the FlatZinc solution stream.

--output-time
Print timing information in the FlatZinc solution stream.

--no-flush-output
Don't flush output stream after every line.

3.1.4 User Configuration Files

The minizinc tool reads a system-wide and a user-specific configuration file to determine default paths, solvers and solver options. The files are called Preferences.json, and you can find out the locations for your platform using the option --config-dirs:

```
$ minizinc --config-dirs
{
    "globalConfigFile" : "/Applications/MiniZincIDE.app/Contents/Resources/share/minizinc/Preferences.json",
    "userConfigFile" : "~/Users/Joe/.minizinc/Preferences.json",
    "userSolverConfigDir" : "~/Users/Joe/.minizinc/solvers",
    "mznStdlibDir" : "/Applications/MiniZincIDE.app/Contents/Resources/share/minizinc"
}
```

The configuration files are simple JSON files that can contain the following configuration options:
• **mzn_solver_path** (list of strings): Additional directories to scan for solver configuration files.

• **mzn_lib_dir** (string): Location of the MiniZinc standard library.

• **tagDefaults** (list of lists of strings): Each entry maps a tag to the default solver for that tag. For example, `[["cp", "org.chuffed.chuffed"], ["mip", "org.minizinc.gurobi"]]` would declare that whenever a solver with tag "cp" is requested, Chuffed should be used, and for the "mip" tag, Gurobi is the default. The empty tag ("") can be used to define the system-wide default solver (i.e., the solver that is chosen when running minizinc without the --solver argument).

• **solverDefaults** (list of lists of strings): Each entry consists of a list of three strings: a solver identifier, a command line option, and a value for that command line option. For example, `[["org.minizinc.gurobi", "--gurobi-dll", "/Library/gurobi752/mac64/lib/libgurobi75.so"]])` would specify the Gurobi shared library to use (on a macOS system with Gurobi 7.5.2). For command line options that don't take a value, you have to specify an empty string, e.g. `[["org.minizinc.gurobi", "--uniform-search", "]"]`.

Here is a sample configuration file:

```json
{
  "mzn_solver_path": ["/usr/share/choco"],
  "tagDefaults": [["cp", "org.choco-solver.choco"], ["mip", "org.minizinc.cplex"], ""], ["", "org.gecode.gecode"],
  "solverDefaults": [["org.minizinc.cplex", "--cplex-dll", "/opt/CPLEX_Studio128/cplex/bin/x86-64_sles10_4.1/libcplex128.so"]]
}
```

Configuration values in the user-specific configuration file override the global values, except for solver default arguments, which are only overridden if the name of the option is the same, and otherwise get added to the command line.

Note: Due to current limitations in MiniZinc's JSON parser, we use lists of strings rather than objects for the default mappings. This may change in a future release, but the current syntax will remain valid. The location of the global configuration is currently the share/minizinc directory of the MiniZinc installation. This may change in future versions to be more consistent with file system standards (e.g., to use /etc on Linux and /Library/Preferences on macOS).
The MiniZinc IDE lets you edit and run MiniZinc models. It requires a working installation of the MiniZinc tool chain (which is included when you download the bundled version of the IDE). For installation instructions, see Section 1.2. This document assumes that you have installed the IDE from the bundled binary distribution, which means that it will already be configured correctly when you start it for the first time. The configuration options are described in Section 3.2.5.

Section 1.3 contains an introduction to the absolute basics of working with the IDE. This document goes into a bit more detail.

3.2.1 Editing files

The basic editor provides the usual functionality of a simple text editor. You can edit MiniZinc models (file extension `.mzn`) and data files (`.dzn`). When you first open the MiniZinc IDE, you are presented with an empty Playground editor, which lets you quickly try out simple MiniZinc models (it does not have to be saved to a file before running a solver on it).

Each file will be opened in a separate tab. To switch between files, click on the tab, select the file from the Window menu, or use the Previous tab/Next tab options from the View menu.

When saving a file, make sure that you select the correct file type (represented by the file extension). Models should be saved as `.mzn` files, while data files should have a `.dzn` extension. This is important because the IDE will only let you invoke the solver on model files.

3.2.1.1 Editing functions

The Edit menu contains the usual functions for editing text files, such as undo/redo, copy/cut/paste, and find/replace. It also allows you to jump to a particular line number (Go to line), and to shift the currently selected text (or the current line if nothing is selected) right or left by two spaces. The (Un)comment option will turn the current selection (or current line) into comments, or remove the comment symbols if it is already commented.
3.2.1.2 Fonts and dark mode

You can select the font and font size in the View menu. We recommend to use a fixed-width font (the IDE should pick such a font by default).

Depending on your platform, the View menu also lets you activate “dark mode”, which switches the colour scheme to a dark background. On macOS 10.14 and later, the operating systems supports a global dark mode, and the MiniZinc IDE will follow that setting.

3.2.2 Configuring and Running a Solver

The MiniZinc IDE automatically detects which solvers are available to MiniZinc. You can select the solver to use from the solver selection drop-down menu next to the Run icon in the tool bar:

3.2.2.1 Running a model

MiniZinc models can be compiled and run by clicking the Run icon, selecting Run from the MiniZinc menu, or using the keyboard shortcut Ctrl+R (Cmd+R on macOS). The IDE will use the currently selected solver for compiling and running the model.

Running a model will open the Output window, usually located at the bottom of the IDE’s main window. MiniZinc displays progress messages as well as any output received from the solver there. If compilation resulted in an error message, clicking on the error will jump to the corresponding location in the model or data file.

The current run can be aborted by clicking the Stop icon, selecting Stop from the MiniZinc menu, or using the keyboard shortcut Ctrl+E (Cmd+E on macOS).

If the selected model requires some parameters to be set before it can be run, the MiniZinc IDE will open a parameter dialog. It has two tabs. The left tab lets you enter the parameters manually:

The second tab lets you select one or several of the data files that are currently open:
3.2.2.2 Solver configurations

Selecting one of the built-in solvers from the drop-down menu activates its default configuration. In order to change the solver’s behaviour, open the solver configuration editor by clicking on the icon in the tool bar, selecting Show configuration editor from the MiniZinc/Solver configurations menu, or using the keyboard shortcut Ctrl+Shift+C (Cmd+Shift+C on macOS).

Fig. 3.2.1 shows the configuration window. The first section (marked with a 1 in a red circle) contains a drop-down menu to select the solver configuration. In this case, a built-in configuration for the COIN-BC solver was selected. You can make this configuration the default (the MiniZinc IDE will remember this setting), you can reset all values to the defaults, and you can make a clone of the configuration. Cloning a configuration is useful if you want to be able to quickly switch between different sets of options.

Note that any changes to the built-in configurations will be lost when you close the IDE. Any changes to a cloned configuration are saved as part of the project (see Section 3.2.3).

The Solving section below contains a number of general options. First of all, it shows the concrete solver used in this configuration. Below that, you can set a time limit, after which the execution will be stopped. The built-in configurations all use the “default behaviour” (marked with a 2), which is to print all intermediate solutions for optimisation problems, and stop after the first found solution for satisfaction problems. To change this, you can select User-defined behavior instead (marked with a 3).

The next section, Compiler options (marked with a 4), controls different aspects of the compilation from MiniZinc to FlatZinc for the selected solver. The first two checkboxes control verbosity and statistics output of the compiler. The drop-down below controls the optimisation level of the compiler, i.e., how much effort it should spend on creating the best possible FlatZinc representation for the given model. The two input fields below allow you to specify additional data (passed into the compilation as if it was part of a .dzn file) and additional command line options for the compiler.

The Solver options section (marked with a 5) contains configuration options for the selected solver. Only options that are supported by the solver will be available, others will be grayed out (e.g., the selected solver in Fig. 3.2.1 does not support setting a random seed, or free search).

Finally, the Output options section gives you control over the output behaviour. The first tick box enables you to clear the Output window automatically every time you run a model. The second option inserts timing information into the stream of solutions. The third check box (Check solutions) is described in Section 3.2.2.3 below. The Compress solution output option is useful for problems that produce a lot (read: thousands) of solutions, which can slow down and clutter the output window. The compression works by printing just the number of solutions.
Fig. 3.2.1: The solver configuration window
rather than the solutions themselves. For example, the following model would produce 1000 solutions when run with User-defined behavior and solution limit set to 0:

```
var 1..1000: x;
solve satisfy;
```

When running with compression set to 100, MiniZinc will output the first 100 solutions, and then a sequence of output like this:

```
[ 100 more solutions ]
[ 200 more solutions ]
[ 400 more solutions ]
[ 199 more solutions ]
x = 1000;
----------
==========
```

The number of solutions captured by one of the ... more solutions lines is doubled each time, in order to keep the overall output low. The last solution produced by the solver will always be printed (since, in the case of optimisation problems, the last solution is the best one found).

3.2.2.3 Automatic Solution Checking

MiniZinc can automatically run the output of a model through a solution checker, another MiniZinc model that verifies that the solution satisfies a given set of rules. This can be useful for teaching constraint modelling, if the solution checker is given to students. Another use case is to use a simple checker while working on a more complex model, to ensure that the complex model still meets the specification.

The default behaviour of the MiniZinc IDE is to run a solution checker if one is present. For a model abc.mzn, a solution checker must be called abc.mzc or abc.mzc.mzn. If a checker is present, the Run icon will turn into a Run + check icon instead. The output of the solution checker is displayed together with the normal solution output in the Output window.

You can disable solution checkers by deselecting the Check solutions option in the solver configuration window.

You can find a detailed description of MiniZinc solution checkers in Automatic Solution Checking (page 165).

3.2.2.4 Compiling a model

It can sometimes be useful to look at the FlatZinc code generated by the MiniZinc compiler for a particular model. You can use the Compile option from the MiniZinc menu to compile the model without solving. The generated FlatZinc will be opened in a new tab. You can edit and save the FlatZinc to a file, and run it directly (without recompiling).
3.2.3 Working With Projects

Each main window of the MiniZinc IDE corresponds to a project, a collection of files and settings that belong together. A project can be saved to and loaded from a file.

You can open a new project by selecting the New project option from the File menu, or using the Ctrl+Shift+N keyboard shortcut (Cmd+Shift+N on macOS).

All the files that belong to the current project are shown in the Project explorer (see Fig. 3.2.2), which can be opened using the tool bar icon, or using the Show project explorer option in the View menu. The project explorer lets you run the model in the currently active tab with any of the data files by right-clicking on a .dzn file and selecting Run model with this data. Right-clicking any file presents a number of options: opening it, removing it from the project, renaming it, running it, and adding new files to the project.

A saved project contains the following pieces of information:

- The names of all files in the project. These are stored as relative paths (relative to the project file).
- Which files were open in tabs (and in which order) at the time the project was saved.
- The active solver configuration.
- The state of any cloned solver configuration.

The following will not be saved as part of the project:

- The contents of the Output window.
- The state of the built-in solver configurations.

3.2.4 Submitting Solutions to Online Courses

The MiniZinc IDE has built-in support for submitting solutions and models to online courses, including the Coursera courses that introduce modelling in MiniZinc:

- Basic Modeling for Discrete Optimization⁶
- Advanced Modeling for Discrete Optimization⁷

The submission system is controlled by a file called _mooc, which is typically part of the projects that you can download for workshops and assignments. When a project contains this file, a new submission icon will appear in the tool bar, together with an option in the MiniZinc menu.

Clicking the icon (or selecting the menu option) opens the submission dialog (see Fig. 3.2.3). It lets you select the problems that you would like to run on your machine, after which the solutions will be sent to the online course auto-grading system. Some projects may also contain model submissions, which are not run on your machine, but are evaluated by the online auto-grader on new data that was not available to you for testing.

You will have to enter the assignment-specific login details. By clicking the Run and submit button, you start the solving process. When it finishes, the MiniZinc IDE will upload the solutions to the auto-grading platform.

⁶ https://www.coursera.org/learn/basic-modeling
⁷ https://www.coursera.org/learn/advanced-modeling
Fig. 3.2.2: Project explorer
Fig. 3.2.3: Submitting to Coursera
3.2.5 Configuration Options

The MiniZinc IDE can be configured through the Preferences dialog in the MiniZinc menu (on Windows and Linux) or the MiniZincIDE menu (on macOS), as shown in Fig. ??.

3.2.5.1 Locating the MiniZinc installation

The most important configuration option is the path to the minizinc executable. In the example in Fig. ??, this field has been left empty, in which case minizinc is assumed to be on the standard search path (usually the PATH environment variable). Typically, in a bundled binary installation of MiniZinc, this field can therefore be left empty.

If you installed MiniZinc from sources, or want to switch between different versions of the compiler, you can add the path to the directory that contains the minizinc executable here. You can select a directory from a file dialog using the Select button, or enter it manually. Clicking the Check button will check that minizinc can in fact be run, and has the right version. The version of minizinc that was found is displayed below the path input field. Fig. ?? below shows an example where MiniZinc is located at /home/me/minizinc-2.2.0/bin.

You can have the MiniZinc IDE check once a day whether a new version of MiniZinc is available.

3.2.5.2 Adding Third-Party Solvers

The Solver section of the configuration dialog can be used to inspect the solvers that are currently available to MiniZinc, and to add new solvers to the system.

Configuring existing solvers

You can use the configuration dialog to set up defaults for the installed solvers. In the current version of the MiniZinc IDE, this is limited to configuring the CPLEX and Gurobi backends. The bundled binary version of MiniZinc comes with support for loading CPLEX and Gurobi as plugins, i.e., MiniZinc does not ship with the code for these solvers but can load them dynamically if they are installed.

For example, Fig. ?? shows a potential configuration for Gurobi. On Windows, the library is called gurobiXX.dll (in the same directory as the gurobi executable), and on Linux and macOS is it libgurobiXX.so (in the lib directory of your Gurobi installation), where XX stands for the version number of Gurobi.

If you select the CPLEX solver, a similar option appears (--cplex-dll). On Windows, the CPLEX library is called cplexXXXX.dll and typically found in same directory as the cplex executable. On Linux it is libcplexXXX.so, and on macOS libcplexXXXX.jnilib, where XXX and XXXX stand for the version number of CPLEX.

Adding new solvers

The example in Fig. ?? shows a potential configuration for Gecode, which was installed in /home/me/gecode.

Each solver needs to be given
3.2.5. Configuration Options
• a name;
• a unique identifier (usually in reverse domain name notation);
• a version string; and
• the executable that can run FlatZinc.

In addition, you can specify the location of a solver-specific MiniZinc library (see Section 4.3.3 for details). If you leave this field empty, the MiniZinc standard library will be used. The path entered into this field should be an absolute path in the file system, without extra quoting, and without any command line arguments (such as `-I`).

Most solvers will require compilation and output processing, since they only deal with FlatZinc files. For these solvers, the `Run with mzn2fzn and solns2out` option must be selected. For solvers that can deal with MiniZinc models natively, this option can be deselected.

Some solvers open an independent application with its own graphical user interface. One such example is the Gecode (Gist) solver that comes with the bundled version of the IDE. For these solvers, select the `Run solver detached from IDE` option, so that the IDE does not wait for solver output.

Finally, you can select which command line flags are supported by the solver. This controls which options will be available in the solver configuration window.

Solver configurations that are edited or created through the IDE are saved in a configuration file in a standard location. These solvers are therefore available the next time the IDE is started, as well as through the `minizinc` command line tool.
Solving Technologies and Solver Backends

The minizinc tool can use various solver backends for a given model. Some solvers are separate executables that are called by minizinc and passed the name of a FlatZinc file; other solvers are part of the minizinc binary (either hard-coded or loaded as a dynamic library or “plugin”). Some solvers are part of the binary MiniZinc distribution, others have to be installed separately. You can find instructions for installing these solvers from source code and integrating into the minizinc tool in Installation from Source Code (page 197). This chapter summarises usage options available for various target solvers.

The help text of minizinc shows a list of configured solver backends and their tags. You can see solver-specific command-line options by running

```
$ minizinc --help <solver-id or tag>
```

3.3.1 Constraint Programming Solvers

3.3.1.1 Gecode

Gecode is an open-source constraint programming system (see https://www.gecode.org). It supports many of MiniZinc’s global constraints natively, and has support for integer, set and float variables.

Gecode supports a number of constraints and search annotations that are not part of the MiniZinc standard library. You can get access to these by adding include "gecode.mzn"; to your model. The additional declarations are documented in Section 4.2.7.

3.3.1.2 Chuffed

Chuffed is a constraint solver based on lazy clause generation (see https://github.com/chuffed/chuffed). This type of solver adapts techniques from SAT solving, such as conflict clause learning,
watched literal propagation and activity-based search heuristics, and can often be much faster than traditional CP solvers.

In order to take full advantage of Chuffed's performance, it is often useful to add a search annotation to the model (see Search (page 85)), but allow Chuffed to switch between this defined search and its activity-based search. In order to enable this behaviour, use the -f (free search) command line option or select Free search in the solver configuration pane of the MiniZinc IDE.

Chuffed supports a number of additional search annotations that are not part of the MiniZinc standard library. The additional declarations are documented in Section 4.2.8.

3.3.1.3 OR-Tools

OR-Tools is an open-source CP/SAT/LP solver (see https://developers.google.com/optimization/). It supports many of MiniZinc’s global constraints natively. It often performs better multi-threaded (option -p) so it can employ various solving technologies. A search annotation (see Search (page 85)) can be useful.

3.3.2 Mixed-Integer Programming Solvers

MiniZinc has built-in support for Mixed Integer Programming solvers. If you have any MIP solver installed (and MiniZinc was compiled with MIP support), you can run a model using MIP like this on the command line:

```
minizinc --solver mip -v -s -a model.mzn data.dzn
```

Of course, you can also select a particular solver, e.g. Gurobi (in case it is available):

```
minizinc --solver gurobi -v -s -a model.mzn data.dzn
```

3.3.2.1 MIP-Aware Modeling (But Mostly Useful for All Backends)

Avoid mixing positive and negative coefficients in the objective. Use ‘complementing’ variables to revert sense.

Avoid nested expressions which are hard to linearize (decompose for MIP). For example, instead of

```plaintext
constraint forall(s in TASKS)(exists([whentask[s]=0] ++ [whentask[s]>= start[s]+(t*numslots) \ whentask[s]<= stop[s]+(t*numslots)]) | t in 0..nummachines-1]));
```

prefer the tight domain constraint

```plaintext
constraint forall(s in TASKS)((whentask[s] in {0} union array_union([ start[s]+(t*numslots) .. stop[s]+(t*numslots) | t in 0..nummachines-1]));
```
To avoid numerical issues, make variable domains as tight as possible (compiler can deduce bounds in certain cases but explicit bounding can be stronger). Try to keep magnitude difference in each constraint below 1e4. Especially for variables involved in logical constraints, if you cannot reduce the domains to be in +/-1e4, consider indicator constraints (available for some solvers, see below), or use the following trick: instead of saying \(b=1 \rightarrow x \leq 0 \) where \(x \) can become very big, use e.g. \(b=1 \rightarrow 0.001 \times x \leq 0.0 \). Especially for integer variables, the domain size of 1e4 should be an upper bound if possible – what is the value of integrality otherwise? Avoid large coefficients too, as well as large values in the objective function. See more on tolerances in a below section.

Example 1: basic big-M constraint vs implication. Instead of \(<\text{expr}> \leq 1000000 \times y \) given \(\text{var 0..1: y} \) and where you use the ‘big-M’ value of 1000000 because you don’t know a good upper bound on \(<\text{expr}> \), prefer \(y=0 \rightarrow <\text{expr}> \leq 0 \) so that MiniZinc computes a possibly tighter bound, and consider the above trick: \(y=0 \rightarrow 0.0001 \times <\text{expr}> \leq 0.0 \) to reduce magnitudes.

Example 2: cost-based choice. Assume you want the model to make a certain decision, e.g., constructing a road, but then its cost should be minimal among some others, otherwise not considered. This can be modeled as follows:

```plaintext
var 0..1: c; %%% Whether we_
\r
-\r
-construct the road
var int: cost_road = 286*c + 1000000*(1-c);
var int: cost_final = min( [ cost_road, cost1, cost2 ] );
```

Note the big coefficient in the definition of \(\text{cost_road} \). It can lead to numerical issues and a wrong answer: when the solver’s integrality tolerance is 1e-6, it can assume \(c=0.999999 \) as equivalent to \(c=1 \) leading to \(\text{cost_road}=287 \) after rounding.

A better solution, given reasonable bounds on \(\text{cost1} \) and \(\text{cost2} \), is to replace the definition as follows:

```plaintext
int: cost_others_ub = 1+2*ub_array( [cost1, cost2] ); %%% Multiply by 2_
\r
-\r
-\r
for a stronger LP relaxation
var int: cost_road = 286*c + cost_others_ub*(1-c);
```

3.3.2.2 Useful Flattening Parameters

The following parameters can be given on the command line or modified in `share/minizinc/linear/options.mzn`:

```plaintext
-D nSECcuts=0/1/2 %%% Subtour Elimination_
-\r
-Constraints, see below
-D fMIPdomains=true/false %%% The unified domains feature,
-\r
-see below
-D float_EPS=1e-6 %%% Epsilon for floats’ strict_
-\r
-comparison
-D fIndConstr=true -DfMIPdomains=false %%% Use solver’s indicator_
-\r
-constraints, see below
-\r
-no-half-reifications %%% Turn off halfreification_
-\r
-(full reification was until v2.2.3)
```
3.3.2.3 Some Solver Options and Changed Default Values

The following command-line options affect the backend or invoke extra functionality. Note that some of them have default values which may be different from the backend's ones. For example, tolerances have been tightened to enable more precise solving with integer variables and objective. This slightly deteriorates performance on average, so when your model has moderate constant and bound magnitudes, you may want to pass negative values to use solver's defaults.

```
--relGap <n> relative gap |primal-dual|/<solver-dep> to stop. Default 1e-8
--feasTol <n> primal feasibility tolerance (Gurobi). Default 1e-8
--intTol <n> integrality tolerance for a variable. Default 1e-8
--solver-time-limit-feas <n>, --solver-tlf <n>
  stop after <n> milliseconds after the first feasible solution (some backends)
--solution (some backends)
--writeModel <file>
  write model to <file> (.lp, .mps, .sav, ...)
--readParam <file>
  read backend-specific parameters from file (some backends)
--writeParam <file>
  write backend-specific parameters to file (some backends)
--cbcArgs '-guess -cuts off -preprocess off -passc 1'
  parameters for the COIN-OR CBC backend
```

All MIP solvers directly support multi-threading (option --p). For COIN-BC to use it, it needs to be configured with --enable-cbc-parallel. For other command-line options, run `minizinc -h <solver-id>`.

3.3.2.4 Subtour Elimination Constraints

Optionally use the SEC cuts for the circuit global constraint. Currently only Gurobi and IBM ILOG CPLEX (2019/03). If compiling from source, this needs boost and cmake flag --DCOMPILE_BOOST_MINCUT=ON (or #define it in `lib/algorithms/min_cut.cpp`). Values of nSECcuts: 0,1: use MTZ formulation; 1,2: pass on circuit constraints to the SEC cut generator, so 1 would use both.

3.3.2.5 Unified Domains (MIPdomains)

The ‘MIPdomains’ feature of the Flattener aims at reducing the number of binary flags encoding linearized domain constraints, see the paper Belov, Stuckey, Tack, Wallace. Improved Linearization of Constraint Programming Models. CP 2016.

By default it is off since v2.3.0. To turn it on, add option -D fMIPdomains=true during flattening. Some parameters of the unification are available, run with --help.

3.3.2.6 Indicator Constraints

Some solvers (IBM ILOG CPLEX, Gurobi, SCIP) have indicator constrains with greater numerical stability than big-M decomposition. Moreover, they can be applied to decompose logical
constraints on *unbounded variables*. Add command-line parameters `-D fIndConstr=true -D fMIPdomains=false` when flattening to use them.

3.3.2.7 Pools of User Cuts and Lazy Constraints

Some constraints in the model can be declared as user and/or lazy cuts and they will be added to the corresponding pools for the solvers supporting them. For that, apply annotations `::MIP_cut` and/or `::MIP_lazy` after a constraint. For Gurobi and IBM ILOG CPLEX, see `share/minizinc/linear/options.mzn` for their exact meaning.

3.3.2.8 Warm Starts

For general information of warm start annotations, see *Warm Starts* (page 94). Warm starts are currently implemented for Gurobi, IBM ILOG CPLEX, and XPRESS.

3.3.3 Non-linear Solvers

MiniZinc has experimental support for non-linear solvers that conform to the AMPL NL standard. There are a number of open-source solvers, such as Ipopt, Bonmin and Couenne, that can be interfaced to MiniZinc in this way.

You can download binaries of these solvers from AMPL (https://ampl.com/products/solvers/open-source/). In order to use them with MiniZinc, you need to create a solver configuration file. Future version of MiniZinc will make this easier, but for now you can follow these steps:

1. Download the solver binary. For this example, we assume you chose the Couenne solver, which supports non-linear, non-convex, mixed discrete and continuous problems.

2. Create a solver configuration file called `couenne.msc` in the `share/minizinc/solvers` directory of your MiniZinc installation, with the following contents:

   ```
   {
   "id" : "org.coin-or.couenne",
   "name" : "Couenne",
   "executable" : "/Users/tack/Downloads/couenne-osx/couenne",
   "version": "0.5.6",
   "supportsFzn":false,
   "supportsNL":true
   }
   
   You can adapt the version field if you downloaded a different version (it's only used for displaying).

3. Run `minizinc --solvers`. The Couenne solver should appear in the list of solvers now.

4. Run `minizinc --solver couenne model.mzn` on some MiniZinc model, or use Couenne from the MiniZinc IDE.
The AMPL NL support is currently experimental, and your MiniZinc model is translated to NL without regard for the capabilities of the target solver. For example, Ipopt only supports continuous variables, so translating a model with integer variables will result in a solver-level error message. There is currently no support for translating Boolean variables and constraints into 0/1 integer variables (as required by e.g. Couenne). You can experiment with the standard linearisation library, using the `-Glinear` flag. However, this will linearise all integer constraints, even the ones that solvers like Couenne may support natively (it does allow you to use non-linear constraints on float variables, though). We will ship dedicated solver libraries for some NL solvers with future versions of MiniZinc.
CHAPTER 3.4

Automatic Solution Checking

MiniZinc provides support for checking the correctness of solutions of a model by using a checker model. This approach has two main applications:

- Instructors can provide checker models for student assignments. This provides students with immediate, detailed feedback on their modelling attempts.

- A simplified checker model can be used to verify a complex model used for solving. This can be useful when experimenting with new decompositions of constraints, or for post-processing solutions if some constraints cannot be added to the original model (e.g. in case the solver does not support certain constructs).

Running MiniZinc with solution checking is easy. On the command line, simply pass the name of the checker model in addition to the problem model:

```
minizinc model.mzn model.mzc.mzn data.dzn
```

Checker models can be pre-compiled in order to obfuscate their contents (e.g. if they contain clues to students how to model the problem):

```
minizinc --compile-solution-checker model.mzc.mzn
```

This will create the compiled checker model model.mzc, which can be used instead of the clear text version for checking:

```
minizinc model.mzn model.mzc data.dzn
```

The MiniZinc IDE has built-in support for solution checkers. Whenever the current project contains a file with the same file name as the current model but file extension .mzc or .mzc.mzn, the “Run” button turns into a “Run+Check” button.

The rest of this section describes how to implement checker models.
3.4.1 Basic checker models

At its core, a checker model takes each solution that a solver produces as input, and outputs whether the solution is correct or not. Let’s use the simple map colouring model from the tutorial as an example. Here is the model again:

```mini_zinc
% Colouring Australia using nc colours
int: nc = 3;

var 1..nc: wa; var 1..nc: nt; var 1..nc: sa; var 1..nc: q;
var 1..nc: nsw; var 1..nc: v; var 1..nc: t;

%constraint wa != nt;
%constraint wa != sa;
%constraint nt != sa;
%constraint nt != q;
%constraint sa != q;
%constraint sa != nsw;
%constraint sa != v;
%constraint q != nsw;
%constraint nsw != v;
%solve satisfy;

output ["wa=(wa)\t nt=(nt)\t sa=(sa)\n",
 "q=(q)\t nsw=(nsw)\t v=(v)\n",
 "t=" , show(t), "\n"];
```

A checker model for this model requires the values of the variables wa, nt, and so on, for each solution, and then has to test whether all constraints hold. The output of the checker model should contain a line starting with CORRECT if the solution passes the test, or INCORRECT if it doesn’t.

Since these values will be fixed in any solution, checker models simply declare parameters with the same name as the model variables:

```mini_zinc
int: wa;
int: nt;
int: sa;
int: q;
int: nsw;
int: v;
int: t;

output [
 if wa=nt \ wa=sa \ nt=sa \ nt=q \ sa=q \ /
 sa=nsw \ sa=v \ q=nsw \ nsw=v
]`
```
then "CORRECT\n"
else "INCORRECT\n"
endif
];

Running the model and the checker will produce output like this:

```
wa=3 nt=2 sa=1
q=3 nsw=2 v=3
t=3
% Solution checker report:
% CORRECT

```

The solution checker report is embedded as comments in the original output.

### 3.4.2 Detailed feedback

The basic checker model above only reports whether the solutions satisfy the constraints, but it doesn’t provide any insights into the nature of the error if a constraint is violated.

We can use standard MiniZinc functionality to provide much more detailed feedback. The following checker model introduces a helper function `check` which outputs a detailed error message if a constraint doesn’t hold. The results of all the checks are combined, and if any of the constraints was violated, the output is INCORRECT, otherwise it is CORRECT.

#### Listing 3.4.3: A checker model `aust-2.mzc.mzn` for the map colouring problem with more detailed error messages

```mini
int: wa;
int: nt;
int: sa;
int: q;
int: nsw;
int: v;
int: t;

test check(bool b, string: s) =
 if b then true else trace_stdout("ERROR: \"++s++\"\n",false) endif;

output [
 if check(wa=nt, "wa and nt have the same colour")
 /
 check(wa=sa, "wa and sa have the same colour")
 /
 check(nt=sa, "nt and sa have the same colour")
 /
 check(nt=q, "nt and q have the same colour")
 /
 check(sa=q, "sa and q have the same colour")
 /
 check(sa=nsw, "sa and nsw have the same colour")
 /
 check(sa=v, "sa and v have the same colour")
]```

3.4.2. Detailed feedback 167
However, the checker model will only report the first violated constraint, since the conjunction operator short-circuits the evaluation when one of its arguments is false. For example, if we remove all constraints from the original model, the output would be:

```
wa=3  nt=3  sa=3
q=3   nsw=3  v=3
t=3
% Solution checker report:
% ERROR: wa and nt have the same colour
% INCORRECT
----------
```

In order to get all error messages, we can force the evaluation of all checkers by creating an auxiliary array of check results:

```plaintext
Listing 3.4.4: A checker model aust-3.mzc.mzn for the map colouring problem without short-circuit evaluation

int: wa;
int: nt;
int: sa;
int: q;
int: nsw;
int: v;
int: t;

test check(bool: b,String: s) =
if b then true else trace_stdout("ERROR: "++s++"\n",false) endif;

array[int] of bool: checks = [
  check(wa!=nt, "wa and nt have the same colour"),
  check(wa!=sa, "wa and sa have the same colour"),
  check(nt!=sa, "nt and sa have the same colour"),
  check(nt!=q, "nt and q have the same colour"),
  check(sa!=q, "sa and q have the same colour"),
  check(sa!=nsw, "sa and nsw have the same colour"),
  check(sa!=v, "sa and v have the same colour"),
  check(q!=nsw, "q and nsw have the same colour"),
  check(nsw!=v, "nsw and v have the same colour")
];

output [  
```
if forall(checks)
 then "CORRECT: all constraints hold.\n"
 else "INCORRECT\n"
endif
];

Now the output contains all error messages (for the case where the model has no constraints):

wa=3 nt=3 sa=3
q=3 nsw=3 v=3
t=3
% Solution checker report:
% ERROR: nsw and v have the same colour
% ERROR: q and nsw have the same colour
% ERROR: sa and v have the same colour
% ERROR: sa and nsw have the same colour
% ERROR: sa and q have the same colour
% ERROR: nt and q have the same colour
% ERROR: nt and sa have the same colour
% ERROR: wa and sa have the same colour
% ERROR: wa and nt have the same colour
% INCORRECT

3.4.3 Instance data in checker models

The map colouring example was quite simple because the model did not contain any parameter declarations. For a model that is parameterised, the checker model simply contains the same parameter declarations. MiniZinc will then pass the actual parameters of the instance being solved to the checker model.

For example, the following checker model could be used for the n-Queens problem.

Listing 3.4.5: A checker model nqueens.mzc.mzn for the n-Queens problem

```plaintext
int: n; % number of queens
set of int: ROW = 1..n;
set of int: COL = 1..n;
array[int] of int: q; % col of queen in each row

test check(bool: b,string: s) =
    if b then true else trace_stdout("ERROR: "++s++"\n",false) endif;

output [
    if check(index_set(q)=1..n, "ERROR: array q should have index set 1..\(n)")
    \forall (i in 1..n)(check(q[i] in 1..n, "ERROR: q[\(i)] should have a_
        \text{\_value in 1..\(n)")
    \forall (r1, r2 in 1..n where r1 < r2)
```
The checker model first makes sure that the solution has the right dimensions (correct array index set, and each variable is assigned a value in the correct domain), and then uses standard MiniZinc constructs to check each constraint.

3.4.4 Checking optimisation problems

Optimisation problems pose a difficulty for automatic checking. When a solver claims to prove optimality, we cannot easily verify this claim without solving the problem again (using a different model that is known to be correct). At the moment, solution checking for optimisation problems is restricted to checking that the objective has been computed correctly.

To check that the objective value is calculated correctly, define a parameter called \(\text{objective} \) of the appropriate type (\(\text{int} \) or \(\text{float} \)) in the checker. The example in the next section illustrates this.

3.4.5 Hidden variables

For many models, the decision variables which describe the solution may not be the variables that are natural to describe the constraints. There may be other internal variables which are functionally defined by the decision variables, and which are likely to be used in the model for building constraints and/or are much more natural for describing the correctness of a candidate solution.

Consider the problem of lining up \(n\) people numbered from 1 to \(n\) for a photo in a single line. We want to make sure that there are no more than two people of the same gender (male, female or other) in sequence in the line. We want to minimize the total distance between the pairs of people who are numbered consecutively. The decisions are an array \(\text{pos}\) which for each person gives their position in the line. A correct model for this is given in Listing 3.4.6.

Listing 3.4.6: A model photo.mzn for the photo lineup problem

```plaintext
int: n; % number of people
set of int: PERSON = 1..n; % set of people
enum GENDER = { M, F, O }; % set of genders
array[PERSON] of GENDER: g; % the gender of each person
set of int: POSN = 1..n; % set of positions
```

A critical part of learning how to model this problem is to realise that it is worth introducing the inverse of the pos variables, called who in this model. The who array makes it much easier to specify that no more than two people of the same gender can be adjacent. The checker model should not include the who variables, because that would effectively give away the key to the solution.

The use of hidden variables (such as who) makes checking harder in two ways. First, we may need to define these in the checker model as decision variables (rather than parameters), and MiniZinc will then need to invoke a solver to generate the values of these variables in order to check a given solution. Second, given an incorrect candidate solution, there may be no possible value for these hidden variables, hence we have to guard the checking to ensure we do not assume that there is some value for the hidden variables.

Consider this data file for the photo problem:

```plaintext
n = 9;
g = [M,M,M,M,F,F,F,M,M];
```

and assume that an incorrect model returns the erroneous candidate solution `pos = [1,2,3,4,5,6,7,2,9]; _objective=25;`. If we simply assert `inverse(pos,who)` in the checker model, then this constraint will fail since there is no inverse of this position array, because persons 2 and 8 are both at position 2. Hence the checker must guard the inverse constraint, and only when that succeeds use the computed values of the who variables for checking the solution. A checking model for the photo problem might look like this:

```plaintext
Listing 3.4.7: A checker model photo.mzc.mzn for the photo lineup problem

int: n;
set of int: PERSON = 1..n;
enum GENDER = { M, F, O };
array[PERSON] of GENDER: g;
set of int: POSN = 1..n;
array[int] of int: pos;

array[POSN] of var PERSON: who;
int: _objective;

test alldifferent(array[int] of int: x) =
  forall(i,j in index_set(x) where i < j)(x[i] != x[j]);
```
```mini泽n
include "inverse.mzn"
constraint if alldifferent(pos) then inverse(pos,who) 
else forall(i in 1..n)(who[i] = i) endif;

output if 
  check_array(pos, n, POSN, "pos") /
  check_alldifferent(pos,"pos") /
  check_array(fix(pos), n, PERSON, "who") /
  forall(i in 1..n-2)
    (check(g[fix(who[i])] != g[fix(who[i+1])] \/
      g[fix(who[i+1])] != g[fix(who[i+2])], 
      "three people of the same gender \(g[fix(who[i])]) in_ 
      )/
  let { int: obj = sum(i in 1..n-1)(abs(pos[i] - pos[i+1])); } in
  check(obj = _objective, "calculated objective \(obj) does not agree with_ 
  objective from the model \(_objective)\n")
then
  "CORRECT: All constraints hold"
else
  "INCORRECT"
endif;

test check(bool: b,string: s) = 
  if b then true else trace_stdout("ERROR: "++"\n",false) endif;

test check_alldifferent(array[int] of int: x, string: name) = 
 forall(i, j in index_set(x) where i < j)
    (check(x[i] != x[j], name ++ "\\(i) = \(x[i]) = " ++
      name ++ "\\(j) " ++
      "when they should be different\n"));

test check_int(int: x, set of int: vals, string: name) = 
  check(x in vals, "integer \(name) is not in values \(vals)\n");

function bool: check_array(array[int] of int: x, int: length, set of int:vals, string: name) = 
  check(length(x) = length, "array \(name) is not of length \(length)\n") /
  forall(i in index_set(x))
    (check(x[i] in vals, "element \(i) of array \(name), \(x[i]) is not_ 
      in values \(vals)\n"));
```

The checker model first tests whether the given pos array satisfies the alldifferent property (using a custom test for alldifferent on a par array). If it passes the test, the inverse constraint is applied. Otherwise, the who array is simply fixed to a list of ones.

The check for the alldifferent constraint is a good example for a checker that tries to give a detailed description of the error.
Globalizer\(^1\) analyses a model and set of data to provide suggestions of global constraints that can replace or enhance a user's model.

3.5.1 Basic Usage

To use Globalizer simply execute it on a model and set of data files:

```
minizinc --solver org.minizinc.globalizer model.mzn data-1.dzn data-2.dzn
```

Note: Globalizer may also be executed on a non-parameterised model with no data files.

The following demonstrates the basic usage of Globalizer. Below, we see a simple model for the car sequencing problem\(^2\), `cars.mzn`.

![Listing 3.5.1: Model for the car sequencing problem (cars.mzn).](image)

\(^1\) Leo, K. et al., “Globalizing Constraint Models”, 2013.

\(^2\) http://www.csplib.org/Problems/prob001/
% The class of car being started at each step.
array [steps] of var classes: class;

% Which options are required by the car started at each step.
array [steps, options] of var 0..1: used;

% Block p must be used at step s if the class of the car to be
% produced at step s needs it.
constraint forall (s in steps, p in options) (used[s, p] = need[class[s], p]);

% For each option p with block size b and maximum limit m, no consecutive
% sequence of b cars contains more than m that require option p.
constraint forall (p in options, i in 1..(n_cars - (block_size[p] - 1))) (sum (j in 0..(block_size[p] - 1)) (used[i + j, p]) <= max_per_block[p]);

% Require that the right number of cars in each class are produced.
constraint forall (c in classes) (count(class, c, cars_in_class[c]));

solve satisfy; % Find any solution.

And here we have a data file cars_data.dzn.

Listing 3.5.2: Data for the car sequencing problem (cars_data.dzn).

% cars_data.dzn
n_cars = 10;
n_options = 5;
n_classes = 6;
max_per_block = [1, 2, 1, 2, 1];
block_size = [2, 3, 3, 5, 5];
cars_in_class = [1, 1, 2, 2, 2, 2];

need = array2d(1..6, 1..5, [
 1, 0, 1, 1, 0,
 0, 0, 0, 1, 0,
 0, 1, 0, 0, 1,
 0, 1, 0, 1, 0,
 1, 0, 1, 0, 0,
 1, 1, 0, 0, 0
]);

Executing Globalizer on this model and data file we get the following output:

% minizinc --solver globalizer cars.mzn cars_data.dzn
cars.mzn|33|12|33|69 [] gcc(class,cars_in_class)
cars.mzn|33|35|33|68 [] count(class,c,cars_in_class[c])
Each line of output is comprised of three elements.

1. Expression locations (separated by semicolon ‘;’) that the constraint might be able to replace.
2. (Between square brackets ‘[‘]’) the context under which the constraint might replace the expressions of 1.
3. The replacement constraint.

From the example above we see that a gcc constraint and a sliding_sum constraint can replace some constraints in the model. Taking the sliding_sum case, we see that it replaces the expression cars.mzn|28|27|28|65 which corresponds to \(i \) in 1..(n_cars - (block_size[p] - 1)) and cars.mzn|29|27|28|65 which corresponds to the <= expression including the sum. The original constraint can be replaced with:

```plaintext
constraint forall (p in options) (sliding_sum(0, max_per_block[p], block_size[p], used[_, p]));
```

3.5.2 Caveats

MiniZinc syntax support. Globalizer was implemented with support for a subset of an early version of the MiniZinc 2.0 language. As a result there are some limitations. First, Globalizer does not support set variables or enum types. The array slicing syntax supported in MiniZinc was not decided upon when Globalizer was implemented so it uses an incompatible syntax. Globalizer uses _ instead of .. This can be seen above in the translation of used[_, p] to used[.., p].

New constraint. A special two argument version of the global_cardinality constraint called gcc has been added which is not in the standard library. It is defined as follows:

```plaintext
predicate gcc(array[int] of var int: x, array[int] of var int: counts) =
  global_cardinality(x, [ i | i in index_set(counts) ], array1d(counts));
```

3.5.3 Supported Constraints

Globalizer currently supports detection of the following constraints:

<table>
<thead>
<tr>
<th>alldifferent</th>
<th>alldifferent_except_0</th>
<th>all_equal_int</th>
<th>bin_packing</th>
<th>bin_packing_capa</th>
<th>bin_packing_load</th>
<th>binaries_represent_int_3B</th>
<th>binaries_represent_int_3C</th>
<th>channel</th>
<th>channelACB</th>
</tr>
</thead>
</table>
3.5.4 Using Globalizer in the MiniZinc IDE

To use the Globalizer in the MiniZinc IDE, open a model, and several data files. Select Globalizer from the solver configuration dropdown menu. Click the solve button (play symbol). If you did not select any data file, a dialog should pop up that allows you to select data files. To select multiple data files hold the Ctrl or Cmd key while clicking on each data file.

![Select data files](image)

Click run. While processing your model and data files the MiniZinc IDE will display a progress bar on the toolbar.
Any discovered global constraints will be listed in the output pane of the IDE. Clicking on one of these constraints will highlight in the model the expressions that might be replaceable or strengthened by the constraint.

3.5.5 How it works

A summary of the algorithm is presented here. For a more detailed exploration of the approach see the Globalizing Constraint Models paper\(^1\).

- **Normalize.** In this step the model is transformed to make analysis easier.
 - Conjunctions of constraints are broken into individual constraints. For example: \(C_1 \land C_2\); becomes \(C_1\); \(C_2\);
 - Conjunctions under \(\forall\) constraints are broken into individual \(\forall\) constraints. For example: \(\forall(...) (C_1 \land C_2)\); becomes \(\forall(...) (C_1)\); \(\forall(...) (C_2)\)

- **Generate submodels.** In this step all subsets containing 1 or 2 constraints (this can be configured using --numConstraints argument) are enumerated.
• **Instantiate and unroll into groups.** Each submodel is instantiated with the provided data files. These instantiated submodels are further used to produce more submodels by unrolling loops. For example, a constraint such as \(\text{forall}(i \in 1..n) (c(i)) \); will be used to produce the constraints: \(c(1) \) and \(c(n) \) for each instantiation of \(n \) in the data files. All instantiated submodels are then grouped together.

• **Process groups.** For each submodel in a group a set of 30 random solutions are found. (configurable using the \(--\text{randomSolutions} \) argument). A template model with all of these random solutions is created.

The different variables (including arrays and array accesses) and parameters used by a submodel are collected into a set of potential arguments along with the constant 0 and a special blank symbol representing an argument that can be inferred based on others used.

The list of constraints above is filtered based on the arguments available. For example, the \text{alldifferent} constraint will be removed from the list of candidates if the submodel does not reference any arrays of variables.

Finally the set of constraints are filtered by adding them to the template and solving it. If the template is satisfiable, the constraint accepts all of the random solutions.

30 sample solutions for each candidate constraint are generated. (configurable using the \(--\text{sampleSolutions} \) argument). The candidate is then ranked based on how many of these solutions are also solutions to the original submodel. If its score is less than some threshold the candidate is removed from the set of candidates for this group and will not be tested on later submodels.

• **Report.** The remaining candidates are presented to the user.

3.5.6 Performance tips

Globalizing constraint models can be a time consuming task. If

• **Use small or relatively easy instances.** Globalizer solves many subproblems while processing your model and data files. Using easier instances can speed up the process considerably.

• **Disable the initial pass.** As discussed above, Globalizer performs two passes. The first pass tries to detect alternate viewpoints that can be added to your model. If you are confident that this will not be useful we recommend disabling this first pass using the \(--\text{no-initial-pass} \) argument.

• **Narrow search using filters.** Globalizer attempts to match a large selection of global constraints to subproblems in your model. If you wish to check if only a few specific constraints are present you can focus Globalizer using the \(--\text{constraintFilter} \) or \(-f\) arguments followed by a comma separated list of strings. Only global constraints where one of the strings is a substring will be included in the search.

• **Disable implies check.** The implication check can also be disabled to improve performance. This results in less accurate results but may still help a user to understand the structure of their model.

• **Free-search.** To improve accuracy and to avoid false positives, subproblems solved by Globalizer are solved using a random heuristic and restarts. If the subproblems are particularly difficult to solve a random heuristic may be prohibitive and the solver may not
be able to produce enough samples within the solving timelimit. In these circumstances a user can either increase the solver timeout using the -t argument followed by the number of milliseconds a solver should be given to find samples. Alternatively the --free-search argument can be used to force Globalizer to use the solver's free search to find samples. This has the downside of reducing the diversity of samples but allows enough samples to be found to allow suggested globals to be found.

3.5.7 Limitations / Future work

- Globalizer supports only a subset of the MiniZinc language and as such cannot be executed on all MiniZinc models.

- There are some relatively cheap syntactic approaches that should be performed before Globalization that currently is not implemented. For example, there are several common formulations of an alldifferent constraint that can be detected syntactically. This would be much cheaper than using Globalizer.
FindMUS

Version: 0.5.0

FindMUS\(^1\) lists unsatisfiable subsets of constraints in your MiniZinc model. These subsets, called Minimal Unsatisfiable Subsets can help you to find faults in your unsatisfiable constraint model. FindMUS uses the hierarchical structure provided by the model to guide its search.

3.6.1 Basic Usage

To use FindMUS on the command line simply execute it on a model and set of data files by typing:

```
findMUS model.mzn data-1.dzn
```

This will perform a simple search for a single generalized MUS. To acquire a more accurate MUS with correct index variable assignments the `--paramset mzn` argument should be used. To search for more than one MUS use the `-a` or `-n <count>` arguments. By default FindMUS will use gecode for checking the satisfiability of a subset of constraints. This can be changed using the `--solver` argument. For example, given a model that is better suited to a Mixed Integer Programming solver, the argument `--solver cbc` could be used to instruct FindMUS to flatten the model with the linear library and use the CBC solver for satisfiability checking.

Note: FindMUS requires a fully instantiated constraint model.

3.6.1.1 Commandline arguments

The FindMUS tool supports the following arguments:

Driver options

The driver creates the map solver and sub-solver and requests MUSes from FindMUS’s enumeration algorithm HierMUS.

-n <count> Stop after the n th MUS is found (Default: 1)

-a Find all MUSes

--timeout <s> Stop search after s seconds (Default: 1800)

--paramset hint,mzn,fzn Use a preset collection of parameters. The default behaviour of the tool is to use the hint set which should quickly produce an MUS. The mzn and fzn options can acquire MUSes in more detail.

 hint –structure gen –depth mzn –shrink-alg map_lin
 mzn –structure normal –depth mzn –shrink-alg map_qx
 fzn –structure normal –depth fzn –shrink-alg map_qx

Enumeration options

The enumeration algorithm (HierMUS) explores the constraint hierarchy provided in the user’s model and proposes potential MUSes to the sub-solver. A shrink algorithm is used to reduce found unsat subsets to MUSes. There are currently four available shrink algorithms available with FindMUS.

--shrink-alg lin,map_lin,qx,map_qx Select shrink algorithm (Default: map_lin)

 lin simple linear shrink algorithm.
 map_lin alternative implementation of the linear algorithm that updates a global map of explored subsets while shrinking the subset.
 qx uses the QuickXplain4 algorithm to shrink the subset to a MUS.
 map_qx is an alternative implementation of QuickXplain that uses the global map to avoid repeating any SAT checks while shrinking.

--depth mzn,fzn,<n> How deep in the tree should search explore. (Default: mzn)

 mzn expands the search as far as the point when the compiler leaves the MiniZinc model.
 fzn expands search as far as the FlatZinc constraints.

 <n> expand search to the n level of the hierarchy.

Subsolver options

FindMUS can be used in conjunction with any FlatZinc solver. These options mimic the minizinc arguments --solver and --fzn-flags. The behavior of these arguments is likely to change in later versions of the tool.

--solver <s> Use solver s for SAT checking. (Default: “gecode”)

--solver-flags <f> Pass flags f to sub-solver. (Default: empty)

--solver-timelimit <ms> Set hard time limit for solver in milliseconds. (Default: 1100)

--soft-defines Consider functionalconstraints as part of MUSes

Filtering options

FindMUS can include or exclude constraints from its search based on the expression and constraint name annotations as well as properties of their paths (for example, line numbers). These

\footnote{Junker, U. et al., “QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems”, 2004.}
filters are currently based on substrings but in future may support text spans and regular expressions.

--named-only Only consider constraints annotated with string annotations

--filter-named <names> --filter-named-exclude <names> Include/exclude constraints with names that match sep separated names

--filter-path <paths> --filter-path-exclude <paths> Include/exclude based on paths

--filter-sep <sep> Separator used for named and path filters

Structure options

The structure coming from a user's model can significantly impact the performance of a MUS enumeration algorithm. The hierarchy is constructed in two steps. The first takes the existing model structure and can modify it in several ways. The second step adds extra binary structure.

--structure flat,gen,normal,mix

 Alters initial structure: (Default: gen)
 flat Remove all structure
 gen Remove instance specific structure (merges constraints)
 normal No change
 mix Apply gen before normal
 idx Remove all location information
 idxmix Apply idx before normal

--no-binarize

 By default will introduce extra binary structure to the hierarchy. This option disables this behaviour.

Verbosity options

--verbose-{map,enum,subsolve} <n> Set verbosity level for different components

--verbose Set verbosity level of all components to 1

Misc options

--dump-dot <dot> Write tree in GraphViz format to file <dot>

3.6.1.2 Example

The following demonstrates the basic usage of FindMUS on a simple example. Below, we see a model for the latin squares puzzle\(^2\) with some incompatible symmetry breaking constraints added.

\(^2\) https://en.wikipedia.org/wiki/Latin_square
% latin_squares.mzn
include "globals.mzn";

int: n = 3;
set of int: N = 1..n;
array[N, N] of var N: X;

constraint :: "ADRows"
 forall (i in N)
 (alldifferent(row(X, i)) :: "AD(row \(i))");

constraint :: "ADCols"
 forall (j in N)
 (alldifferent(col(X, j)) :: "AD(col \(j))");

constraint :: "LLRows"
 forall (i in 1..n-1)
 (lex_less(row(X, i), row(X, i+1)) :: "LL(rows \(i) \(i+1))");

constraint :: "LGCols"
 forall (j in 1..n-1)
 (lex_greater(col(X, j), col(X, j+1)) :: "LG(cols \(j) \(j+1))");

solve satisfy;

output [show2d(X)];

Here we have used the new constraint and expression annotations added in MiniZinc 2.2.0. Note that these annotations are not necessary for FindMUS to work but may help with interpreting the output. The first two constraints: ADRows and ADCols define the alldifferent constraints on the respective rows and columns of the Latin square. The next two constraints LLRows and LGCols post lex constraints that order the rows to be increasing and the columns to be increasing. Certain combinations of these constraints are going to be in conflict.

Executing the command minizinc --solver -a latin_squares.mzn returns the following output. Note that the -a argument requests all MUSes that can be found with the default settings (more detail below).
The first two lines, starting with FznSubProblem: and SubsetMap provide some useful information for debugging the findMUS tool. Next we have the list of MUSes separated by a series of equals = signs. Each MUS is described with three sections:

1. **MUS**: lists the indicies of FlatZinc constraints involved in this MUS.

2. **Brief**: lists the FlatZinc constraint name, the expression name, and the constraint name for each involved FlatZinc constraint.

3. **Traces**: lists the MiniZinc paths corresponding to the constraints of the MUS. Each path typically contains a list of path elements separated by semi-colons ;. Each element includes a file path, a start line, start column, end line and end column denoting a span of text from the listed file. And finally, a description of the element. In the examples above all paths point to calls to a forall on different lines of the model. (ca|forall)

3.6.1. Basic Usage

185
The final line of output lists the Total Time, the number of MUSes found, and some statistics about the number of times the internal map solver map was called, and the number of times the subproblem solver was called sat.

Interpreting the two MUSes listed here we see that the lex constraints from lines 16 and 19 were included in both and only one of the alldifferent constraints from line 9 and 12 are required for the model to be unsatisfiable. The lex constraints being involved in every MUS make them a strong candidate for being the source of unsatisfiability in the user's model.

3.6.2 Using FindMUS in the MiniZinc IDE

To use FindMUS in the MiniZinc IDE, upon discovering that a model is unsatisfiable. Select FindMUS from the solver configuration dropdown menu and click the solve button (play symbol). By default FindMUS is configured to return a single MUS using the hint parameter set. This should be relatively fast and help locate the relevant constraint items. The following shows the result of running FindMUS with the default options.
Selecting the returned MUS highlights three top level constraints as shown: ADRows, LLRows and LGCols. To get a more specific MUS we can instruct FindMUS to go deeper than the top level constraints by clicking the “Show configuration editor” button in the top right hand corner of the MiniZinc IDE window, and selecting the “Extra solver options” and selecting the \texttt{mzn} option under “Preset parameters”. The following shows a more specific MUS in this model.
In this case we can see that the output pane lists more specific information about the constraints involved in the MUS. After each listed constraint name we see what any loop variables were assigned to when the constraint was added to the FlatZinc. For example \((j=2)\).
3.6.3 How it works

A simple explanation of the algorithm is presented here. For a more detailed exploration of an earlier version of the approach see the Debugging Unsatisfiable Constraint Models paper\(^1\).

The approach takes the full FlatZinc program and partitions the constraints into groups based on the hierarchy provided in the user's model. To begin with (at depth ‘1’) we search for MUSes in the set of top level constraint items using the MARCO\(^3\) MUS enumeration algorithm. If we are not at the target depth we recursively select a found MUS, split its constituent constraints into lower level constraints based on the hierarchy and begin another search for MUSes underneath this high-level MUS. If any MUSes are found we know that the high-level MUS is not minimal and so it should not be reported. This process is repeated on any found unsatisfiable subsets until we reach the required depth at which point we will start to report MUSes. If in the recursive search we return to a high-level MUS without finding any sub-MUSes we can report this MUS as a real MUS. This recursive process is referred to as HierMUS. At each stage when we request the enumeration of a set of MUSes underneath a high-level MUS we can use one of several MUS enumeration algorithms.

3.6.4 Performance tips

If you are trying to find MUSes in a very large instance it is advised to make use of the filtering tools available. Use the default settings to find a very high-level MUS and then use the --depth option to find lower-level, more specific MUSes in conjunction with the --filter-name and --filter-path options to focus on finding specific sub-MUSes of a found high-level MUS.

3.6.5 Limitations / Future work

There are several features that we aim to include quite soon:

- **Regular expression based filtering** This will allow more complex filtering to be used.
- **Text span based filtering** This will allow a user to simply click-and-drag a selection around the parts of a constraint model they wish to analyse.

Using MiniZinc in Jupyter Notebooks

You can use MiniZinc inside a Jupyter / IPython notebook using the iminizinc Python module. The module provides a “cell magic” extension that lets you solve MiniZinc models. The module requires an existing installation of MiniZinc.

3.7.1 Installation

You can install or upgrade this module via pip:

```
pip install -U iminizinc
```

Consult your Python documentation to find out if you need any extra options (e.g. you may want to use the --user flag to install only for the current user, or you may want to use virtual environments).

Make sure that the minizinc binary are on the PATH environment variable when you start the notebook server. The easiest way to do that is to get the “bundled installation” that includes the MiniZinc IDE and a few solvers, available from GitHub here: https://github.com/MiniZinc/MiniZincIDE/releases/latest. You then need to change your PATH environment variable to include the MiniZinc installation.

3.7.2 Basic usage

After installing the module, you have to load the extension using %load_ext iminizinc. This will enable the cell magic %%minizinc, which lets you solve MiniZinc models. Here is a simple example:
As you can see, the model binds variables in the environment (in this case, \(n \)) to MiniZinc parameters, and returns an object with fields for all declared decision variables.

Alternatively, you can bind the decision variables to Python variables:

If you want to find all solutions of a satisfaction problem, or all intermediate solutions of an optimisation problem, you can use the \(-a\) flag:
The magic supports a number of additional options, in particular loading MiniZinc models and data from files. Some of these may only work with the development version of MiniZinc (i.e., not the one that comes with the bundled binary releases). You can take a look at the help using

```
In[1]: %%minizinc?
```
MiniZinc can be directly used from Python using the MiniZinc Python package. This package provides an native python interface that interacts directly with the MiniZinc bundle installed on the machine. For installation instructions and more information about the package that provides the MiniZinc python interface please visit https://minizinc-python.readthedocs.io/.

Warning:

The development of MiniZinc Python is still in the very early stages. We appreciate any feedback for the package, but we would recommend refraining from using the package in production software. The package can drastically change and backwards compatible changes are not guaranteed.
CHAPTER 3.9

Installation from Source Code

The easiest way to install a complete version of MiniZinc is to use the binary packages we provide for several platforms, as explained in Installation (page 7). In the following, we describe how to install MiniZinc from source code.

All components of MiniZinc are free and open source software, and compilation should be straightforward if you have all the necessary build tools installed. However, third-party components, in particular the different solvers, may be more difficult to install correctly, and we cannot provide any support for these components.

The source code for MiniZinc can be downloaded from its GitHub repository at https://github.com/MiniZinc/libminizinc. The source code for the MiniZinc IDE is available from https://github.com/MiniZinc/MiniZincIDE. The master branch of each repository points to the latest release version, while the develop branch points to the current state of development (and may be buggy or not even compile sometimes).

You will also need to install additional solvers to use with MiniZinc. To get started, try Gecode (http://www.gecode.org) or Chuffed (https://github.com/chuffed/chuffed). We don’t cover installation instructions for these solvers here.

The build system for MiniZinc relies on the CMake tool (https://cmake.org). It will try to find some solvers (Gecode, CBC, SCIP, Gurobi, XPRESS and CPLEX) in their standard locations. You can point to alternative locations using flags such as `-DGECODE_ROOT=...` as additional flags to the cmake commands explained below. Standard environment variables, such as GUROBI_HOME, are checked as well. See the file CMakeLists.txt for the current list of solvers.

The following sections contain installation instructions for different operating systems:

3.9.1 Installation Instructions for Microsoft Windows

3.9.1.1 MiniZinc

Required development tools:
Unpack the source code (or clone the git repository). Open a command prompt and change into the source code directory. The following sequence of commands will build a 64 bit version of the MiniZinc compiler tool chain (you may need to adapt the cmake command to fit your version of Visual Studio):

```bash
mkdir build
cd build
cmake -G"Visual Studio 14 2015 Win64" -DCMAKE_INSTALL_PREFIX="C:/Program Files/MiniZinc" ..
cmake --build . --config Release --target install
```

This will install MiniZinc in the usual Program Files location. You can change where it gets installed by modifying the CMAKE_INSTALL_PREFIX.

3.9.1.2 MiniZinc IDE

Required development tools:

- Microsoft Visual C++ 2013 or later (e.g. the Community Edition available from https://www.visualstudio.com/de/downloads/)
- Qt toolkit, version 5.9 or later (http://qt.io)

Unpack the source code (or clone the git repository). Open a Visual Studio command prompt that matches the version of the Qt libraries installed on your system. Change into the source code directory for the MiniZinc IDE. Then use the following commands to compile:

```bash
mkdir build
cd build
qmake ../MiniZincIDE
nmake
```

3.9.1.3 Gecode

You can obtain the Gecode source code from GitHub (https://github.com/gecode/gecode). You can find detailed compilation instructions for Gecode on its web site (https://www.gecode.org). Gecode’s build system relies on some Unix tools, so you may have to install an environment such as Cygwin. In short, to compile from source, run the following in a terminal from within the Gecode source code directory, where you replace `<INSTALLATION_PREFIX>` with the path where you want Gecode to be installed:

```bash
mkdir build
cd build
```
After installing Gecode, you can compile MiniZinc with built-in support for Gecode, which enables extended pre-solving and solution checking. In order for the MiniZinc compilation to find your Gecode installation, you have to use the option \texttt{-DGECODE_ROOT=<INSTALLATION_PREFIX>} when calling \texttt{cmake}.

In order to use Gecode as a solver with MiniZinc (as opposed to an internal pre-solving tool), you have to create an appropriate solver configuration file. Add a file \texttt{gecode.msc} in an appropriate location (see \textit{Solver Configuration Files} (page 404)) containing the following, where you replace \texttt{<INSTALLATION_PREFIX>} with the actual installation path and update the version number if necessary:

```json
{
   "id": "org.gecode.gecode",
   "name": "Gecode",
   "description": "Gecode FlatZinc executable",
   "version": "6.2.0",
   "mznlib": "<INSTALLATION\_PREFIX>/share/gecode/mznlib",
   "executable": "<INSTALLATION\_PREFIX>/bin/fzn-gecode",
   "tags": ["cp", "int", "float", "set", "restart"],
   "stdFlags": ["-a", "-f", "-n", "-p", "-r", "-s", "-t"],
   "supportsMzn": false,
   "supportsFzn": true,
   "needsSolns2Out": true,
   "needsMznExecutable": false,
   "needsStdlibDir": false,
   "isGUIApplication": false
}
```

3.9.1.4 Chuffed

You can obtain Chuffed's source from \url{https://github.com/chuffed/chuffed}. You can compile and install it using the following commands:

```bash
mkdir build
cd build
cmake .. -DCMAKE\_INSTALL\_PREFIX=<INSTALLATION\_PREFIX>
cmake --build .
cmake --build . --target install
```

This will install Chuffed in the installation directory specified as \texttt{<INSTALLATION_PREFIX>}. In order for MiniZinc to recognise the Chuffed solver, add a configuration file \texttt{chuffed.msc} to an appropriate location (see \textit{Solver Configuration Files} (page 404)) with the following content, where you replace \texttt{<INSTALLATION_PREFIX>} with the actual installation path and update the version number if necessary:
3.9.1.5 COIN-OR CBC

CBC is an open-source Mixed Integer Programming solver. You can find out more about it at https://github.com/coin-or/Cbc. MiniZinc contains a built-in interface to CBC, so in order to use it you have to install CBC before compiling MiniZinc.

These instructions apply to CBC versions 2.10/stable or newer. Thanks to David Catteeuw for help with building the parallel version of CBC.

1. OBTAIN AND BUILD CBC

CBC is on github, but has many dependencies: https://github.com/coin-or/Cbc

AMPL provides a CBC binary and has the entire project with dependencies on github: https://github.com/ampl/coin

Building Couenne fails, but we don’t need it. Remove couenne, ipopt, and bonmin directories.

Install zlib and bzip2, e.g., using vcpkg. Its CMake integration does not work as of vcpkg 2018.11.23 so you need to use its install folder manually, e.g., by adding the following to CBC’s CMakeLists.txt:

```cmake
include_directories( ...
vcpkg/installed/x86-windows/ include )
link_libraries( ...
vcpkg/installed/x86-windows/lib/zlib. lib )
link_libraries( ...
vcpkg/installed/x86-windows/lib/bz2.lib )
```

Then

```bash
$ cd C:\dev
$ git clone https://github.com/ampl/coin.git
$ cd coin
```
MiniZinc Handbook, Release 2.3.1

$ rmdir /s Bonmin
$ rmdir /s Couenne
$ rmdir /s Ipopt
$ mkdir build
$ cd build
$ cmake .. -G "Visual Studio 15 2017" -A x64 -DCMAKE_INSTALL_PREFIX=C:\dev\Cbc_install
$ cmake --build . --target install

=> successfully builds Cbc.lib, debug version in C:\dev\coin\build\Debug.

2. BUILD MINIZINC WITH CBC

Copy C:\dev\coin\build\Debug*.lib to C:\dev\Cbc_install\lib

Configure MiniZinc’s CMake with -DOSICBC_ROOT=C:\dev\cbc_install.

3.9.2 Installation Instructions for Linux and macOS

These instructions should work for most Linux distributions.

3.9.2.1 MiniZinc

Required development tools:

- CMaké, version 3.4.0 or later
- On Linux: A recent C++ compiler (g++ or clang)
- On macOS: The Xcode developer tools

Before compiling MiniZinc, consider whether you want to install additional solvers. In particular, MIP solvers such as CBC, SCIP, Gurobi, IBM ILOG CPLEX, and XPRESS need to be installed prior to compiling MiniZinc, so that the build system can find them. If you want to use the solution checking functionality or extended presolving, you will also need to install Gecode before compiling MiniZinc. See below for installation instructions for these solvers.

To install MiniZinc, unpack the source code (or clone the git repository). Open a terminal and change into the source code directory. The following sequence of commands will build the MiniZinc compiler tool chain:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build .

3.9.2.2 MiniZinc IDE

Required development tools:

- A recent C++ compiler (g++ or clang)
• Qt toolkit, version 5.9 or later (http://qt.io)

Unpack the source code (or clone the git repository). Open a terminal and change into the source code directory for the MiniZinc IDE. Then use the following commands to compile:

```bash
mkdir build
cd build
qmake ../MiniZincIDE
make
```

3.9.2.3 Gecode

You can obtain the Gecode source code from GitHub (https://github.com/gecode/gecode). You can find detailed compilation instructions for Gecode on its website (https://www.gecode.org). In short, to compile from source, run the following in a terminal (from within the Gecode source code directory):

```bash
mkdir build
cd build
../configure
make -j8
sudo make install
```

which compiles Gecode and installs it in the standard location. You can choose a different installation directory using `../configure --prefix=<INSTALLATION_PREFIX>`. In that case you can run `make install` without `sudo`.

After installing Gecode, you can compile MiniZinc with built-in support for Gecode, which enables extended pre-solving and solution checking. In order for the MiniZinc compilation to find your Gecode installation, Gecode either has to be in the default location (such as `/usr/local/include` etc.), or you have to use the option `-DGECODE_ROOT=<INSTALLATION_PREFIX>` when calling `cmake`.

In order to use Gecode as a solver with MiniZinc (as opposed to an internal pre-solving tool), you have to create an appropriate solver configuration file. Add a file `gecode.msc` in an appropriate location (see **Solver Configuration Files** on page 404) containing the following, where you replace `<INSTALLATION_PREFIX>` with the actual installation path and update the version number if necessary:

```json
{
  "id": "org.gecode.gecode",
  "name": "Gecode",
  "description": "Gecode FlatZinc executable",
  "version": "6.2.0",
  "mznlib": "<INSTALLATION_PREFIX>/share/gecode/mznlib",
  "executable": "<INSTALLATION_PREFIX>/bin/fzn-gecode",
  "tags": ["cp", "int", "float", "set", "restart"],
  "stdFlags": ["-a", "-f", "-n", "-p", "-r", "-s", "-t"],
  "supportsMzn": false
}
```
3.9.2.4 OR Tools

You can install the OR-Tools FlatZinc module as binary or obtain the source code from GitHub (https://github.com/google/or-tools). You can find detailed compilation instructions for OR-Tools on https://developers.google.com/optimization/. To compile the FlatZinc module from source, run the following in a terminal (from within the OR-Tools source code directory):

```
make fz -j8
make test_fz
```

In order to use OR-Tools with MiniZinc, you have to create an appropriate solver configuration file. Add a file `ortools.msc` in an appropriate location (see Solver Configuration Files (page 404)) containing the following, where you replace `<INSTALLATION_PREFIX>` with the actual installation path and update the version number if necessary:

```
{
  "id": "org.ortools.or-tools",
  "name": "OR Tools",
  "description": "Or Tools FlatZinc executable",
  "version": "7.0/stable",
  "mznlib": "<INSTALLATION_PREFIX>/ortools/flatzinc/mznlib_sat",
  "executable": "<INSTALLATION_PREFIX>/bin/fz",
  "tags": ["cp", "int", "lcg", "or-tools"],
  "stdFlags": ["-a", "-n", "-p", "-f", "-r", "-v", "-l", "-s"],
  "supportsMzn": false,
  "supportsFzn": true,
  "needsSolns2Out": true,
  "needsMznExecutable": false,
  "needsStdlibDir": false,
  "isGUIApplication": false
}
```

3.9.2.5 Chuffed

You can obtain Chuffed's source from https://github.com/chuffed/chuffed. You can compile and install it using the following commands:

```
mkdir build
cd build
```

3.9.2. Installation Instructions for Linux and macOS
cmean ..
cmean --build . -- -j8
sudo cmean --build . --target install

This will install Chuffed in the default location. Alternatively, you can choose a different installation directory by calling cmean .. -DCMAKE_INSTALL_PREFIX=<INSTALLATION_PREFIX> before cmean --build. In that case, you may be able to install without using sudo.

In order for MiniZinc to recognise the Chuffed solver, add a configuration file chuffed.msc to an appropriate location (see Solver Configuration Files (page 404)) with the following content, where you replace <INSTALLATION_PREFIX> with the actual installation path and update the version number if necessary:

```
{
  "id": "org.chuffed.chuffed",
  "name": "Chuffed",
  "description": "Chuffed FlatZinc executable",
  "version": "0.9",
  "mznlib": "<INSTALLATION_PREFIX>/share/chuffed/mznlib",
  "executable": "<INSTALLATION_PREFIX>/bin/fzn-chuffed",
  "tags": ["cp","1cg","int"],
  "stdFlags": ["-a","-f","-n","-r","-s","-t","-v"],
  "supportsMzn": false,
  "supportsFzn": true,
  "needsSolns2Out": true,
  "needsMznExecutable": false,
  "needsStdlibDir": false,
  "isGUIApplication": false
}
```

3.9.2.6 COIN-OR CBC

CBC is an open-source Mixed Integer Programming solver. You can find out more about it at https://github.com/coin-or/Cbc. MiniZinc contains a built-in interface to CBC, so in order to use it you have to install CBC before compiling MiniZinc.

These instructions apply to CBC versions 2.10/stable or newer.

To download and compile CBC, run the following:

```
svn checkout https://projects.coin-or.org/svn/Cbc/stable/2.10/ Cbc-stable
cd Cbc-stable
./configure --enable-cbc-parallel
make
sudo make install
```

This will install CBC in the default location. You can choose a different installation directory using ./configure --enable-cbc-parallel --prefix=<INSTALLATION_PREFIX>. In that case you can run make install without sudo.
The MiniZinc build system should find CBC automatically if it is installed in the default location. You can use the command line flag `-DOSICBC_ROOT=<INSTALLATION_PREFIX>` when running `cmake` for MiniZinc if you installed CBC in a different location.

3.9.2.7 SCIP

For **SCIP (as of 6.0.1.0)**, if you download the Optimization Suite, the installation commands should be as follows.

1. Download the SCIP Optimization Suite 6.0.1 (or higher) source code: https://scip.zib.de/download.php?fname=scipoptsuite-6.0.1.tgz
2. Untar it and change directories into scipoptsuite-6.0.1
3. create a build directory and change directories there
4. Execute
   ```
   cmake .. -DCMAKE_BUILD_TYPE=Release [-DCMAKE_INSTALL_PREFIX=/home/user/local/]
   ```

 The first flag is necessary, the second one is optional in order to install SCIP and SoPlex non-systemwide.

5. Compile and install SoPlex, SCIP, and its optional components:
   ```
   make && make install
   ```

6. Configure minizinc:
   ```
   cmake .. -DUSE_PROPRIETARY=on [-DCMAKE_PREFIX_PATH=/home/user/local/scip/]
   ```

 The optional prefix path variable is only necessary if you installed SCIP in a non-systemwide directory.

7. Compile Minizinc and enjoy SCIP as a solver.

If you have folders for SCIP and SoPlex separately, follow these steps:

```
$ tar xvfz scipoptsuite-6.0.1.tgz
$ cd scipoptsuite-6.0.1
$ cd soplex
$ mkdir build
$ cd build
$ cmake ..
$ make -j5
$ cd ../scip
$ mkdir build
$ cd build
$ cmake .. -DSOPLEX_DIR=/path/to/soplex/build
$ make -j5
```
3.9.3 Installation Instructions for Webassembly / JavaScript

Required development tools:

- CMake, version 3.4.0 or later (from https://cmake.org or e.g. through homebrew)
- emscripten sdk (from https://emscripten.org)

Compiling MiniZinc: Unpack the source code (or clone the git repository). Open a terminal and change into the source code directory. Make sure that the emscripten sdk is on your PATH, e.g. by sourcing the emsdk_env.sh script (see emscripten documentation). The following sequence of commands will build the MiniZinc compiler tool chain:

```bash
mkdir build
cd build
  emconfigure cmake -DCMAKE_BUILD_TYPE=MinSizeRel ..
cmake --build .
```

Webassemble/JavaScript support is currently experimental.
Part 4

Reference Manual
CHAPTER 4.1

Specification of MiniZinc

4.1.1 Introduction

This document defines MiniZinc, a language for modelling constraint satisfaction and optimisation problems.

MiniZinc is a high-level, typed, mostly first-order, functional, modelling language. It provides:

- mathematical notation-like syntax (automatic coercions, overloading, iteration, sets, arrays);
- expressive constraints (finite domain, set, linear arithmetic, integer);
- support for different kinds of problems (satisfaction, explicit optimisation);
- separation of data from model;
- high-level data structures and data encapsulation (sets, arrays, enumerated types, constrained type-insts);
- extensibility (user-defined functions and predicates);
- reliability (type checking, instantiation checking, assertions);
- solver-independent modelling;
- simple, declarative semantics.

MiniZinc is similar to OPL and moves closer to CLP languages such as ECLiPSe.

This document has the following structure. Notation (page 210) introduces the syntax notation used throughout the specification. Overview of a Model (page 211) provides a high-level overview of MiniZinc models. Syntax Overview (page 213) covers syntax basics. High-level Model Structure (page 214) covers high-level structure: items, multi-file models, namespaces, and scopes. Types and Type-insts (page 216) introduces types and type-insts. Expressions (page 224) covers expressions. Items (page 238) describes the top-level items in detail. Annotations (page 246) describes annotations. Partiality (page 247) describes how partiality is handled in various cases. Built-in Operations (page 249) describes the language built-ins. Full grammar
(page 259) gives the MiniZinc grammar. *Content-types* (page 257) defines content-types used in this specification.

This document also provides some explanation of why certain design decisions were made. Such explanations are marked by the word *Rationale* and written in italics, and do not constitute part of the specification as such. *Rationale*: *These explanations are present because they are useful to both the designers and the users of MiniZinc.*

4.1.1.1 Original authors.

The original version of this document was prepared by Nicholas Nethercote, Kim Marriott, Reza Rafeh, Mark Wallace and Maria Garcia de la Banda. MiniZinc is evolving, however, and so is this document.

For a formally published paper on the MiniZinc language and the superset Zinc language, please see:

4.1.2 Notation

The basics of the EBNF used in this specification are as follows.

- Non-terminals are written between angle brackets, `<item>`.

- Terminals are written in double quotes, e.g. "constraint". A double quote terminal is written as a sequence of three double quotes: ""

- Optional items are written in square brackets, e.g. ["var"].

- Sequences of zero or more items are written with parentheses and a star, e.g. ("", <ident>)*.

- Sequences of one or more items are written with parentheses and a plus, e.g. (<msg>)+.

- Non-empty lists are written with an item, a separator/terminator terminal, and three dots. For example, this:

  ```
  <expr> "," ... 
  ```

 is short for this:

  ```
  <expr> ( "," <expr> )* [ "," ]
  ```

 The final terminal is always optional in non-empty lists.

- Regular expressions are used in some productions, e.g. \([-+]?[0-9]+\).
MiniZinc’s grammar is presented piece-by-piece throughout this document. It is also available as a whole in *Full grammar* (page 259). The output grammar also includes some details of the use of whitespace. The following conventions are used:

- A newline character or CRLF sequence is written `\n`.

4.1.3 Overview of a Model

Conceptually, a MiniZinc problem specification has two parts.

1. The *model*: the main part of the problem specification, which describes the structure of a particular class of problems.

2. The *data*: the input data for the model, which specifies one particular problem within this class of problems.

The pairing of a model with a particular data set is a *model instance* (sometimes abbreviated to *instance*).

The model and data may be separated, or the data may be “hard-wired” into the model. *Model Instance Files* (page 215) specifies how the model and data can be structured within files in a model instance.

There are two broad classes of problems: satisfaction and optimisation. In satisfaction problems all solutions are considered equally good, whereas in optimisation problems the solutions are ordered according to an objective and the aim is to find a solution whose objective is optimal. *Solve Items* (page 241) specifies how the class of problem is chosen.

4.1.3.1 Evaluation Phases

A MiniZinc model instance is evaluated in two distinct phases.

1. Instance-time: static checking of the model instance.

2. Run-time: evaluation of the instance (i.e., constraint solving).

The model instance may not compile due to a problem with the model and/or data, detected at instance-time. This could be caused by a syntax error, a type-inst error, the use of an unsupported feature or operation, etc. In this case the outcome of evaluation is a static error; this must be reported prior to run-time. The form of output for static errors is implementation-dependent, although such output should be easily recognisable as a static error.

An implementation may produce warnings during all evaluation phases. For example, an implementation may be able to determine that unsatisfiable constraints exist prior to run-time, and the resulting warning given to the user may be more helpful than if the unsatisfiability is detected at run-time.

An implementation must produce a warning if the objective for an optimisation problem is unbounded.

4.1.3.2 Run-time Outcomes

Assuming there are no static errors, the output from the run-time phase has the following abstract form:
If a solution occurs in the output then it must be feasible. For optimisation problems, each solution must be strictly better than any preceding solution.

If there are no solutions in the output, the outcome must indicate that there are no solutions. If the search is complete the output may state this after the solutions. The absence of the completeness message indicates that the search is incomplete.

Any warnings produced during run-time must be summarised after the statement of completeness. In particular, if there were any warnings at all during run-time then the summary must indicate this fact.

The implementation may produce text in any format after the warnings. For example, it may print a summary of benchmarking statistics or resources used.

4.1.3.3 Output

Implementations must be capable of producing output of content type application/x-zinc-output, which is described below and also in Content-types (page 257). Implementations may also produce output in alternative formats. Any output should conform to the abstract format from the previous section and must have the semantics described there.

Content type application/x-zinc-output extends the syntax from the previous section as follows:

```plaintext
<solution> ::= <solution-text> [ \n ] "----------" \n
<no-solutions> ::= "======UNSATISFIABLE======" \n
<complete> ::= "==========" \n```

The solution text for each solution must be as described in Output Items (page 242). A newline must be appended if the solution text does not end with a newline. **Rationale:** This allows solutions to be extracted from output without necessarily knowing how the solutions are formatted. Solutions end with a sequence of ten dashes followed by a newline.

The completeness result is printed on a separate line. **Rationale:** The strings are designed to clearly indicate the end of the solutions.

If the search is complete, a statement corresponding to the outcome is printed. For an outcome of no solutions the statement is that the model instance is unsatisfiable, for an outcome of no more solutions the statement is that the solution set is complete, and for an outcome of no better solutions the statement is that the last solution is optimal. **Rationale:** These are the logical implications of a search being complete.
If the search is incomplete, one or more messages describing reasons for incompleteness may be printed. Likewise, if any warnings occurred during search they are repeated after the completeness message. Both kinds of message should have lines that start with % so they are recognized as comments by post-processing. *Rationale: This allows individual messages to be easily recognised.*

For example, the following may be output for an optimisation problem:

```plaintext
UNSATISFIABLE
% trentin.fzn:4: warning: model inconsistency detected before search.
```

Note that, as in this case, an unbounded objective is not regarded as a source of incompleteness.

### 4.1.4 Syntax Overview

#### 4.1.4.1 Character Set

The input files to MiniZinc must be encoded as UTF-8.

MiniZinc is case sensitive. There are no places where upper-case or lower-case letters must be used.

MiniZinc has no layout restrictions, i.e., any single piece of whitespace (containing spaces, tabs and newlines) is equivalent to any other.

#### 4.1.4.2 Comments

A % indicates that the rest of the line is a comment. MiniZinc also has block comments, using symbols */ and */ to mark the beginning and end of a comment.

#### 4.1.4.3 Identifiers

Identifiers have the following syntax:

```plaintext
<ident> ::= [A-Za-z][A-Za-z0-9_]* % excluding keywords
 | "" [^'\xa\xd\x0]* ""
```

`my_name_2`
`MyName2`
`'An arbitrary identifier'`

A number of keywords are reserved and cannot be used as identifiers. The keywords are: `ann`, `annotation`, `any`, `array`, `bool`, `case`, `constraint`, `diff`, `div`, `else`, `elseif`, `endif`, `enum`, `false`, `false`,
A number of identifiers are used for built-ins; see *Built-in Operations* (page 249) for details.

### 4.1.5 High-level Model Structure

A MiniZinc model consists of multiple items:

```
<model> ::= [<item> ";" ...]
```

Items can occur in any order; identifiers need not be declared before they are used. Items have the following top-level syntax:

```
<item> ::= <include-item>
| <var-decl-item>
| <enum-item>
| <assign-item>
| <constraint-item>
| <solve-item>
| <output-item>
| <predicate-item>
| <test-item>
| <function-item>
| <annotation-item>

<ti-expr-and-id> ::= <ti-expr> ":" <ident>
```

Include items provide a way of combining multiple files into a single instance. This allows a model to be split into multiple files (*Include Items* (page 238)).

Variable declaration items introduce new global variables and possibly bind them to a value (*Variable Declaration Items* (page 239)).

Assignment items bind values to global variables (*Assignment Items* (page 240)).

Constraint items describe model constraints (*Constraint Items* (page 241)).

Solve items are the “starting point” of a model, and specify exactly what kind of solution is being looked for: plain satisfaction, or the minimization/maximization of an expression. Each model must have exactly one solve item (*Solve Items* (page 241)).

Output items are used for nicely presenting the result of a model execution (*Output Items* (page 242)).

Predicate items, test items (which are just a special type of predicate) and function items introduce new user-defined predicates and functions which can be called in expressions (*User-defined Operations* (page 242)). Predicates, functions, and built-in operators are described collectively as operations.

Annotation items augment the ann type, values of which can specify non-declarative and/or solver-specific information in a model.
4.1.5.1 Model Instance Files

MiniZinc models can be constructed from multiple files using include items (see Include Items (page 238)). MiniZinc has no module system as such; all the included files are simply concatenated and processed as a whole, exactly as if they had all been part of a single file. Rationale: We have not found much need for one so far. If bigger models become common and the single global namespace becomes a problem, this should be reconsidered.

Each model may be paired with one or more data files. Data files are more restricted than model files. They may only contain variable assignments (see Assignment Items (page 240)).

Data files may not include calls to user-defined operations.

Models do not contain the names of data files; doing so would fix the data file used by the model and defeat the purpose of allowing separate data files. Instead, an implementation must allow one or more data files to be combined with a model for evaluation via a mechanism such as the command-line.

When checking a model with data, all global variables with fixed type-insts must be assigned, unless they are not used (in which case they can be removed from the model without effect).

A data file can only be checked for static errors in conjunction with a model, since the model contains the declarations that include the types of the variables assigned in the data file.

A single data file may be shared between multiple models, so long as the definitions are compatible with all the models.

4.1.5.2 Namespaces

All names declared at the top-level belong to a single namespace. It includes the following names.

1. All global variable names.
2. All function and predicate names, both built-in and user-defined.
3. All enumerated type names and enum case names.
4. All annotation names.

Because multi-file MiniZinc models are composed via concatenation (Model Instance Files (page 215)), all files share this top-level namespace. Therefore a variable x declared in one model file could not be declared with a different type in a different file, for example.

MiniZinc supports overloading of built-in and user-defined operations.

4.1.5.3 Scopes

Within the top-level namespace, there are several kinds of local scope that introduce local names:

- Comprehension expressions (Set Comprehensions (page 231)).
- Let expressions (Let Expressions (page 236)).
- Function and predicate argument lists and bodies (User-defined Operations (page 242)).

The listed sections specify these scopes in more detail. In each case, any names declared in the local scope overshadow identical global names.
4.1.6 Types and Type-insts

MiniZinc provides four scalar built-in types: Booleans, integers, floats, and strings; enumerated types; two compound built-in types: sets and multi-dimensional arrays; and the user extensible annotation type ann.

Each type has one or more possible instantiations. The instantiation of a variable or value indicates if it is fixed to a known value or not. A pairing of a type and instantiation is called a type-inst.

We begin by discussing some properties that apply to every type. We then introduce instantiations in more detail. We then cover each type individually, giving: an overview of the type and its possible instantiations, the syntax for its type-insts, whether it is a finite type (and if so, its domain), whether it is varifiable, the ordering and equality operations, whether its variables must be initialised at instance-time, and whether it can be involved in automatic coercions.

4.1.6.1 Properties of Types

The following list introduces some general properties of MiniZinc types.

- Currently all types are monotypes. In the future we may allow types which are polymorphic in other types and also the associated constraints.

- We distinguish types which are finite types. In MiniZinc, finite types include Booleans, enums, types defined via set expression type-insts such as range types (see Set Expression Type-insts (page 224)), as well as sets and arrays, composed of finite types. Types that are not finite types are unconstrained integers, unconstrained floats, unconstrained strings, and ann. Finite types are relevant to sets (spec-Sets) and array indices (spec-Arrays). Every finite type has a domain, which is a set value that holds all the possible values represented by the type.

- Every first-order type (this excludes ann) has a built-in total order and a built-in equality; >, <, =/\=, !=, <= and >= comparison operators can be applied to any pair of values of the same type. Rationale: This facilitates the specification of symmetry breaking and of polymorphic predicates and functions. Note that, as in most languages, using equality on floats or types that contain floats is generally not reliable due to their inexact representation. An implementation may choose to warn about the use of equality with floats or types that contain floats.

4.1.6.2 Instantiations

When a MiniZinc model is evaluated, the value of each variable may initially be unknown. As it runs, each variable’s domain (the set of values it may take) may be reduced, possibly to a single value.

An instantiation (sometimes abbreviated to inst) describes how fixed or unfixed a variable is at instance-time. At the most basic level, the instantiation system distinguishes between two kinds of variables:

1. Parameters, whose values are fixed at instance-time (usually written just as “fixed”).
2. *Decision variables* (often abbreviated to *variables*), whose values may be completely unfixed at instance-time, but may become fixed at run-time (indeed, the fixing of decision variables is the whole aim of constraint solving).

In MiniZinc decision variables can have the following types: Booleans, integers, floats, and sets of integers, and enums. Arrays and *ann* can contain decision variables.

### 4.1.6.3 Type-insts

Because each variable has both a type and an inst, they are often combined into a single *type-inst*. Type-insts are primarily what we deal with when writing models, rather than types.

A variable's type-inst *never changes*. This means a decision variable whose value becomes fixed during model evaluation still has its original type-inst (e.g. *var int*), because that was its type-inst at instance-time.

Some type-insts can be automatically coerced to another type-inst. For example, if a *par int* value is used in a context where a *var int* is expected, it is automatically coerced to a *var int*. We write this *par int* $\rightarrow$ *var int*. Also, any type-inst can be considered coercible to itself. MiniZinc allows coercions between some types as well.

Some type-insts can be *varified*, i.e., made unfixed at the top-level. For example, *par int* is varified to *var int*. We write this *par int* $\rightarrow$ *var int*.

Type-insts that are varifiable include the type-insts of the types that can be decision variables (Booleans, integers, floats, sets, enumerated types). Varification is relevant to type-inst synonyms and array accesses.

### 4.1.6.4 Type-inst expression overview

This section partly describes how to write type-insts in MiniZinc models. Further details are given for each type as they are described in the following sections.

A type-inst expression specifies a type-inst. Type-inst expressions may include type-inst constraints. Type-inst expressions appear in variable declarations (*Variable Declaration Items* (page 239)) and user-defined operation items (*User-defined Operations* (page 242)).

Type-inst expressions have this syntax:

`<ti-expr>`	::=	`<base-ti-expr>`		
`<base-ti-expr>`	::=	`<var-par>` `<base-ti-expr-tail>`		
`<var-par>`	::=	"var"	"par"	ε
`<base-type>`	::=	"bool"		
		"int"		
		"float"		
		"string"		
`<base-ti-expr-tail>`	::=	`<ident>`		
		`<base-type>`		
(The final alternative, for range types, uses the numeric-specific `<num-expr>` non-terminal, defined in *Expressions Overview* (page 224), rather than the `<expr>` non-terminal. If this were not the case, the rule would never match because the `..` operator would always be matched by the first `<expr>`.)

This fully covers the type-inst expressions for scalar types. The compound type-inst expression syntax is covered in more detail in *Built-in Compound Types and Type-insts* (page 220).

The `par` and `var` keywords (or lack of them) determine the instantiation. The `par` annotation can be omitted; the following two type-inst expressions are equivalent:

```
par int
int
```

_Rationale_: The use of the explicit `var` keyword allows an implementation to check that all parameters are initialised in the model or the instance. It also clearly documents which variables are parameters, and allows more precise type-inst checking.

A type-inst is fixed if it does not contain `var`, with the exception of `ann`.

Note that several type-inst expressions that are syntactically expressible represent illegal type-insts. For example, although the grammar allows `var` in front of all these base type-inst expression tails, it is a type-inst error to have `var` in front of a string or array expression.

### 4.1.6.5 Built-in Scalar Types and Type-insts

**Booleans**

*Overview*. Booleans represent truthhood or falsity. _Rationale_: Boolean values are not represented by integers. Booleans can be explicit converted to integers with the `bool2int` function, which makes the user's intent clear.

*Allowed Insts*. Booleans can be fixed or unfixed.

*Syntax*. Fixed Booleans are written `bool` or `par bool`. Unfixed Booleans are written as `var bool`.

*Finite?* Yes. The domain of a Boolean is `false`, `true`.

*Varifiable?* `par bool \not\rightarrow var bool`, `var bool \not\rightarrow var bool`.

*Ordering*. The value `false` is considered smaller than `true`.

*Initialisation*. A fixed Boolean variable must be initialised at instance-time; an unfixed Boolean variable need not be.

*Coercions*. `par bool \not\leftrightarrow var bool`. 
Also Booleans can be automatically coerced to integers; see *Integers* (page 219).

**Integers**

*Overview*. Integers represent integral numbers. Integer representations are implementation-defined. This means that the representable range of integers is implementation-defined. However, an implementation should abort at run-time if an integer operation overflows.

*Allowed Insts*. Integers can be fixed or unfixed.

*Syntax*. Fixed integers are written `int` or `par int`. Unfixed integers are written as `var int`.

*Finite?* Not unless constrained by a set expression (see *Set Expression Type-insts* (page 224)).

*Varifiable?* `par int ↦ var int`, `var int ↝ var int`.

*Ordering*. The ordering on integers is the standard one.

*Initialisation*. A fixed integer variable must be initialised at instance-time; an unfixed integer variable need not be.

*Coercions*. `par int ↛ var int`, `par bool ↛ par int`, `par bool ↛ var int`, `var bool ↛ var int`.

Also, integers can be automatically coerced to floats; see *Floats* (page 219).

**Floats**

*Overview*. Floats represent real numbers. Float representations are implementation-defined. This means that the representable range and precision of floats is implementation-defined. However, an implementation should abort at run-time on exceptional float operations (e.g., those that produce NaN, if using IEEE754 floats).

*Allowed Insts*. Floats can be fixed or unfixed.

*Syntax*. Fixed floats are written `float` or `par float`. Unfixed floats are written as `var float`.

*Finite?* Not unless constrained by a set expression (see *Set Expression Type-insts* (page 224)).

*Varifiable?* `par float ↦ var float`, `var float ↝ var float`.

*Ordering*. The ordering on floats is the standard one.

*Initialisation*. A fixed float variable must be initialised at instance-time; an unfixed float variable need not be.

*Coercions*. `par int ↛ par float`, `par int ↛ var float`, `var int ↛ var float`, `par float ↛ var float`.

**Enumerated Types**

*Overview*. Enumerated types (or *enums* for short) provide a set of named alternatives. Each alternative is identified by its *case name*. Enumerated types, like in many other languages, can be used in the place of integer types to achieve stricter type checking.

*Allowed Insts*. Enums can be fixed or unfixed.
Syntax. Variables of an enumerated type named $X$ are represented by the term $X$ or $\text{par } X$ if fixed, and $\text{var } X$ if unfixed.

Finite? Yes.

The domain of an enum is the set containing all of its case names.

Varifiable? $\text{par } X \rightarrow \text{var } X, \text{var } X \rightarrow \text{var } X$.

Ordering. When two enum values with different case names are compared, the value with the case name that is declared first is considered smaller than the value with the case name that is declared second.

Initialisation. A fixed enum variable must be initialised at instance-time; an unfixed enum variable need not be.

Coercions. $\text{par } X \rightarrow \text{par int}, \text{var } X \rightarrow \text{var int}$.

Strings

Overview. Strings are primitive, i.e., they are not lists of characters.

String expressions are used in assertions, output items and annotations, and string literals are used in include items.

Allowed Insts. Strings must be fixed.

Syntax. Fixed strings are written $\text{string}$ or $\text{par string}$.

Finite? Not unless constrained by a set expression (see Set Expression Type-insts (page 224)).

Varifiable? No.

Ordering. Strings are ordered lexicographically using the underlying character codes.

Initialisation. A string variable (which can only be fixed) must be initialised at instance-time.

Coercions. None automatic. However, any non-string value can be manually converted to a string using the built-in $\text{show}$ function or using string interpolation (see String Literals and String Interpolation (page 230)).

4.1.6.6 Built-in Compound Types and Type-insts

Sets

Overview. A set is a collection with no duplicates.

Allowed Insts. The type-inst of a set's elements must be fixed. Rationale: This is because current solvers are not powerful enough to handle sets containing decision variables. Sets may contain any type, and may be fixed or unfixed. If a set is unfixed, its elements must be finite, unless it occurs in one of the following contexts:

- the argument of a predicate, function or annotation.
- the declaration of a variable or let local variable with an assigned value.

Syntax. A set base type-inst expression tail has this syntax:
Some example set type-inst expressions:

\[
\begin{align*}
\text{set of int} \\
\text{var set of bool}
\end{align*}
\]

**Finite?** Yes, if the set elements are finite types. Otherwise, no.

The domain of a set type that is a finite type is the powerset of the domain of its element type. For example, the domain of \text{set of 1..2} is \text{powerset}(1..2), which is \{\}, \{1\}, \{1,2\}, \{2\}.

**Varifiable?** \par set of \text{TI} \rightarrow \text{var set of TI}, \text{var set of TI} \rightarrow \text{var set of TI}.

**Ordering.** The pre-defined ordering on sets is a lexicographic ordering of the \text{sorted set form}, where \{1,2\} is in sorted set form, for example, but \{2,1\} is not. This means, for instance, \{\} < \{1,3\} < \{2\}.

**Initialisation.** A fixed set variable must be initialised at instance-time; an unfixed set variable need not be.

**Coercions.** \par set of \text{TI} \rightarrow \par set of \text{UI} and \par set of \text{TI} \rightarrow \text{var set of UI} and \text{var set of TI} \rightarrow \text{var set of UI}, if \text{TI} \rightarrow \text{UI}.

### Arrays

**Overview.** MiniZinc arrays are maps from fixed integers to values. Values can be of any type. The values can only have base type-insts. Arrays-of-arrays are not allowed. Arrays can be multi-dimensional.

MiniZinc arrays can be declared in two different ways.

- **Explicitly-indexed** arrays have index types in the declaration that are finite types. For example:

\[
\begin{align*}
\text{array[0..3] of int: a1;} \\
\text{array[1..5, 1..10] of var float: a5;}
\end{align*}
\]

For such arrays, the index type specifies exactly the indices that will be in the array - the array's index set is the \text{domain} of the index type - and if the indices of the value assigned do not match then it is a run-time error.

For example, the following assignments cause run-time errors:

\[
\begin{align*}
\text{a1} &= [4,6,4,3,2]; & \% \text{too many elements} \\
\text{a5} &= [ ]; & \% \text{too few elements}
\end{align*}
\]

- **Implicitly-indexed** arrays have index types in the declaration that are not finite types. For example:

\[
\text{array[int,int] of int: a6;}
\]
No checking of indices occurs when these variables are assigned.

In MiniZinc all index sets of an array must be contiguous ranges of integers, or enumerated types. The expression used for initialisation of an array must have matching index sets. An array expression with an enum index set can be assigned to an array declared with an integer index set, but not the other way around. The exception are array literals, which can be assigned to arrays declared with enum index sets.

For example:

```mini
enum X = {A,B,C};
enum Y = {D,E,F};
array[X] of int: x = array1d(X, [5,6,7]); % correct
array[Y] of int: y = x; % index set mismatch: Y != X
array[int] of int: z = x; % correct: assign X index set to
\int
array[X] of int: x2 = [10,11,12]; % correct: automatic coercion for
array literals
```

The initialisation of an array can be done in a separate assignment statement, which may be present in the model or a separate data file.

Arrays can be accessed. See *Array Access Expressions* (page 233) for details.

**Allowed Insts.** An array's size must be fixed. Its indices must also have fixed type-insts. Its elements may be fixed or unfixed.

**Syntax.** An array base type-inst expression tail has this syntax:

```
<array-ti-expr-tail> ::= "array" [<ti-expr> "," ...] "of" <ti-expr>
| "list" "of" <ti-expr>
```

Some example array type-inst expressions:

```
array[1..10] of int
list of var int
```

Note that *list of <T>* is just syntactic sugar for *array[int] of <T>*. *Rationale: Integer-indexed arrays of this form are very common, and so worthy of special support to make things easier for modellers. Implementing it using syntactic sugar avoids adding an extra type to the language, which keeps things simple for implementers.*

Because arrays must be fixed-size it is a type-inst error to precede an array type-inst expression with *var*.

**Finite?** Yes, if the index types and element type are all finite types. Otherwise, no.

The domain of an array type that is a finite array is the set of all distinct arrays whose index set equals the domain of the index type and whose elements are of the array element type.

**Varifiable?** No.

**Ordering.** Arrays are ordered lexicographically, taking absence of a value for a given key to be before any value for that key. For example, [1, 1] is less than [1, 2], which is less than [1, 2, 3] and array1d(2..4,[0, 0, 0]) is less than [1, 2, 3].
Initialisation. An explicitly-indexed array variable must be initialised at instance-time only if its elements must be initialised at instance time. An implicitly-indexed array variable must be initialised at instance-time so that its length and index set is known.

Coercions. $\text{array}[\text{TI}] \rightarrow \text{array}[\text{UI}]$ if $\text{TI} \rightarrow \text{UI}$ and $\text{TI} \rightarrow \text{UI}$.

Option Types

Overview. Option types defined using the opt type constructor, define types that may or may not be there. They are similar to Maybe types of Haskell implicitly adding a new value $\bot$ to the type.

Allowed Insts. The argument of an option type must be one of the base types $\text{bool}$, $\text{int}$ or $\text{float}$.

Syntax. The option type is written opt $\langle T \rangle$ where $\langle T \rangle$ if one of the three base types, or one of their constrained instances.

Finite? Yes if the underlying type is finite, otherwise no.

Varifiable? Yes.

Ordering. $\bot$ is always less than any other value in the type. But beware that overloading of operators like $<$ is different for option types.

Initialisation. An opt type variable does not need to be initialised at instance-time. An uninitialised opt type variable is automatically initialised to $\bot$.

Coercions. $\text{TI} \rightarrow \text{opt} \rightarrow \text{UI}$ if $\text{TI} \rightarrow \text{UI}$.

The Annotation Type

Overview. The annotation type, ann, can be used to represent arbitrary term structures. It is augmented by annotation items (Annotation Items (page 242)).

Allowed Insts. ann is always considered unfixed, because it may contain unfixed elements. It cannot be preceded by var.

Syntax. The annotation type is written ann.

Finite? No.

Varifiable? No.

Ordering. N/A. Annotation types do not have an ordering defined on them.

Initialisation. An ann variable must be initialised at instance-time.

Coercions. None.

4.1.6.7 Constrained Type-insts

One powerful feature of MiniZinc is constrained type-insts. A constrained type-inst is a restricted version of a base type-inst, i.e., a type-inst with fewer values in its domain.
Set Expression Type-insts

Three kinds of expressions can be used in type-insts.

1. Integer ranges: e.g. 1..3.
2. Set literals: e.g. var \{1,3,5\}.
3. Identifiers: the name of a set parameter (which can be global, let-local, the argument of a predicate or function, or a generator value) can serve as a type-inst.

In each case the base type is that of the set's elements, and the values within the set serve as the domain. For example, whereas a variable with type-inst var int can take any integer value, a variable with type-inst var 1..3 can only take the value 1, 2 or 3.

All set expression type-insts are finite types. Their domain is equal to the set itself.

Float Range Type-insts

Float ranges can be used as type-insts, e.g. 1.0 .. 3.0. These are treated similarly to integer range type-insts, although 1.0 .. 3.0 is not a valid expression whereas 1 .. 3 is.

Float ranges are not finite types.

4.1.7 Expressions

4.1.7.1 Expressions Overview

Expressions represent values. They occur in various kinds of items. They have the following syntax:

<expr> ::= <expr-atom> <expr-binop-tail>
<expr-atom> ::= <expr-atom-head> <expr-atom-tail> <annotations>
<expr-binop-tail> ::= [ <bin-op> <expr> ]
<expr-atom-head> ::= <builtin-un-op> <expr-atom>
| "(" <expr> ")"
| <ident-or-quoted-op>
| "" ""
| <bool-literal>
| <int-literal>
| <float-literal>
| <string-literal>
| <set-literal>
| <set-comp>
| <array-literal>
| <array-literal-2d>
| <array-comp>
| <ann-literal>
Expressions can be composed from sub-expressions combined with operators. All operators (binary and unary) are described in Operators (page 226), including the precedences of the binary operators. All unary operators bind more tightly than all binary operators.

Expressions can have one or more annotations. Annotations bind more tightly than unary and binary operator applications, but less tightly than access operations and non-operator applications. In some cases this binding is non-intuitive. For example, in the first three of the following lines, the annotation $a$ binds to the identifier expression $x$ rather than the operator application. However, the fourth line features a non-operator application (due to the single quotes around the not) and so the annotation binds to the whole application.

```
not x::a;
not (x)::a;
not(x)::a;
'not'(x)::a;
```

Annotations (page 246) has more on annotations.

Expressions can be contained within parentheses.

The array access operations all bind more tightly than unary and binary operators and annotations. They are described in more detail in Array Access Expressions (page 233).

The remaining kinds of expression atoms (from $<ident>$ to $<gen-call-expr>$) are described in Identifier Expressions and Quoted Operator Expressions (page 229) to Generator Call Expressions (page 238).

We also distinguish syntactically valid numeric expressions. This allows range types to be parsed correctly.

```
<num-expr> ::= <num-expr-atom> <num-expr-binop-tail>
<num-expr-atom> ::= <num-expr-atom-head> <expr-atom-tail> <annotations>
<num-expr-binop-tail> ::= [<num-bin-op> <num-expr>]
<num-expr-atom-head> ::= <builtin-un-op> <num-expr-atom>
 | "(" <num-expr> ")"
 | <ident-or-quoted-op>
 | <int-literal>
 | <float-literal>
 | <if-then-else-expr>
 | <let-expr>
 | <call-expr>
```
4.1.7.2 Operators

Operators are functions that are distinguished by their syntax in one or two ways. First, some of them contain non-alphanumeric characters that normal functions do not (e.g. +). Second, their application is written in a manner different to normal functions.

We distinguish between binary operators, which can be applied in an infix manner (e.g. 3 + 4), and unary operators, which can be applied in a prefix manner without parentheses (e.g. not x). We also distinguish between built-in operators and user-defined operators. The syntax is the following:

```
<builtin-op> ::= <builtin-bin-op> | <builtin-un-op>
<bin-op> ::= <builtin-bin-op> | '<ident>'
<builtin-bin-op> ::= "<->" | "->" | "<-" | "\" | "xor" | "/" | "<" | "=" | ">=" | ">=" | "!=" | "in" | "subset" | "superset" | "union" | "diff" | "symdiff" | "." | "intersect" | "++" | <builtin-num-bin-op>
<builtin-un-op> ::= "not" | <builtin-num-un-op>
```

Again, we syntactically distinguish numeric operators.

```
<num-bin-op> ::= <builtin-num-bin-op> | '<ident>'
<builtin-num-bin-op> ::= "+" | "-" | "*" | "/" | "div" | "mod"
<builtin-num-un-op> ::= "+" | "-"
```

Some operators can be written using their unicode symbols, which are listed in Table 4.1.7.2 (recall that MiniZinc input is UTF-8).
Table 1.1: Unicode equivalents of binary operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Unicode symbol</th>
<th>UTF-8 code</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;-&gt;</td>
<td>↔</td>
<td>E2 86 94</td>
</tr>
<tr>
<td>-&gt;</td>
<td>→</td>
<td>E2 86 92</td>
</tr>
<tr>
<td>&lt;=</td>
<td>←</td>
<td>E2 86 90</td>
</tr>
<tr>
<td>not</td>
<td>¬</td>
<td>C2 AC</td>
</tr>
<tr>
<td>\</td>
<td>\</td>
<td>E2 88 A8</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
<td>E2 88 A7</td>
</tr>
<tr>
<td>!=</td>
<td>≠</td>
<td>E2 89 A0</td>
</tr>
<tr>
<td>&lt;=</td>
<td>≤</td>
<td>E2 89 A4</td>
</tr>
<tr>
<td>&gt;=</td>
<td>≥</td>
<td>E2 89 A5</td>
</tr>
<tr>
<td>in</td>
<td>∈</td>
<td>E2 88 88</td>
</tr>
<tr>
<td>subset</td>
<td>⊆</td>
<td>E2 8A 86</td>
</tr>
<tr>
<td>superset</td>
<td>⊇</td>
<td>E2 8A 87</td>
</tr>
<tr>
<td>union</td>
<td>∪</td>
<td>E2 88 AA</td>
</tr>
<tr>
<td>intersect</td>
<td>∩</td>
<td>E2 88 A9</td>
</tr>
</tbody>
</table>

The binary operators are listed in Table 4.1.7.2. A lower precedence number means tighter binding; for example, 1+2*3 is parsed as 1+(2*3) because * binds tighter than +. Associativity indicates how chains of operators with equal precedences are handled; for example, 1+2+3 is parsed as (1+2)+3 because + is left-associative, a++b++c is parsed as a++(b++c) because ++ is right-associative, and 1<x<2 is a syntax error because < is non-associative.
Table 1.2: Binary infix operators

<table>
<thead>
<tr>
<th>Symbol(s)</th>
<th>Assoc.</th>
<th>Prec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;-&gt;</td>
<td>left</td>
<td>1200</td>
</tr>
<tr>
<td>-&gt;</td>
<td>left</td>
<td>1100</td>
</tr>
<tr>
<td>&lt;-</td>
<td>left</td>
<td>1100</td>
</tr>
<tr>
<td>/</td>
<td>left</td>
<td>1000</td>
</tr>
<tr>
<td>xor</td>
<td>left</td>
<td>1000</td>
</tr>
<tr>
<td>\</td>
<td>left</td>
<td>900</td>
</tr>
<tr>
<td>&lt;</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>&gt;</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>&lt;=</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>&gt;=</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>==</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>=</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>!=</td>
<td>none</td>
<td>800</td>
</tr>
<tr>
<td>in</td>
<td>none</td>
<td>700</td>
</tr>
<tr>
<td>subset</td>
<td>none</td>
<td>700</td>
</tr>
<tr>
<td>superset</td>
<td>none</td>
<td>700</td>
</tr>
<tr>
<td>union</td>
<td>left</td>
<td>600</td>
</tr>
<tr>
<td>diff</td>
<td>left</td>
<td>600</td>
</tr>
<tr>
<td>symdiff</td>
<td>left</td>
<td>600</td>
</tr>
<tr>
<td>..</td>
<td>none</td>
<td>500</td>
</tr>
<tr>
<td>+</td>
<td>left</td>
<td>400</td>
</tr>
<tr>
<td>-</td>
<td>left</td>
<td>400</td>
</tr>
<tr>
<td>*</td>
<td>left</td>
<td>300</td>
</tr>
<tr>
<td>div</td>
<td>left</td>
<td>300</td>
</tr>
<tr>
<td>mod</td>
<td>left</td>
<td>300</td>
</tr>
<tr>
<td>/</td>
<td>left</td>
<td>300</td>
</tr>
<tr>
<td>intersect</td>
<td>left</td>
<td>300</td>
</tr>
<tr>
<td>++</td>
<td>right</td>
<td>200</td>
</tr>
<tr>
<td><code>&lt;ident&gt;</code></td>
<td>left</td>
<td>100</td>
</tr>
</tbody>
</table>

A user-defined binary operator is created by backquoting a normal identifier, for example:

```
A `min2` B
```

This is a static error if the identifier is not the name of a binary function or predicate.

The unary operators are: +, − and not. User-defined unary operators are not possible.

As Identifiers (page 213) explains, any built-in operator can be used as a normal function identifier by quoting it, e.g: `'+'(3, 4)` is equivalent to `3 + 4`.

The meaning of each operator is given in Built-in Operations (page 249).
4.1.7.3 Expression Atoms

Identifier Expressions and Quoted Operator Expressions

Identifier expressions and quoted operator expressions have the following syntax:

\[
<\text{ident-or-quoted-op}> ::= <\text{ident}>
\mid '\text{builtin-op}'
\]

Examples of identifiers were given in *Identifiers* (page 213). The following are examples of quoted operators:

'+'

'union'

In quoted operators, whitespace is not permitted between either quote and the operator. *Operators* (page 226) lists MiniZinc's built-in operators.

Syntactically, any identifier or quoted operator can serve as an expression. However, in a valid model any identifier or quoted operator serving as an expression must be the name of a variable.

Anonymous Decision Variables

There is a special identifier, _, that represents an unfixed, anonymous decision variable. It can take on any type that can be a decision variable. It is particularly useful for initialising decision variables within compound types. For example, in the following array the first and third elements are fixed to 1 and 3 respectively and the second and fourth elements are unfixed:

\[
\text{array}[1..4] \text{ of var int: } xs = [1, _, 3, _];
\]

Any expression that does not contain _ and does not involve decision variables is fixed.

Boolean Literals

Boolean literals have this syntax:

\[
<\text{bool-literal}> ::= "\text{false}" \mid "\text{true}\"
\]

Integer and Float Literals

There are three forms of integer literals - decimal, hexadecimal, and octal - with these respective forms:

\[
<\text{int-literal}> ::= [0-9]+ \\
\mid 0x[0-9A-Fa-f]+ \\
\mid 0o[0-7]+ 
\]
For example: 0, 005, 123, 0x1b7, 0o777; but not -1.

Float literals have the following form:

```
<float-literal> ::= [0-9]+\."[0-9]+ | [0-9]+[Ee][-+]?[0-9]+ | 0[xX][0-9a-fA-F]+\."[0-9a-fA-F]+ | (0[xX][0-9a-fA-F]+[pP][-+]?[0-9]+)
```

For example: 1.05, 1.3e-5, 1.3e+5; but not 1., .5, 1.e5, 1e5, -1.0, -1E05. A - symbol preceding an integer or float literal is parsed as a unary minus (regardless of intervening whitespace), not as part of the literal. This is because it is not possible in general to distinguish a - for a negative integer or float literal from a binary minus when lexing.

### String Literals and String Interpolation

String literals are written as in C:

```
<string-contents> ::= (\[^"\n\] | \[^"\n\])*

<string-literal> ::= """ <string-contents> """ | ""
<string-interpolate-tail> ::= <expr> "\"<string-contents>""
<string-interpolate-tail> ::= <expr> "\"<string-contents>"
```

This includes C-style escape sequences, such as \" for double quotes, \\ for backslash, and \n for newline.

For example: "Hello, world!\n".

String literals must fit on a single line.

Long string literals can be split across multiple lines using string concatenation. For example:

```
string: s = "This is a string literal "+ "split across two lines."
```

A string expression can contain an arbitrary MiniZinc expression, which will be converted to a string similar to the builtin show function and inserted into the string.

For example:

```
var set of 1..10: q;
solve satisfy;
output [show("The value of q is \(q), and it has \(card(q)) elements.")];
```
Set Literals

Set literals have this syntax:

\[
\text{\texttt{\{ expr \}, \ldots \}}
\]

For example:

\[
\{ 1, 3, 5 \}
\{ \}
\{ 1, 2.0 \}
\]

The type-insts of all elements in a literal set must be the same, or coercible to the same type-inst (as in the last example above, where the integer 1 will be coerced to a float).

Set Comprehensions

Set comprehensions have this syntax:

\[
\text{\texttt{\{ expr \mid comp-tail \}}}
\]

\[
\text{\texttt{\mid comp-tail \}}}
\]

\[
\text{\texttt{\mid comp-tail \}}}
\]

For example (with the literal equivalent on the right):

\[
\{ 2 \times i \mid i \text{ in } 1..5 \} \quad \% \{ 2, 4, 6, 8, 10 \}
\{ 1 \mid i \text{ in } 1..5 \} \quad \% \{ 1 \} \quad \text{(no duplicates in sets)}
\]

The expression before the | is the head expression. The expression after the in is a generator expression. Generators can be restricted by a where-expression. For example:

\[
\{ i \mid i \text{ in } 1..10 \text{ where } (i \mod 2 = 0) \} \quad \% \{ 2, 4, 6, 8, 10 \}
\]

When multiple generators are present, the right-most generator acts as the inner-most one. For example:

\[
\{ 3 \times i + j \mid i \text{ in } 0..2, j \text{ in } 0, 1 \} \quad \% \{ 0, 1, 3, 4, 6, 7 \}
\]

The scope of local generator variables is given by the following rules:

- They are visible within the head expression (before the |).
- They are visible within the where-expression of their own generator.
- They are visible within generator expressions and where-expressions in any subsequent generators.
The last of these rules means that the following set comprehension is allowed:

\[
\{ i+j | i \text{ in } 1..3, j \text{ in } 1..i \} \ % \{ 1+1, 2+1, 2+2, 3+1, 3+2, 3+3 \}
\]

Multiple where-expressions are allowed, as in the following example:

\[
[f(i, j) | i \text{ in } A1 \text{ where } p(i), j \text{ in } A2 \text{ where } q(i, j)]
\]

A generator expression must be an array or a fixed set.

_Rationale_: For set comprehensions, set generators would suffice, but for array comprehensions, array generators are required for full expressivity (e.g., to provide control over the order of the elements in the resulting array). Set comprehensions have array generators for consistency with array comprehensions, which makes implementations simpler.

The where-expression (if present) must be Boolean. It can be var, in which case the type of the comprehension is lifted to an optional type.

**Array Literals**

Array literals have this syntax:

\[
<\text{array-literal}> ::= "[" [ <\text{expr}> "," ... ] "]"
\]

For example:

\[
[1, 2, 3, 4] \\
[] \\
[1, _]
\]

In a array literal all elements must have the same type-inst, or be coercible to the same type-inst (as in the last example above, where the fixed integer 1 will be coerced to a `var int`).

The indices of a array literal are implicitly `1..n`, where n is the length of the literal.

**2d Array Literals**

Simple 2d array literals have this syntax:

\[
<\text{array-literal-2d}> ::= "[" [ ( <\text{expr}> "," ... ) "]|" ... ] "]"
\]

For example:

\[
[| 1, 2, 3 \\
 4, 5, 6 \\
 7, 8, 9 |] \ % \text{array}[1..3, 1..3] \\
[| x, y, z |] \ % \text{array}[1..1, 1..3] \\
[| 1 | _ | _ |] \ % \text{array}[1..3, 1..1]
\]
In a 2d array literal, every sub-array must have the same length.
In a 2d array literal all elements must have the same type-inst, or be coercible to the same
 type-inst (as in the last example above, where the fixed integer 1 will be coerced to a var int).
The indices of a 2d array literal are implicitly \((1,1)\ldots (m,n)\), where \(m\) and \(n\) are determined by
the shape of the literal.

**Array Comprehensions**

Array comprehensions have this syntax:

\[
\langle\text{array-comp}\rangle ::= \[\langle\text{expr}\rangle | \langle\text{comp-tail}\rangle \]
\]

For example (with the literal equivalents on the right):

\[
[2\times i \mid i \in 1..5] \quad \% [2, 4, 6, 8, 10]
\]

Array comprehensions have more flexible type and inst requirements than set comprehensions
(see *Set Comprehensions* (page 231)).

Array comprehensions are allowed over a variable set with finite type, the result is an array of
optional type, with length equal to the cardinality of the upper bound of the variable set. For
example:

```
var set of 1..5: x;
array[int] of var opt int: y = [i \times i \mid i \in x];
```

The length of array will be 5.

Array comprehensions are allowed where the where-expression is a var bool. Again the result-
ing array is of optional type, and of length equal to that given by the generator expressions. For
example:

```
var int x;
array[int] of var opt int: y = [i \mid i \in 1..10 \text{ where } i \neq x];
```

The length of the array will be 10.

The indices of an evaluated simple array comprehension are implicitly 1..\(n\), where \(n\) is the length
of the evaluated comprehension.

**Array Access Expressions**

Array elements are accessed using square brackets after an expression:

\[
\langle\text{array-access-tail}\rangle ::= \[\langle\text{expr}\rangle ,,\ldots \]
\]

For example:
int: x = a1[1];

If all the indices used in an array access are fixed, the type-inst of the result is the same as the element type-inst. However, if any indices are not fixed, the type-inst of the result is the varified element type-inst. For example, if we have:

```minizinc
array[1..2] of int: a2 = [1, 2];
var int: i;
```

then the type-inst of a2[i] is var int. If the element type-inst is not varifiable, such an access causes a static error.

Multi dimensional arrays are accessed using comma separated indices.

```minizinc
array[1..3,1..3] of int: a3;
int: y = a3[1, 2];
```

Indices must match the index set type of the array. For example, an array declared with an enum index set can only be accessed using indices from that enum.

```minizinc
enum X = {A,B,C};
array[X] of int: a4 = [1,2,3];
inint: y = a4[1]; % wrong index type
int: z = a4[B]; % correct
```

**Array Slice Expressions**

Arrays can be sliced in order to extract individual rows, columns or blocks. The syntax is that of an array access expression (see above), but where one or more of the expressions inside the square brackets are set-valued.

For example, the following extracts row 2 from a two-dimensional array:

```minizinc
array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,4..8];
```

Note that the resulting array row_2_of_x will have index set 4..8.

A short-hand for all indices of a particular dimension is to use just dots:

```minizinc
array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,..];
```

You can also restrict the index set by giving a sub-set of the original index set as the slice:

```minizinc
array[1..n,4..8] of int: x;
array[int] of int: row_2_of_x = x[2,5..6];
```
The resulting array \( \text{row}_2 \text{of}_x \) will now have length 2 and index set \( 5..6 \).

The dots notation also allows for partial bounds, for example:

```
array[1..n, 4..8] of int: x;
array[int] of int: row_2_of_x = x[2..6];
```

The resulting array will have length 3 and index set \( 4..6 \). Of course \( 6.. \) would also be allowed and result in an array with index set \( 6..8 \).

**Annotation Literals**

Literals of the `ann` type have this syntax:

```
<ann-literal> ::= <ident> ["(" <expr> "," ... ")"]
```

For example:

```
foo
cons(1, cons(2, cons(3, nil)))
```

There is no way to inspect or deconstruct annotation literals in a MiniZinc model; they are intended to be inspected only by an implementation, e.g., to direct compilation.

**If-then-else Expressions**

MiniZinc provides if-then-else expressions, which provide selection from two alternatives based on a condition. They have this syntax:

```
<if-then-else-exp> ::= "if" <expr> "then" <expr> ["elseif" <expr> "then"... "elseif" <expr> "then"... "else" <expr> "endif"
```

For example:

```
if x <= y then x else y endif
if x < 0 then -1 elseif x > 0 then 1 else 0 endif
```

The presence of the `endif` avoids possible ambiguity when an if-then-else expression is part of a larger expression.

The type-inst of the if expression must be `par bool` or `var bool`. The then and else expressions must have the same type-inst, or be coercible to the same type-inst, which is also the type-inst of the whole expression.

If the if expression is `var bool` then the type-inst of the then and else expressions must be varifiable.

---

4.1.7. Expressions
If the if expression is par bool then evaluation of if-then-else expressions is lazy: the condition is evaluated, and then only one of the then and else branches are evaluated, depending on whether the condition succeeded or failed. This is not the case if it is var bool.

Let Expressions

Let expressions provide a way of introducing local names for one or more expressions and local constraints that can be used within another expression. They are particularly useful in user-defined operations.

Let expressions have this syntax:

```plaintext
<let-expr> ::= "let" "(" <let-item> ";" ... ")" "in" <expr>
<let-item> ::= <var-decl-item>
 | <constraint-item>
```

For example:

```plaintext
let { int: x = 3; int: y = 4; } in x + y;
let { var int: x;
 constraint x >= y /
 x >= -y /
 (x = y \ x = -y); }
in x
```

The scope of a let local variable covers:

- The type-inst and initialisation expressions of any subsequent variables within the let expression (but not the variable's own initialisation expression).
- The expression after the in, which is parsed as greedily as possible.

A variable can only be declared once in a let expression.

Thus in the following examples the first is acceptable but the rest are not:

```plaintext
let { int: x = 3; int: y = x; } in x + y; % ok
let { int: y = x; int: x = 3; } in x + y; % x not visible in y's defn.
let { int: x = x; } in x; % x not visible in x's defn.
let { int: x = 3; int: x = 4; } in x; % x declared twice
```

The initialiser for a let local variable can be omitted only if the variable is a decision variable. For example:

```plaintext
let { var int: x; } in ...; % ok
let { int: x; } in ...; % illegal
```

The type-inst of the entire let expression is the type-inst of the expression after the in keyword. There is a complication involving let expressions in negative contexts. A let expression occurs in a negative context if it occurs in an expression of the form not X, X <-> Y} or in the sub-expression X in X -> Y or Y <-> X, or in a subexpression bool2int(X).
MiniZinc Handbook, Release 2.3.1
If a let expression is used in a negative context, then any let-local decision variables must be
defined only in terms of non-local variables and parameters. This is because local variables
are implicitly existentially quantified, and if the let expression occurred in a negative context
then the local variables would be effectively universally quantified which is not supported by
MiniZinc.
Constraints in let expressions float to the nearest enclosing Boolean context. For example
constraint b -> x + let { var 0..2: y; constraint y != -1;} in y >= 4;
is equivalent to
var 0..2: y;
constraint b -> (x + y >= 4 /\ y != 1);
For backwards compatibility with older versions of MiniZinc, items inside the let can also be
separated by commas instead of semicolons.
Call Expressions
Call expressions are used to call predicates and functions.
Call expressions have this syntax:
<call-expr> ::= <ident-or-quoted-op> [ "(" <expr> "," ... ")" ]
For example:
x = min(3, 5);
The type-insts of the expressions passed as arguments must match the argument types of the
called predicate/function. The return type of the predicate/function must also be appropriate
for the calling context.
Note that a call to a function or predicate with no arguments is syntactically indistinguishable
from the use of a variable, and so must be determined during type-inst checking.
Evaluation of the arguments in call expressions is strict: all arguments are evaluated before the
call itself is evaluated. Note that this includes Boolean operations such as /\, \/, -> and <which could be lazy in one argument. The one exception is assert, which is lazy in its third
argument (Other Operations (page 256)).
Rationale: Boolean operations are strict because: (a) this minimises exceptional cases; (b) in an
expression like A -> B where A is not fixed and B causes an abort, the appropriate behaviour is
unclear if laziness is present; and (c) if a user needs laziness, an if-then-else can be used.
The order of argument evaluation is not specified. Rationale: Because MiniZinc is declarative,
there is no obvious need to specify an evaluation order, and leaving it unspecified gives implementors
some freedom.

4.1.7. Expressions

237


MiniZinc Handbook, Release 2.3.1

**Generator Call Expressions**

MiniZinc has special syntax for certain kinds of call expressions which makes models much more readable.

Generator call expressions have this syntax:

\[
<\text{gen-call-expr}> ::= <\text{ident-or-quoted-op}> "(" <\text{comp-tail}> ")" "(" <\text{expr}> ")"
\]

A generator call expression \( P(Gs)(E) \) is equivalent to the call expression \( P([E \mid Gs]) \). For example, the expression:

\[
\text{forall}(i,j \text{ in Domain where } i<j)
\quad (\text{noattack}(i, j, \text{queens}[i], \text{queens}[j]));
\]

(in a model specifying the N-queens problem) is equivalent to:

\[
\text{forall}( [ \text{noattack}(i, j, \text{queens}[i], \text{queens}[j])
\quad \mid i,j \text{ in Domain where } i<j ] );
\]

The parentheses around the latter expression are mandatory; this avoids possible confusion when the generator call expression is part of a larger expression.

The identifier must be the name of a unary predicate or function that takes an array argument. The generators and where-expression (if present) have the same requirements as those in array comprehensions (Array Comprehensions (page 233)).

**4.1.8 Items**

This section describes the top-level program items.

**4.1.8.1 Include Items**

Include items allow a model to be split across multiple files. They have this syntax:

\[
<\text{include-item}> ::= "include" <\text{string-literal}>
\]

For example:

\[
\text{include } "\text{foo.mzn}";
\]

includes the file foo.mzn.

Include items are particularly useful for accessing libraries or breaking up large models into small pieces. They are not, as Model Instance Files (page 215) explains, used for specifying data files.
If the given name is not a complete path then the file is searched for in an implementation-defined set of directories. The search directories must be able to be altered with a command line option.

### 4.1.8.2 Variable Declaration Items

Variable declarations have this syntax:

```
<var-decl-item> ::= <ti-expr-and-id> <annotations> ["=" <expr>]
```

For example:

```c
int: A = 10;
```

It is a type-inst error if a variable is declared and/or defined more than once in a model.

A variable whose declaration does not include an assignment can be initialised by a separate assignment item (Assignment Items (page 240)). For example, the above item can be separated into the following two items:

```c
int: A;
...
A = 10;
```

All variables that contain a parameter component must be defined at instance-time.

Variables can have one or more annotations. Annotations (page 246) has more on annotations.

### 4.1.8.3 Enum Items

Enumerated type items have this syntax:

```
<enum-item> ::= "enum" <ident> <annotations> ["=" <enum-cases>]
<enum-cases> ::= "{" <ident> "," ... "}"
```

An example of an enum:

```c
enum country = {Australia, Canada, China, England, USA};
```

Each alternative is called an *enum case*. The identifier used to name each case (e.g. Australia) is called the *enum case name*.

Because enum case names all reside in the top-level namespace (Namespaces (page 215)), case names in different enums must be distinct.

An enum can be declared but not defined, in which case it must be defined elsewhere within the model, or in a data file. For example, a model file could contain this:
enum Workers;
enum Shifts;

and the data file could contain this:

Workers = { welder, driller, stamper };
Shifts = { idle, day, night };

Sometimes it is useful to be able to refer to one of the enum case names within the model. This can be achieved by using a variable. The model would read:

enum Shifts;
Shifts: idle; % Variable representing the idle constant.

and the data file:

enum Shifts = { idle_const, day, night };
idle = idle_const; % Assignment to the variable.

Although the constant idle_const cannot be mentioned in the model, the variable idle can be.

All enums must be defined at instance-time.

Enum items can be annotated. Annotations (page 246) has more details on annotations.

Each case name can be coerced automatically to the integer corresponding to its index in the type.

int: oz = Australia; % oz = 1

For each enumerated type T, the following functions exist:

% Return next greater enum value of x in enum type X
function T: enum_next(set of T: X, T: x);
function var T: enum_next(set of T: X, var T: x);

% Return next smaller enum value of x in enum type X
function T: enum_prev(set of T: X, T: x);
function var T: enum_prev(set of T: X, var T: x);

% Convert x to enum type X
function T: to_enum(set of T: X, int: x);
function var T: to_enum(set of T: X, var int: x);

4.1.8.4 Assignment Items

Assignments have this syntax:
For example:

\[ A = 10; \]

### 4.1.8.5 Constraint Items

Constraint items form the heart of a model. Any solutions found for a model will satisfy all of its constraints.

Constraint items have this syntax:

\[
\textless \text{constraint-item}\textgreater ::= \text{"constraint"} \textless \text{string-annotation}\textgreater \textless \text{expr}\textgreater
\]

For example:

\[
\text{constraint a*x < b;}
\]

The expression in a constraint item must have type-inst \texttt{par bool} or \texttt{var bool}; note however that constraints with fixed expressions are not very useful.

### 4.1.8.6 Solve Items

Every model must have exactly one or no solve item. Solve items have the following syntax:

\[
\textless \text{solve-item}\textgreater ::= \text{"solve"} \textless \text{annotations}\textgreater \text{"satisfy"} \\
\text{\textmid \text{"solve"} \textless \text{annotations}\textgreater \text{"minimize"} \textless \text{expr}\textgreater} \\
\text{\textmid \text{"solve"} \textless \text{annotations}\textgreater \text{"maximize"} \textless \text{expr}\textgreater}
\]

Example solve items:

\[
\text{solve satisfy;}
\text{solve maximize a*x + y - 3*z;}
\]

The solve item determines whether the model represents a constraint satisfaction problem or an optimisation problem. If there is no solve item, the model is assumed to be a satisfaction problem. For optimisation problems, the given expression is the one to be minimized/maximized.

The expression in a minimize/maximize solve item can have integer or float type.

*Rationale: This is possible because all type-insts have a defined order.* Note that having an expression with a fixed type-inst in a solve item is not very useful as it means that the model requires no optimisation.

Solve items can be annotated. *Annotations* (page 246) has more details on annotations.
4.1.8.7 Output Items

Output items are used to present the solutions of a model instance. They have the following syntax:

\[ \text{<output-item> ::= "output" <expr>} \]

For example:

\[ \text{output ["The value of x is ", show(x), "\\n"]}; \]

The expression must have type-inst array[int] of par string. It can be composed using the built-in operator \( ++ \) and the built-in functions show, show_int, and show_float (Built-in Operations (page 249)), as well as string interpolations (String Literals and String Interpolation (page 230)). The output is the concatenation of the elements of the array. If multiple output items exist, the output is the concatenation of all of their outputs, in the order in which they appear in the model.

If no output item is present, the implementation should print all the global variables and their values in a readable format.

4.1.8.8 Annotation Items

Annotation items are used to augment the ann type. They have the following syntax:

\[ \text{<annotation-item> ::= "annotation" <ident> <params>} \]

For example:

\[ \text{annotation solver(int: kind)}; \]

It is a type-inst error if an annotation is declared and/or defined more than once in a model. The use of annotations is described in Annotations (page 246).

4.1.8.9 User-defined Operations

MiniZinc models can contain user-defined operations. They have this syntax:

\[ \begin{align*}
\text{<predicate-item> ::= "predicate" <operation-item-tail> } \\
\text{<test-item> ::= "test" <operation-item-tail> } \\
\text{<function-item> ::= "function" <ti-expr> ":" <operation-item-tail> } \\
\text{<operation-item-tail> ::= <ident> <params> <annotations> [ "=" <expr> ]}
\end{align*} \]
The type-inst expressions can include type-inst variables in the function and predicate declaration.

For example, predicate even checks that its argument is an even number.

```
predicate even(var int: x) =
 x mod 2 = 0;
```

A predicate supported natively by the target solver can be declared as follows:

```
predicate alldifferent(array [int] of var int: xs);
```

Predicate declarations that are natively supported in MiniZinc are restricted to using FlatZinc types (for instance, multi-dimensional and non-1-based arrays are forbidden). .. % pjs{need to fix this if we allow 2d arrays in FlatZinc!}

Declarations for user-defined operations can be annotated. Annotations (page 246) has more details on annotations.

## Basic Properties

The term “predicate” is generally used to refer to both test items and predicate items. When the two kinds must be distinguished, the terms “test item” and “predicate item” can be used.

The return type-inst of a test item is implicitly par bool. The return type-inst of a predicate item is implicitly var bool.

Predicates and functions are allowed to be recursive. Termination of a recursive function call depends solely on its fixed arguments, i.e., recursive functions and predicates cannot be used to define recursively constrained variables. .. % Rationale{This ensures that the satisfiability of models is decidable.}

Predicates and functions introduce their own local names, being those of the formal arguments. The scope of these names covers the predicate/function body. Argument names cannot be repeated within a predicate/function declaration.

### Ad-hoc polymorphism

MiniZinc supports ad-hoc polymorphism via overloading. Functions and predicates (both built-in and user-defined) can be overloaded. A name can be overloaded as both a function and a predicate.

It is a type-inst error if a single version of an overloaded operation with a particular type-inst signature is defined more than once in a model. For example:

```
predicate p(1..5: x);
predicate p(1..5: x) = false; % ok: first definition
predicate p(1..5: x) = true; % error: repeated definition
```
The combination of overloading and coercions can cause problems. Two overloadingsofanoperationaresaid to overlap if they could match the same arguments. For example, the followingoverloadings of $p$ overlap, as they both match the call $p(3)$.

```
predicate p(par int: x);
predicate p(var int: x);
```

However, the following two predicates do not overlap because they cannot match the sameargument:

```
predicate q(int: x);
predicate q(set of int: x);
```

We avoid two potential overloading problems by placing some restrictions on overlappingoverloadings of operations.

1. The first problem is ambiguity. Different placement of coercions in operation argumentsmay allow different choices for the overloaded function. For instance, if a MiniZinc function $f$ is overloaded like this:

```
function int: f(int: x, float: y) = 0;
function int: f(float: x, int: y) = 1;
```

then $f(3,3)$ could be either 0 or 1 depending on coercion/overloading choices.

To avoid this problem, any overlapping overloadingsofan operation must be semantically equivalent with respect to coercion. For example, the two overloadings of the predicate $p$ above must have bodies that are semantically equivalent with respect to overloading.

Currently, this requirement is not checked and the modeller must satisfy it manually. Inthe future, we may require the sharing of bodies among different versions of overloadedoperations, which would provide automatic satisfaction of this requirement.

2. The second problem is that certain combinations of overloads could require a MiniZincimplementation to perform combinatorial search in order to explore different choices ofcoercions and overloading. For example, if function $g$ is overloaded like this:

```
function float: g(int: t1, float: t2) = t2;
function int : g(float: t1, int: t2) = t1;
```

then how the overloading of $g(3,4)$ is resolved depends upon its context:

```
float: s = g(3,4);
int: t = g(3,4);
```

In the definition of $s$ the first overloaded definition must be used while in the definitionof $t$ the second must be used.

To avoid this problem, all overlapping overloadingsofan operation must be closed underintersection of their input type-insts. That is, if overloaded versions have input type-inst
(S₁, ..., Sₙ) and (T₁, ..., Tₙ) then there must be another overloaded version with input type-inst (R₁, ..., Rₙ) where each Rᵢ is the greatest lower bound (gLb) of Sᵢ and Tᵢ.

Also, all overlapping overloadingsof an operation must be monotonic. That is, if there are overloaded versions with input type-insts (S₁, ..., Sₙ) and (T₁, ..., Tₙ) and output type-inst S and T, respectively, then Sᵢ ≤ Tᵢ for all i, implies S ≤ T. At call sites, the matching overloading that is lowest on the type-inst lattice is always used.

For g above, the type-inst intersection (or gLb) of (int, float) and (float, int) is (int, int). Thus, the overloaded versions are not closed under intersection and the user needs to provide another overloading for g with input type-inst (int, int). The natural definition is:

```plaintext
function int: g(int: t1, int: t2) = t1;
```

Once g has been augmented with the third overloading, it satisfies the monotonicity requirement because the output type-inst of the third overloading is int which is less than the output type-inst of the original overloading.

Monotonicity and closure under type-inst conjunction ensure that whenever an overloaded function or predicate is reached during type-inst checking, there is always a unique and safe “minimal” version to choose, and so the complexity of type-inst checking remains linear. Thus in our example g(3,4) is always resolved by choosing the new overloaded definition.

### Local Variables

Local variables in operation bodies are introduced using let expressions. For example, the predicate `have_common_divisor` takes two integer values and checks whether they have a common divisor greater than one:

```plaintext
predicate have_common_divisor(int: A, int: B) =
 let {
 var 2..min(A,B): C;
 } in
 A mod C = 0 /
 B mod C = 0;
```

However, as *Let Expressions* (page 236) explained, because C is not defined, this predicate cannot be called in a negative context. The following is a version that could be called in a negative context:

```plaintext
predicate have_common_divisor(int: A, int: B) =
 exists(C in 2..min(A,B))
 (A mod C = 0 /
 B mod C = 0);
```
4.1.9 Annotations

Annotations allow a modeller to specify non-declarative and solver-specific information that is beyond the core language. Annotations do not change the meaning of a model, however, only how it is solved.

Annotations can be attached to variables (on their declarations), constraints, expressions, type-inst synonyms, enum items, solve items and on user defined operations. They have the following syntax:

\[
\text{<annotations>} ::= [ "::" <annotation> ]*
\]

\[
\text{<annotation>} ::= <expr-atom-head> <expr-atom-tail>
\]

\[
\text{<string-annotation>} ::= "::" <string-literal>
\]

For example:

```plaintext
int: x::foo;
 x = (3 + 4)::bar("a", 9)::baz("b");
solve:: blah(4)
 minimize x;
```

The types of the argument expressions must match the argument types of the declared annotation. Like user-defined predicates and functions, annotations can be overloaded.

Annotation signatures can contain type-inst variables.

The order and nesting of annotations do not matter. For the expression case it can be helpful to view the annotation connector `::` as an overloaded operator:

```
ann: '::'(var $T: e, ann: a); % associative
ann: '::'(ann: a, ann: b); % associative + commutative
```

Both operators are associative, the second is commutative. This means that the following expressions are all equivalent:

```
e :: a :: b
e :: b :: a
 (e :: a) :: b
 (e :: b) :: a
e :: (a :: b)
e :: (b :: a)
```

This property also applies to annotations on solve items and variable declaration items. Rationale: This property make things simple, as it allows all nested combinations of annotations to be treated as if they are flat, thus avoiding the need to determine what is the meaning of an annotated annotation. It also makes the MiniZinc abstract syntax tree simpler by avoiding the need to represent nesting.
Annotations have to be values of the `ann` type or string literals. The latter are used for naming constraints and expressions, for example

```plaintext
constraint :: "first constraint" alldifferent(x);
constraint :: "second constraint" alldifferent(y);
constraint forall (i in 1..n) (my_constraint(x[i], y[i])::"constraint \(i \)"
```

Note that constraint items can only be annotated with string literals.

Rationale: Allowing arbitrary annotations on constraint items makes the grammar ambiguous, and seems unnecessary since we can just as well annotate the constraint expression.

### 4.1.10 Partiality

The presence of constrained type-insts in MiniZinc means that various operations are potentially partial, i.e., not clearly defined for all possible inputs. For example, what happens if a function expecting a positive argument is passed a negative argument? What happens if a variable is assigned a value that does not satisfy its type-inst constraints? What happens if an array index is out of bounds? This section describes what happens in all these cases.

In general, cases involving fixed values that do not satisfy constraints lead to run-time aborts. Rationale: Our experience shows that if a fixed value fails a constraint, it is almost certainly due to a programming error. Furthermore, these cases are easy for an implementation to check.

But cases involving unfixed values vary, as we will see. Rationale: The best thing to do for unfixed values varies from case to case. Also, it is difficult to check constraints on unfixed values, particularly because during search a decision variable might become fixed and then backtracking will cause this value to be reverted, in which case aborting is a bad idea.

#### 4.1.10.1 Partial Assignments

The first operation involving partiality is assignment. There are four distinct cases for assignments.

- A value assigned to a fixed, constrained global variable is checked at run-time; if the assigned value does not satisfy its constraints, it is a run-time error. In other words, this:

  ```plaintext
 1..5: x = 3;
  ```

  is equivalent to this:

  ```plaintext
 int: x = 3;
 constraint assert(x in 1..5,
 "assignment to global parameter 'x' failed")
  ```

- A value assigned to an unfixed, constrained global variable makes the assignment act like a constraint; if the assigned value does not satisfy the variable's constraints, it causes a run-time model failure. In other words, this:
is equivalent to this:

```plaintext
var int: x = 3;
constraint x in 1..5;
```

**Rationale:** This behaviour is easy to understand and easy to implement.

- A value assigned to a fixed, constrained let-local variable is checked at run-time; if the assigned value does not satisfy its constraints, it is a run-time error. In other words, this:

```plaintext
let {1..5: x = 3; } in x+1
```

is equivalent to this:

```plaintext
let {int: x = 3; } in
assert(x in 1..5,
 "assignment to let parameter 'x' failed", x+1)
```

- A value assigned to an unfixed, constrained let-local variable makes the assignment act like a constraint; if the constraint fails at run-time, the failure “bubbles up” to the nearest enclosing Boolean scope, where it is interpreted as false.

**Rationale:** This behaviour is consistent with assignments to global variables.

Note that in cases where a value is partly fixed and partly unfixed, e.g., some arrays, the different elements are checked according to the different cases, and fixed elements are checked before unfixed elements. For example:

```plaintext
u = [let { var 1..5: x = 6} in x, let { par 1..5: y = 6; } in y];
```

This causes a run-time abort, because the second, fixed element is checked before the first, unfixed element. This ordering is true for the cases in the following sections as well. **Rationale:** This ensures that failures cannot mask aborts, which seems desirable.

### 4.1.10.2 Partial Predicate/Function and Annotation Arguments

The second kind of operation involving partiality is calls and annotations.

The semantics is similar to assignments: fixed arguments that fail their constraints will cause aborts, and unfixed arguments that fail their constraints will cause failure, which bubbles up to the nearest enclosing Boolean scope.

### 4.1.10.3 Partial Array Accesses

The third kind of operation involving partiality is array access. There are two distinct cases.
• A fixed value used as an array index is checked at run-time; if the index value is not in the
index set of the array, it is a run-time error.

• An unfixed value used as an array index makes the access act like a constraint; if the access
fails at run-time, the failure “bubbles up” to the nearest enclosing Boolean scope, where it
is interpreted as false. For example:

```plaintext
array[1..3] of int: a = [1,2,3];
var int: i;
constraint (a[i] + 3) > 10 \/ i = 99;
```

Here the array access fails, so the failure bubbles up to the disjunction, and i is constrained
to be 99. Rationale: Unlike predicate/function calls, modellers in practice sometimes do use
array accesses that can fail. In such cases, the “bubbling up” behaviour is a reasonable one.

### 4.1.11 Built-in Operations

This appendix lists built-in operators, functions and predicates. They may be implemented as
ture built-ins, or in libraries that are automatically imported for all models. Many of them are
overloaded.

Operator names are written within single quotes when used in type signatures, e.g.

```plaintext
bool: '\\'(bool, bool).
```

We use the syntax `\(\text{TI}: f(\text{TI}_1, \ldots, \text{TI}_n)\)` to represent an operation named `f` that takes arguments
with type-insts `\(\text{TI}_1, \ldots, \text{TI}_n\)` and returns a value with type-inst `\(\text{TI}\)`. This is slightly more compact
than the usual MiniZinc syntax, in that it omits argument names.

#### 4.1.11.1 Comparison Operations

Less than. Other comparisons are similar: greater than (>), less than or equal (<=), greater than
or equal (>=), equality (=, =), and disequality (!=).

```plaintext
bool: '\<\'($T, $T)
var bool: '\<\'(var $T, var $T)
```

#### 4.1.11.2 Arithmetic Operations

Addition. Other numeric operations are similar: subtraction (-), and multiplication (*).

```plaintext
int: '+'(int, int)
var int: '+'(var int, var int)
float: '+'(float, float)
var float: '+'(var float, var float)
```

Unary minus. Unary plus (+) is similar.
Integer and floating-point division and modulo.

\[
\begin{align*}
\text{int: } & \quad \div(\text{int, int}) \\
\text{var int: } & \quad \div(\text{var int, var int}) \\
\text{int: } & \quad \mod(\text{int, int}) \\
\text{var int: } & \quad \mod(\text{var int, var int}) \\
\text{float: } & \quad / (\text{float, float}) \\
\text{var float: } & \quad / (\text{var float, var float})
\end{align*}
\]

The result of the modulo operation, if non-zero, always has the same sign as its first operand. The integer division and modulo operations are connected by the following identity:

\[x = (x \div y) \times y + (x \mod y)\]

Some illustrative examples:

\[
\begin{align*}
7 \div 4 &= 1 \\
-7 \div 4 &= -1 \\
7 \div -4 &= -1 \\
-7 \div -4 &= 1
\end{align*}
\]

Sum multiple numbers. Product (\text{product}) is similar. Note that the sum of an empty array is 0, and the product of an empty array is 1.

\[
\begin{align*}
\text{int: } & \quad \text{sum(array[$T$] of int) } \\
\text{var int: } & \quad \text{sum(array[$T$] of var int) } \\
\text{float: } & \quad \text{sum(array[$T$] of float) } \\
\text{var float: } & \quad \text{sum(array[$T$] of var float) }
\end{align*}
\]

Minimum of two values; maximum (\text{max}) is similar.

\[
\begin{align*}
\text{$T$: } & \quad \text{min( } \text{$T$, } \text{$T$) } \\
\text{var $T$: } & \quad \text{min( var $T$, var $T$) }
\end{align*}
\]

Minimum of an array of values; maximum (\text{max}) is similar. Aborts if the array is empty.

\[
\begin{align*}
\text{$U$: } & \quad \text{min( array[$T$] of } \text{$U$) } \\
\text{var $U$: } & \quad \text{min( array[$T$] of var $U$) }
\end{align*}
\]

Minimum of a fixed set; maximum (\text{max}) is similar. Aborts if the set is empty.
$T: \ min(set \ of \ T)$

Absolute value of a number.

```plaintext
int: abs(int)
var int: abs(var int)
float: abs(float)
var float: abs(var float)
```

Square root of a float. Aborts if argument is negative.

```plaintext
float: sqrt(float)
var float: sqrt(var float)
```

Power operator. E.g. $\text{pow}(2, 5)$ gives $32$.

```plaintext
int: pow(int, int)
float: pow(float, float)
```

Natural exponent.

```plaintext
float: exp(float)
var float: exp(var float)
```

Natural logarithm. Logarithm to base 10 ($\log_{10}$) and logarithm to base 2 ($\log_{2}$) are similar.

```plaintext
float: ln(float)
var float: ln(var float)
```

General logarithm; the first argument is the base.

```plaintext
float: log(float, float)
```

Sine. Cosine ($\cos$), tangent ($\tan$), inverse sine ($\sin^{-1}$), inverse cosine ($\cos^{-1}$), inverse tangent ($\tan^{-1}$), hyperbolic sine ($\sinh$), hyperbolic cosine ($\cosh$), hyperbolic tangent ($\tanh$), inverse hyperbolic sine ($\sinh^{-1}$), inverse hyperbolic cosine ($\cosh^{-1}$) and inverse hyperbolic tangent ($\tanh^{-1}$) are similar.

```plaintext
float: sin(float)
var float: sin(var float)
```

### 4.11.3 Logical Operations

Conjunction. Other logical operations are similar: disjunction ($\lor$) reverse implication ($\iff$), forward implication ($\Rightarrow$), bi-implication ($\iff$), exclusive disjunction ($\oplus$), logical negation ($\neg$).
Note that the implication operators are not written using $\Rightarrow$, $\Leftarrow$ and $\Leftarrow\Rightarrow$ as is the case in some languages. This allows $\Leftarrow\Rightarrow$ to instead represent “less than or equal”.

```plaintext
bool: '/\'(bool, bool
var bool: '/\'(var bool, var bool)
```

Universal quantification. Existential quantification (exists) is similar. Note that, when applied to an empty list, forall returns true, and exists returns false.

```plaintext
bool: forall(array[$T] of bool)
var bool: forall(array[$T] of var bool)
```

N-ary exclusive disjunction. N-ary bi-implication (iffall) is similar, with true instead of false.

```plaintext
bool: xorall(array[$T] of bool: bs = foldl('xor', false, bs)
var bool: xorall(array[$T] of var bool: bs = foldl('xor', false, bs)
```

### 4.1.11.4 Set Operations

Set membership.

```plaintext
bool: 'in'($T, set of $T)
var bool: 'in'(var int, var set of int)
```

Non-strict subset. Non-strict superset (superset) is similar.

```plaintext
bool: 'subset'(set of $T, set of $T)
var bool: 'subset'(var set of int, var set of int)
```

Set union. Other set operations are similar: intersection (intersect), difference (diff), symmetric difference (symdiff).

```plaintext
set of $T: 'union'(set of $T, set of $T)
var set of int: 'union'(var set of int, var set of int)
```

Set range. If the first argument is larger than the second (e.g. 1..0), it returns the empty set.

```plaintext
set of int: '..'(int, int)
```

Cardinality of a set.

```plaintext
int: card(set of $T)
var int: card(var set of int)
```

Union of an array of sets. Intersection of multiple sets (array_intersect) is similar.
4.1.11.5 Array Operations

Length of an array.

```
int: length(array[$T] of $U)
```

List concatenation. Returns the list (integer-indexed array) containing all elements of the first argument followed by all elements of the second argument, with elements occurring in the same order as in the arguments. The resulting indices are in the range 1..n, where n is the sum of the lengths of the arguments. Rationale: This allows list-like arrays to be concatenated naturally and avoids problems with overlapping indices. The resulting indices are consistent with those of implicitly indexed array literals. Note that ‘++’ also performs string concatenation.

```
array[int] of $T: '++'(array[int] of $T, array[int] of $T)
```

Index sets of arrays. If the argument is a literal, returns 1..n where n is the (sub-)array length. Otherwise, returns the declared or inferred index set. This list is only partial, it extends in the obvious way, for arrays of higher dimensions.

```
set of $T: index_set (array[$T] of $V)
set of $T: index_set_1of2(array[$T, $U] of $V)
set of $U: index_set_2of2(array[$T, $U] of $V)
...
```

Replace the indices of the array given by the last argument with the Cartesian product of the sets given by the previous arguments. Similar versions exist for arrays up to 6 dimensions.

```
array[$T1] of $V: array1d(set of $T1, array[$U] of $V)
array[$T1,$T2] of $V:
 array2d(set of $T1, set of $T2, array[$U] of $V)
array[$T1,$T2,$T3] of $V:
 array3d(set of $T1, set of $T2, set of $T3, array[$U] of $V)
```

4.1.11.6 Coercion Operations

Round a float towards +∞, −∞, and the nearest integer, respectively.

```
int: ceil (float)
int: floor(float)
int: round(float)
```

Explicit casts from one type-inst to another.
4.1.11.7 String Operations

To-string conversion. Converts any value to a string for output purposes. The exact form of the resulting string is implementation-dependent.

```
string: show($T)
```

Formatted to-string conversion for integers. Converts the integer given by the second argument into a string right justified by the number of characters given by the first argument, or left justified if that argument is negative. If the second argument is not fixed, the form of the string is implementation-dependent.

```
string: show_int(int, var int);
```

Formatted to-string conversion for floats. Converts the float given by the third argument into a string right justified by the number of characters given by the first argument, or left justified if that argument is negative. The number of digits to appear after the decimal point is given by the second argument. It is a run-time error for the second argument to be negative. If the third argument is not fixed, the form of the string is implementation-dependent.

```
string: show_float(int, int, var float)
```

String concatenation. Note that `++` also performs array concatenation.

```
string: '++'(string, string)
```

Concatenate an array of strings. Equivalent to folding `++` over the array, but may be implemented more efficiently.

```
string: concat(array[$T] of string)
```

Concatenate an array of strings, putting a separator between adjacent strings. Returns the empty string if the array is empty.

```
string: join(string, array[$T] of string)
```
4.1.11.8 Bound and Domain Operations

The bound operations \( \text{lb} \) and \( \text{ub} \) return fixed, correct lower/upper bounds to the expression. For numeric types, they return a lower/upper bound value, e.g. the lowest/highest value the expression can take. For set types, they return a subset/superset, e.g. the intersection/union of all possible values of the set expression.

The bound operations abort on expressions that have no corresponding finite bound. For example, this would be the case for a variable declared without bounds in an implementation that does not assign default bounds. (Set expressions always have a finite lower bound of course, namely \( \{\} \), the empty set.)

Numeric lower/upper bound:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>( \text{lb(var int)} )</td>
</tr>
<tr>
<td>float</td>
<td>( \text{lb(var float)} )</td>
</tr>
<tr>
<td>int</td>
<td>( \text{ub(var int)} )</td>
</tr>
<tr>
<td>float</td>
<td>( \text{ub(var float)} )</td>
</tr>
</tbody>
</table>

Set lower/upper bound:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>set of int</td>
<td>( \text{lb(var set of int)} )</td>
</tr>
<tr>
<td>set of int</td>
<td>( \text{ub(var set of int)} )</td>
</tr>
</tbody>
</table>

Versions of the bound operations that operate on arrays are also available, they return a safe lower bound or upper bound for all members of the array - they abort if the array is empty:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>( \text{lb_array(array[T] of var int)} )</td>
</tr>
<tr>
<td>float</td>
<td>( \text{lb_array(array[T] of var float)} )</td>
</tr>
<tr>
<td>set of int</td>
<td>( \text{lb_array(array[T] of var set of int)} )</td>
</tr>
<tr>
<td>int</td>
<td>( \text{ub_array(array[T] of var int)} )</td>
</tr>
<tr>
<td>float</td>
<td>( \text{ub_array(array[T] of var float)} )</td>
</tr>
<tr>
<td>set of int</td>
<td>( \text{ub_array(array[T] of var set of int)} )</td>
</tr>
</tbody>
</table>

Integer domain:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>set of int</td>
<td>( \text{dom(var int)} )</td>
</tr>
</tbody>
</table>

The domain operation \( \text{dom} \) returns a fixed superset of the possible values of the expression.

Integer array domain, returns a superset of all possible values that may appear in the array - this aborts if the array is empty:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>set of int</td>
<td>( \text{dom_array(array[T] of var int)} )</td>
</tr>
</tbody>
</table>

Domain size for integers:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>( \text{dom_size(var int)} )</td>
</tr>
</tbody>
</table>
The domain size operation `dom_size` is equivalent to `card(dom(x))`.

Note that these operations can produce different results depending on when they are evaluated and what form the argument takes. For example, consider the numeric lower bound operation.

- If the argument is a fixed expression, the result is the argument's value.
- If the argument is a decision variable, then the result depends on the context.
  - If the implementation can determine a lower bound for the variable, the result is that lower bound. The lower bound may be from the variable's declaration, or higher than that due to preprocessing, or lower than that if an implementation-defined lower bound is applied (e.g. if the variable was declared with no lower bound, but the implementation imposes a lowest possible bound).
  - If the implementation cannot determine a lower bound for the variable, the operation aborts.
- If the argument is any other kind of unfixed expression, the lower bound depends on the bounds of unfixed subexpressions and the connecting operators.

### 4.1.11.9 Option Type Operations

The option type value (⊤) is written

```plaintext
opt $T: '<>';
```

One can determine if an option type variable actually occurs or not using `occurs` and `absent`

```plaintext
par bool: occurs(par opt $T);
var bool: occurs(var opt $T);
par bool: absent(par opt $T);
var bool: absent(var opt $T);
```

One can return the non-optional value of an option type variable using the function `deopt`

```plaintext
par $T: deopt(par opt $T);
var $T: deopt(var opt $T);
```

### 4.1.11.10 Other Operations

Check a Boolean expression is true, and abort if not, printing the second argument as the error message. The first one returns the third argument, and is particularly useful for sanity-checking arguments to predicates and functions; importantly, its third argument is lazy, i.e. it is only evaluated if the condition succeeds. The second one returns `true` and is useful for global sanity-checks (e.g. of instance data) in constraint items.

```plaintext
$T: assert(bool, string, s$T)
par bool: assert(bool, string)
```
Abort evaluation, printing the given string.

\[ T: \text{abort(string)} \]

Return true. As a side-effect, an implementation may print the first argument.

\[ \text{bool: trace(string)} \]

Return the second argument. As a side-effect, an implementation may print the first argument.

\[ T: \text{trace(string, T)} \]

Check if the argument's value is fixed at this point in evaluation. If not, abort; if so, return its value. This is most useful in output items when decision variables should be fixed: it allows them to be used in places where a fixed value is needed, such as if-then-else conditions.

\[ T: \text{fix(var T)} \]

As above, but return false if the argument’s value is not fixed.

\[ \text{par bool: is_fixed(var T)} \]

### 4.1.12 Content-types

The content-type application/x-zinc-output defines a text output format for Zinc. The format extends the abstract syntax and semantics given in *Run-time Outcomes* (page 211), and is discussed in detail in *Output* (page 212).

The full syntax is as follows:

```
% Output
<output> ::= <no-solutions> [<warnings>] <free-text>
 | (<solution>)* [<complete>] [<warnings>] <free-text>

% Solutions
<solution> ::= <solution-text> [\n] "----------" \n
% Unsatisfiable
<no-solutions> ::= "=====UNSATISFIABLE====" \n
% Complete
<complete> ::= "==========" \n
% Messages
<warnings> ::= (<message>)+
```
The solution text for each solution must be as described in *Output Items* (page 242). A newline must be appended if the solution text does not end with a newline.

### 4.1.13 JSON support

MiniZinc can support reading input parameters and providing output formatted as JSON objects. A JSON input file needs to have the following structure:

- Consist of a single top-level object
- The members of the object (the key-value pairs) represent model parameters
- Each member key must be a valid MiniZinc identifier (and it supplies the value for the corresponding parameter of the model)
- Each member value can be one of the following:
  - A string (assigned to a MiniZinc string parameter)
  - A number (assigned to a MiniZinc int or float parameter)
  - The values `true` or `false` (assigned to a MiniZinc bool parameter)
  - An array of values. Arrays of arrays are supported only if all inner arrays are of the same length, so that they can be mapped to multi-dimensional MiniZinc arrays.
  - A set of values encoded as an object with a single member with key "set" and a list of values (the elements of the set).

This is an example of a JSON parameter file using all of the above features:

```json
{
 "n" : 3,
 "distances" : [[1,2,3], [4,5,6]],
 "patterns" : [{"set" : [1,3,5]}, {"set" : [2,4,6]}]
}
```

The first parameter declares a simple integer `n`. The `distances` parameter is a two-dimensional array; note that all inner arrays must be of the same size in order to map to a (rectangular) MiniZinc two-dimensional array. The third parameter is an array of sets of integers.

**Note:** The JSON input and output currently does not support enumerated types. This will be added in a future release.
4.1.14 Full grammar

4.1.14.1 Items

% A MiniZinc model
$model> ::= [ <item> ;" ... ]

% Items
$item> ::= <include-item>
    | <var-decl-item>
    | <enum-item>
    | <assign-item>
    | <constraint-item>
    | <solve-item>
    | <output-item>
    | <predicate-item>
    | <test-item>
    | <function-item>
    | <annotation-item>

<ti-expr-and-id> ::= <ti-expr> ";" <ident>

% Include items
#include-item> ::= "include" <string-literal>

% Variable declaration items
<var-decl-item> ::= <ti-expr-and-id> <annotations> [ "=" <expr> ]

% Enum items
<enum-item> ::= "enum" <ident> <annotations> [ "=" <enum-cases> ]

<enum-cases> ::= "{" <ident> "," ... "}"

% Assign items
<assign-item> ::= <ident> "=" <expr>

% Constraint items
<constraint-item> ::= "constraint" <string-annotation> <expr>

% Solve item
<solve-item> ::= "solve" <annotations> "satisfy"
    | "solve" <annotations> "minimize" <expr>
    | "solve" <annotations> "maximize" <expr>

% Output items
<output-item> ::= "output" <expr>

% Annotation items
<annotation-item> ::= "annotation" <ident> <params>
% Predicate, test and function items
<predicate-item> ::= "predicate" <operation-item-tail>
<test-item> ::= "test" <operation-item-tail>
<function-item> ::= "function" <ti-expr> ":" <operation-item-tail>
<operation-item-tail> ::= <ident> <params> <annotations> [ ":" <expr> ]
<params> ::= [ ( <ti-expr-and-id> "," ... ) ]

4.1.14.2 Type-Inst Expressions

<ti-expr> ::= <base-ti-expr>

<base-ti-expr> ::= <var-par> <base-ti-expr-tail>

<var-par> ::= "var" | "par" | ϵ

<base-type> ::= "bool"
  | "int"
  | "float"
  | "string"

<base-ti-expr-tail> ::= <ident>
  | <base-type>
  | <set-ti-expr-tail>
  | <ti-variable-expr-tail>
  | <array-ti-expr-tail>
  | "ann"
  | "opt" <base-ti-expr-tail>
  | { <expr> "," ... }
  | <num-expr> ".." <num-expr>

% Type-inst variables
<ti-variable-expr-tail> ::= $[A-Za-z][A-Za-z0-9_]*

% Set type-inst expressions
<set-ti-expr-tail> ::= "set" "of" <base-type>

% Array type-inst expressions
<array-ti-expr-tail> ::= "array" [ <ti-expr> "," ... ] "of" <ti-expr>
  | "list" "of" <ti-expr>
4.14.3 Expressions

<expr> ::= <expr-atom> <expr-binop-tail>

<expr-atom> ::= <expr-atom-head> <expr-atom-tail> <annotations>

<expr-binop-tail> ::= [ <bin-op> <expr> ]

<expr-atom-head> ::= <builtin-un-op> <expr-atom>
                  | "(" <expr> ")"
                  | <ident-or-quoted-op>
                  | "_"
                  | <bool-literal>
                  | <int-literal>
                  | <float-literal>
                  | <string-literal>
                  | <set-literal>
                  | <set-comp>
                  | <array-literal>
                  | <array-literal-2d>
                  | <array-comp>
                  | <ann-literal>
                  | <if-then-else-expr>
                  | <let-expr>
                  | <call-expr>
                  | <gen-call-expr>

<expr-atom-tail> ::= ε
                  | <array-access-tail> <expr-atom-tail>

% Numeric expressions
<num-expr> ::= <num-expr-atom> <num-expr-binop-tail>

<num-expr-atom> ::= <num-expr-atom-head> <expr-atom-tail> <annotations>

<num-expr-binop-tail> ::= [ <num-bin-op> <num-expr> ]

<num-expr-atom-head> ::= <builtin-num-un-op> <num-expr-atom>
                      | "(" <num-expr> ")"
                      | <ident-or-quoted-op>
                      | <int-literal>
                      | <float-literal>
                      | <if-then-else-expr>
                      | <let-expr>
                      | <call-expr>
                      | <gen-call-expr>

% Built-in operators
<builtin-op> ::= <builtin-bin-op> | <builtin-un-op>
<bin-op> ::= <builtin-bin-op> | 'ident'

<builtin-bin-op> ::= "<" | "=" | "<" | "\" | "xor" | "/" | ">" | ">=

| "in" | "subset" | "superset" | "union" | "diff" | "symdiff"

| ".." | "intersect" | "++" | <builtin-num-bin-op>

<builtin-un-op> ::= "not" | <builtin-num-un-op>

% Built-in numeric operators
<num-bin-op> ::= <builtin-num-bin-op> | '<ident>

<builtin-num-bin-op> ::= "+" | "-" | "*" | "/" | "div" | "mod"

<builtin-num-un-op> ::= "+" | "-"

% Boolean literals
<bool-literal> ::= "false" | "true"

% Integer literals
<int-literal> ::= [0-9]+ | 0x[0-9A-Fa-f]+ | 0o[0-7]+

% Float literals
<float-literal> ::= [0-9]+".0-9]+ | [0-9]+".0-9]+[Ee][-+]?[0-9]+ | [0-9]+[Ee][-+]?[0-9]+ | 0[xX][0-9a-fA-F]+".0-9a-fA-F]+[0-9a-fA-F]+".0-9a-fA-F]+[0-9a-fA-F]+"

0)([pP][+-]?[0-9]+)

| [0][xX][0-9a-fA-F]+[pP][+-]?[0-9]+)

% String literals
<string-contents> ::= (\n | \n)*

<string-literal> ::= \"" <string-contents> \"" | \"" <string-contents> "\" <string-interpolate-tail>

<string-interpolate-tail> ::= <expr> ")" <string-contents> "" | <expr> "")" <string-contents> "\"

% Set literals
<set-literal> ::= ":[ <expr> "," ... ] :"

% Set comprehensions
<set-comp> ::= ":[ <expr>"]" <comp-tail> ")"

<comp-tail> ::= <generator> [ "where" <expr> ] "," ...
4.1.14.4 Miscellaneous Elements

% Identifiers
<ident> ::= [A-Za-z][A-Za-z0-9_]* | '[^\xa\xd\x0]*'

% Identifiers and quoted operators
<ident-or-quoted-op> ::= <ident>
 | '<builtin-op>'

% Annotations
<annotations> ::= [ "::" <annotation> ]*

<annotation> ::= <expr-atom-head> <expr-atom-tail>
<string-annotation> ::= "::" <string-literal>
4.2.1 Annotatons

The annotations control evaluation and solving behaviour.

4.2.1.1 General annotations

Parameters

- **annotation add_to_output**

  Declare that the annotated variable should be added to the output of the model. This annotation only has an effect when the model does not have an output item.

- **annotation domain_change_constraint**

  Marks a constraint as a recorded domain changing constraint (when mzn2fzn called with -g flag

- **annotation is_defined_var**

  Declare the annotated variable as being functionally defined. This annotation is introduced into FlatZinc code by the compiler.

- **annotation is_reverse_map**

  Declare that the annotated expression is used to map an expression back from FlatZinc to MiniZinc.
Declare that expression may have undefined result (to avoid warnings)

With debug build of mzn2fzn, call MiniZinc::mzn_break_here when flattening this expression to make debugging easier. This annotation is ignored by the release build.

Declare that the annotated variable is required for checking solutions.

Used internally by the compiler

Declare that the annotated variable should be only used for output. This annotation can be used to define variables that are required for solution checkers, or that are necessary for the output item. The annotated variable must be par.

Declare that the annotated variable should be printed by the solver. This annotation is introduced into FlatZinc code by the compiler.

Declare function as total, i.e. it does not put any constraints on its arguments.

Declare a variable as being introduced by the compiler.

Functions and Predicates

Used to attach a name s to a constraint and its decomposition. String annotations on constraint keywords are re-written as constraint_name annotations
<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>defines_var(var $t: c)</code></td>
<td>Declare variable: c as being functionally defined by the annotated constraint. This annotation is introduced into FlatZinc code by the compiler.</td>
</tr>
<tr>
<td><code>doc_comment(string: s)</code></td>
<td>Document the function or variable declaration item with the string s.</td>
</tr>
<tr>
<td><code>expression_name(string: s)</code></td>
<td>Used to attach a name s to an expression, this should also propagate to any sub-expressions or decomposition of the annotated expression. String annotations on expressions are re-written as expression_name annotations.</td>
</tr>
<tr>
<td><code>mzn_check_enum_var(set of int)</code></td>
<td>Declare that the annotated variable is required for checking solutions and has an enum type.</td>
</tr>
<tr>
<td><code>mzn_constraint_name(string)</code></td>
<td>Declare a name for the annotated constraint.</td>
</tr>
<tr>
<td><code>mzn_expression_name(string)</code></td>
<td>Declare a name for the annotated expression.</td>
</tr>
<tr>
<td><code>mzn_path(string: s)</code></td>
<td>Representation of the call-stack when the annotated item was introduced, as a string s. Can be used to uniquely identify variables and constraints across different compilations of a model that may have different names. This annotations is introduced into FlatZinc code by the compiler and is retained if –keep-paths argument is used.</td>
</tr>
<tr>
<td><code>output_array(array [&quot;u] of set of int: a)</code></td>
<td>Declare that the annotated array should be printed by the solver with the given index sets a. This annotation is introduced into FlatZinc code by the compiler.</td>
</tr>
</tbody>
</table>

### 4.2.1.2 Propagation strength annotations
Annotate a constraint to use bounds propagation

Annotate a constraint to use domain propagation

### 4.2.1.3 Search annotations

**Variable selection annotations**

- **annotation anti_first_fail**
  Choose the variable with the largest domain

- **annotation dom_w_deg**
  Choose the variable with largest domain, divided by the number of attached constraints weighted by how often they have caused failure

- **annotation first_fail**
  Choose the variable with the smallest domain

- **annotation impact**
  Choose the variable with the highest impact so far during the search

- **annotation input_order**
  Search variables in the given order

- **annotation largest**
  Choose the variable with the largest value in its domain

- **annotation max_regret**
  Choose the variable with largest difference between the two smallest values in its domain

- **annotation most_constrained**
  Choose the variable with the smallest domain, breaking ties using the number of attached constraints
Choose the variable with the largest number of attached constraints

Choose the variable with the smallest value in its domain

**Value choice annotations**

Assign values in ascending order

If the domain consists of several contiguous intervals, reduce the domain to the first interval. Otherwise bisect the domain.

Assign the largest value in the domain

Assign the middle value in the domain

Assign the value in the domain closest to the mean of its current bounds

Assign the smallest value in the domain

Assign a random value from the domain

Bisect the domain, excluding the lower half first
annotation indomain_split

Bisect the domain, excluding the upper half first

annotation indomain_split_random

Bisect the domain, randomly selecting which half to exclude first

annotation outdomain_max

Exclude the largest value from the domain

annotation outdomain_median

Exclude the middle value from the domain

annotation outdomain_min

Exclude the smallest value from the domain

annotation outdomain_random

Exclude a random value from the domain

**Exploration strategy annotations**

annotation complete

Perform a complete search

**Restart annotations**

**Parameters**

annotation restart_none

Do not restart
Functions and Predicates

- **annotation restart_constant**(int: scale)
  Restart after constant number of nodes scale

- **annotation restart_geometric**(float: base, int: scale)
  Restart with geometric sequence with parameters base and scale

- **annotation restart_linear**(int: scale)
  Restart with linear sequence scaled by scale

- **annotation restart_luby**(int: scale)
  Restart with Luby sequence scaled by scale

Other declarations

- **annotation bool_search**(array [X] of var bool: x,
  ann: select,
  ann: choice,
  ann: explore)

Specify search on variables x, with variable selection strategy select, value choice strategy choice, and exploration strategy explore. If x is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

- **annotation bool_search**(array [X] of var bool: x,
  ann: select,
  ann: choice)

Specify search on variables x, with variable selection strategy select, and value choice strategy choice. If x is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

- **annotation float_search**(array [X] of var float: x,
  float: prec,
  ann: select,
  ann: choice,
  ann: explore)
Specify search on variables $x$, with precision $prec$, variable selection strategy $select$, value choice strategy $choice$, and exploration strategy $explore$. If $x$ is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

```plaintext
annotation float_search(array [\$X\] of var float: x,
 float: prec,
 ann: select,
 ann: choice)
```

Specify search on variables $x$, with precision $prec$, variable selection strategy $select$, and value choice strategy $choice$. If $x$ is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

```plaintext
annotation int_search(array [\$X\] of var int: x,
 ann: select,
 ann: choice,
 ann: explore)
```

Specify search on variables $x$, with variable selection strategy $select$, value choice strategy $choice$, and exploration strategy $explore$. If $x$ is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

```plaintext
annotation int_search(array [\$X\] of var int: x,
 ann: select,
 ann: choice)
```

Specify search on variables $x$, with variable selection strategy $select$, and value choice strategy $choice$. If $x$ is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

```plaintext
annotation seq_search(array [int] of ann: s)
```

Sequentially perform the searches specified in array $s$

```plaintext
annotation set_search(array [\$X\] of var set of int: x,
 ann: select,
 ann: choice,
 ann: explore)
```

Specify search on variables $x$, with variable selection strategy $select$, value choice strategy $choice$, and exploration strategy $explore$. If $x$ is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the array1d function).

```plaintext
annotation set_search(array [\$X\] of var set of int: x,
 ann: select,
 ann: choice)
```
Specify search on variables $x$, with variable selection strategy $\text{select}$, and value choice strategy $\text{choice}$. If $x$ is a multi-dimensional array, it is coerced to one-dimensional in row-major order (as with the $\text{array1d}$ function).

### 4.2.1.4 Warm start annotations

To be put on the solve item, similar to search annotations. A variable can be mentioned several times and in different annotations but only one of the values is taken.

#### Warm start annotations with optional values

The value arrays can contain $<>$ elements (absent values). The following decompositions eliminate those elements because FlatZinc 1.6 does not support optionals.

```plaintext
annotation warm_start(array [int] of var bool: x,
array [int] of opt bool: v)
```

Specify warm start values $v$ for an array of booleans $x$:

```plaintext
annotation warm_start(array [int] of var int: x,
array [int] of opt int: v)
```

Specify warm start values $v$ for an array of integers $x$:

```plaintext
annotation warm_start(array [int] of var float: x,
array [int] of opt float: v)
```

Specify warm start values $v$ for an array of floats $x$:

```plaintext
annotation warm_start(array [int] of var set of int: x,
array [int] of opt set of int: v)
```

Specify warm start values $v$ for an array of sets $x$:

#### Other declarations

```plaintext
annotation warm_start(array [int] of var bool: x,
array [int] of bool: v)
```

Specify warm start values $v$ for an array of booleans $x$.
Specify warm start values \( v \) for an array of integers \( x \)

\[
\text{annotation warm_start(array [int] of var int: } x, \text{ array [int] of int: } v)\\
\]

Specify warm start values \( v \) for an array of floats \( x \)

\[
\text{annotation warm_start(array [int] of var float: } x, \text{ array [int] of float: } v)\\
\]

Specify warm start values \( v \) for an array of sets \( x \)

\[
\text{annotation warm_start_array(array [int] of var set of int: } x, \text{ array [int] of set of int: } v)\\
\]

Specify an array \( w \) of warm_start annotations or other warm_start_array annotations. Can be useful to keep the annotation order in FlatZinc for manual updating.

Note: if you have search annotations as well, put warm_starts into seq_search in order to have precedence between both, which may matter.

### 4.2.2 Option type support

These functions and predicates implement the standard library for working with option types.

Note that option type support is still incomplete.

#### 4.2.2.1 Option type support for Booleans

\[
predicate 'not'(var opt bool: x)\\
\]

Usage: \( \text{not } x \)

True iff \( x \) is absent or false

\[
predicate absent(var opt bool: x)\\
\]

True iff \( x \) is absent

\[
predicate absent(var opt int: x)\\
\]

True iff \( x \) is absent
predicate bool_eq(var opt bool: b0, var opt bool: b1)

True iff both b0 and b1 are absent or both are present and have the same value.

predicate bool_eq(var opt bool: b0, var bool: b1)

True iff b0 occurs and is equal to b1

predicate bool_eq(var bool: b0, var opt bool: b1)

True iff b1 occurs and is equal to b0

annotation bool_search(array [int] of var opt bool: x,
    ann: a1,
    ann: a2,
    ann: a3)

Search annotation for optional Boolean variables

annotation bool_search(array [int] of var opt bool: x,
    ann: a1,
    ann: a2)

Search annotation for optional Boolean variables

predicate deopt(var opt bool: x)

Return value of x (assumes that x is not absent)

function var int: deopt(var opt int: x)

Return value of x (assumes that x is not absent)

function var opt bool: element(var opt int: idx,
    array [int] of var bool: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt bool: element(var opt int: idx1,
    var opt int: idx2,
    array [int,int] of var bool: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1, idx2 ]
function var opt bool: element(var int: idx,
    array [int] of var opt bool: x)

Return x [ idx ]

function var opt bool: element(var int: idx1,
    var int: idx2,
    array [int,int] of var opt bool: x)

Return x [ idx1 , idx2 ]

function var opt bool: element(var opt int: idx,
    array [int] of var opt bool: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt bool: element(var opt int: idx1,
    var opt int: idx2,
    array [int,int] of var opt bool: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1 , idx2 ]

predicate exists(array [int] of var opt bool: x)

True iff for at least one i , x [ i ] occurs and is true

predicate forall(array [int] of var opt bool: x)

True iff for any i , x [ i ] is absent or true

predicate occurs(var opt bool: x)

True iff x is not absent

4.2.2.2 Option type support for integers

function var int: '*'(var opt int: x, var opt int: y)

Usage: x * y
Optional multiplication. Return product of x and y , with absent replaced by 1.
**function** int: '*'(opt int: x, opt int: y)

Usage: x * y
Optional multiplication. Return product of x and y, with absent replaced by 1.

**function** var int: '+'(var opt int: x, var opt int: y)

Usage: x + y
Optional addition. Return sum of x and y, with absent replaced by 0.

**function** int: '+'(opt int: x, opt int: y)

Usage: x + y
Optional addition. Return sum of x and y, with absent replaced by 0.

**function** var int: '-'(var opt int: x, var opt int: y)

Usage: x - y
Optional subtraction. Return difference of x and y, with absent replaced by 0.

**function** int: '-'(opt int: x, opt int: y)

Usage: x - y
Optional subtraction. Return difference of x and y, with absent replaced by 0.

**predicate** '<'(var opt int: x, var opt int: y)

Usage: x < y
Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than the value of y.

**test** '<'(opt int: x, opt int: y)

Usage: x < y
Weak comparison: true iff either x or y is absent, or both occur and the value of x is less than the value of y.

**predicate** '<='(var opt int: x, var opt int: y)

Usage: x <= y
Weak comparison: true iff either \( x \) or \( y \) is absent, or both occur and the value of \( x \) is less than or equal to the value of \( y \).

\[
\text{test } '\leq'\text{(opt int: } x, \text{ opt int: } y)\
\]

Usage: \( x \leq y \)

Weak comparison: true iff either \( x \) or \( y \) is absent, or both occur and the value of \( x \) is less than or equal to the value of \( y \).

\[
\text{predicate } '>'\text{(var opt int: } x, \text{ var opt int: } y)\
\]

Usage: \( x > y \)

Weak comparison: true iff either \( x \) or \( y \) is absent, or both occur and the value of \( x \) is greater than the value of \( y \).

\[
\text{test } '>'\text{(opt int: } x, \text{ opt int: } y)\
\]

Usage: \( x > y \)

Weak comparison: true iff either \( x \) or \( y \) is absent, or both occur and the value of \( x \) is greater than the value of \( y \).

\[
\text{predicate } '>='\text{(var opt int: } x, \text{ var opt int: } y)\
\]

Usage: \( x \geq y \)

Weak comparison: true iff either \( x \) or \( y \) is absent, or both occur and the value of \( x \) is greater than or equal to the value of \( y \).

\[
\text{test } '>='\text{(opt int: } x, \text{ opt int: } y)\
\]

Usage: \( x \geq y \)

Weak comparison: true iff either \( x \) or \( y \) is absent, or both occur and the value of \( x \) is greater than or equal to the value of \( y \).

\[
\text{function var int: } 'div'\text{(var opt int: } x, \text{ var opt int: } y)\
\]

Usage: \( x \div y \)

Optional division. Return \( x \div y\), with absent replaced by 1.

\[
\text{function int: } 'div'\text{(opt int: } x, \text{ opt int: } y)\
\]

Usage: \( x \div y \)

Optional division. Return \( x \div y\), with absent replaced by 1.
function var int: 'mod'(var opt int: x, var opt int: y)

Usage: x mod y
Optional modulo. Return x mod y, with absent replaced by 1.

function int: 'mod'(opt int: x, opt int: y)

Usage: x mod y
Optional modulo. Return x mod y, with absent replaced by 1.

function var opt int: bool2int(var opt bool: x)

Return optional 0/1 integer that is absent iff x is absent, and 1 iff x occurs and is true.

function var opt int: element(var opt int: idx,
                        array [int] of var int: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt int: element(var opt int: idx1,
                        var opt int: idx2,
                        array [int,int] of var int: x)

Return absent if idx1 or idx2 is absent, otherwise return x [ idx1, idx2 ]

function var opt int: element(var int: idx,
                        array [int] of var opt int: x)

Return x [ idx ]

function var opt int: element(var int: idx1,
                        var int: idx2,
                        array [int,int] of var opt int: x)

Return x [ idx1, idx2 ]

function var opt int: element(var opt int: idx,
                        array [int] of var opt int: x)

Return absent if idx is absent, otherwise return x [ idx ]

function var opt int: element(var opt int: idx1,
                        var opt int: idx2,
                        array [int,int] of var opt int: x)

Return absent if idx is absent, otherwise return x [ idx ]
Return absent if idx1 or idx2 is absent, otherwise return x [ idx1, idx2 ]

```
predicate int_eq(var opt int: x, var opt int: y)
```

True iff both x and y are absent or both are present and have the same value.

```
predicate int_ne(var opt int: x, var opt int: y)
```

True iff only one of x and y is absent or both are present and have different values.

```
annotation int_search(array [int] of var opt int: x,
 ann: a1,
 ann: a2,
 ann: a3)
```

Search annotation for optional integer variables

```
annotation int_search(array [int] of var opt int: x, ann: a1, ann: a2)
```

Search annotation for optional integer variables

```
function var opt int: max(array [int] of var opt int: x)
```

Return maximum of elements in x that are not absent, or absent if all elements in x are absent.

```
function var opt int: min(array [int] of var opt int: x)
```

Return minimum of elements in x that are not absent, or absent if all elements in x are absent.

```
predicate occurs(var opt int: x)
```

True iff x is not absent

```
function var int: product(array [int] of var opt int: x)
```

Return product of non-absent elements of x .

```
function int: product(array [int] of opt int: x)
```

Return product of non-absent elements of x .
function var int: sum(array [int] of var opt int: x)

Return sum of non-absent elements of x.

function int: sum(array [int] of opt int: x)

Return sum of non-absent elements of x.

function var opt int: *(var opt int: x, var opt int: y)

Weak multiplication. Return product of x and y if both are present, otherwise return absent.

function var opt int: +(var opt int: x, var opt int: y)

Weak addition. Return sum of x and y if both are present, otherwise return absent.

function var opt int: -(var opt int: x, var opt int: y)

Weak subtraction. Return difference of x and y if both are present, otherwise return absent.

predicate =~=(var opt int: x, var opt int: y)

Weak equality. True if either x or y are absent, or present and equal.

### 4.2.2.3 Other declarations

test absent(var $T: x)

Test if x is absent (always returns false)

test absent(opt $T: x)

Test if x is absent

function $T: deopt(opt $T: x)

Return value of x if x is not absent. Aborts when evaluated on absent value.

function var $T: deopt(var $T: x)

Return value x unchanged (since x is guaranteed to be non-optional).
test occurs(var $T: x)

Test if $x$ is not absent (always returns true)

test occurs(opt $T: x)

Test if $x$ is not absent

## 4.2.3 Compiler options

### 4.2.3.1 Parameters

<table>
<thead>
<tr>
<th>opt bool: mzn_opt_only_range_domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whether to only generate domains that are contiguous ranges</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>opt int: mzn_min_version_required</th>
</tr>
</thead>
<tbody>
<tr>
<td>If defined, this can be used to check that the MiniZinc compiler supports all the features used in the model.</td>
</tr>
</tbody>
</table>

### 4.2.3.2 Functions and Predicates

<table>
<thead>
<tr>
<th>test mzn_check_only_range_domains()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check whether to only generate domains that are contiguous ranges</td>
</tr>
</tbody>
</table>

## 4.2.4 Builtins

These functions and predicates define built-in operations of the MiniZinc language.

### 4.2.4.1 Comparison Builtins

<table>
<thead>
<tr>
<th>test '!='($T: x, $T: y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage: $x \neq y$</td>
</tr>
<tr>
<td>Return if $x$ is not equal to $y$</td>
</tr>
</tbody>
</table>
**Predicate `!='**

```plaintext
predicate '!='(var T: x, var T: y)
```

**Usage:**

```
x != y
```

Return if \( x \) is not equal to \( y \)

**Test `!='**

```plaintext
test '!='(array [$T] of int: x, array [$T] of int: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)

**Predicate `!='**

```plaintext
predicate '!='(array [$T] of var int: x, array [$T] of var int: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)

**Test `!='**

```plaintext
test '!='(array [$T] of bool: x, array [$T] of bool: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)

**Predicate `!='**

```plaintext
predicate '!='(array [$T] of var bool: x, array [$T] of var bool: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)

**Test `!='**

```plaintext
test '!='(array [$T] of set of int: x, array [$T] of set of int: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)

**Predicate `!='**

```plaintext
predicate '!='(array [$T] of var set of int: x, array [$T] of var set of int: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)

**Test `!='**

```plaintext
test '!='(array [$T] of float: x, array [$T] of float: y)
```

**Usage:**

```
x != y
```

Return if array \( x \) is not equal to array \( y \)
**predicate '!='** (array [$T] of var float: x, array [$T] of var float: y)

Usage: x != y
Return if array x is not equal to array y

**test '<'** ($T: x, $T: y)

Usage: x < y
Return if x is less than y

**predicate '<'** (var $T: x, var $T: y)

Usage: x < y
Return if x is less than y

**test '<'** (array [$U] of $T: x, array [$U] of $T: y)

Usage: x < y
Return if array x is lexicographically smaller than array y

**predicate '<'** (array [$U] of var $T: x, array [$U] of var $T: y)

Usage: x < y
Return if array x is lexicographically smaller than array y

**test '<='** ($T: x, $T: y)

Usage: x <= y
Return if x is less than or equal to y

**predicate '<='** (var $T: x, var $T: y)

Usage: x <= y
Return if x is less than or equal to y

**test '<='** (array [$U] of $T: x, array [$U] of $T: y)

Usage: x <= y
Return if array x is lexicographically smaller than or equal to array y
predicate '$\leq'$(array [\$U\] of var \$T\: x, array [\$U\] of var \$T\: y)

Usage: x <= y
Return if array x is lexicographically smaller than or equal to array y

test '$\neq'$($\$T\$: x, \$T\$: y)

Usage: x = y
Return if x is equal to y

test '$\neq'$(opt \$T\$: x, opt \$T\$: y)

Usage: x = y
Return if x is equal to y

predicate '$\neq'$(var \$T\$: x, var \$T\$: y)

Usage: x = y
Return if x is equal to y

predicate '$\neq'$(var opt \$T\$: x, var opt \$T\$: y)

Usage: x = y
Return if x is equal to y

test '$\neq'$(array [\$T\] of int: x, array [\$T\] of int: y)

Usage: x = y
Return if array x is equal to array y

predicate '$\neq'$(array [\$T\] of var int: x, array [\$T\] of var int: y)

Usage: x = y
Return if array x is equal to array y

test '$\neq'$(array [\$T\] of bool: x, array [\$T\] of bool: y)

Usage: x = y
Return if array x is equal to array y
predicate '='(array [$T] of bool: x, array [$T] of bool: y)

Usage: x = y
Return if array x is equal to array y

test '='(array [$T] of set of int: x, array [$T] of set of int: y)

Usage: x = y
Return if array x is equal to array y

predicate '='(array [$T] of var set of int: x, array [$T] of var set of int: y)

Usage: x = y
Return if array x is equal to array y

predicate '='(array [$T] of var float: x, array [$T] of var float: y)

Usage: x = y
Return if array x is equal to array y

test '>'($T: x, $T: y)

Usage: x > y
Return if x is greater than y

predicate '>'(var $T: x, var $T: y)

Usage: x > y
Return if x is greater than y

test '>'(array [$U] of $T: x, array [$U] of $T: y)

Usage: x > y
Return if array x is lexicographically greater than array y
predicate '>(array [$U$] of var $T$: x, array [$U$] of var $T$: y)

Usage: x > y
Return if array x is lexicographically greater than array y

test '=>('($T$: x, $T$: y)

Usage: x => y
Return if x is greater than or equal to y

predicate '=>('(var $T$: x, var $T$: y)

Usage: x => y
Return if x is greater than or equal to y

test '=>('(array [$U$] of $T$: x, array [$U$] of $T$: y)

Usage: x => y
Return if array x is lexicographically greater than or equal to array y

4.2.4.2 Arithmetic Builtin

These builtins implement arithmetic operations.

function int: '*(int: x, int: y)

Usage: x * y
Return x * y

function var int: '*(var int: x, var int: y)

Usage: x * y
Return x * y

function float: '*(float: x, float: y)

Usage: x * y
Return x * y
function var float: '*'(var float: x, var float: y)

Usage: x * y
Return x * y

function int: '+'(int: x, int: y)

Usage: x + y
Return x + y

function var int: '+'(var int: x, var int: y)

Usage: x + y
Return x + y

function float: '+'(float: x, float: y)

Usage: x + y
Return x + y

function var float: '+'(var float: x, var float: y)

Usage: x + y
Return x + y

function int: '-'(int: x, int: y)

Usage: x - y
Return x - y

function var int: '-'(var int: x, var int: y)

Usage: x - y
Return x - y

function float: '-'(float: x, float: y)

Usage: x - y
Return x - y
function var float: '-'(var float: x, var float: y)
Usage: x - y
Return x - y

function int: '-'(int: x)
Usage: - x
Return negative x

function var int: '-'(var int: x)
Usage: - x
Return negative x

function float: '-'(float: x)
Usage: - x
Return negative x

function var float: '-'(var float: x)
Usage: - x
Return negative x

function float: '/'(float: x, float: y)
Usage: x / y
Return result of floating point division x / y

function var float: '/'(var float: x, var float: y)
Usage: x / y
Return result of floating point division x / y

function int: '^'(int: x, int: y)
Usage: x ^ y
Return x^y
function var int: '^'(var int: x, var int: y)

Usage: x ^ y
Return \( x^y \)

function float: '^'(float: x, float: y)

Usage: x ^ y
Return \( x^y \)

function var float: '^'(var float: x, var float: y)

Usage: x ^ y
Return \( x^y \)

function int: 'div'(int: x, int: y)

Usage: x div y
Return result of integer division \( x / y \)

function var int: 'div'(var int: x, var int: y)

Usage: x div y
Return result of integer division \( x / y \)

function int: 'mod'(int: x, int: y)

Usage: x mod y
Return remainder of integer division \( x \mod y \)

function var int: 'mod'(var int: x, var int: y)

Usage: x mod y
Return remainder of integer division \( x \mod y \)

function int: abs(int: x)

Return absolute value of \( x \)
function var int: abs(var int: x)

Return absolute value of x

function float: abs(float: x)

Return absolute value of x

function var float: abs(var float: x)

Return absolute value of x

function arg_max(array of int: x)

Returns the index of the maximum value in the array x. When breaking ties the least index is returned.

function arg_max(array of float: x)

Returns the index of the maximum value in the array x. When breaking ties the least index is returned.

function arg_min(array of int: x)

Returns the index of the minimum value in the array x. When breaking ties the least index is returned.

function arg_min(array of float: x)

Returns the index of the minimum value in the array x. When breaking ties the least index is returned.

function max(T: x, T: y)

Return maximum of x and y

function max(array of $U$ of T: x)

Return maximum of elements in array x

function max(set of $E$: x)

Return maximum of elements in set x
function var int: max(var int: x, var int: y)

Return maximum of x and y

function var int: max(array [$U] of var int: x)

Return maximum of elements in array x

function var float: max(var float: x, var float: y)

Return maximum of x and y

function var float: max(array [$U] of var float: x)

Return maximum of elements in array x

function $T: min($T: x, $T: y)

Return minimum of x and y

function $T: min(array [$U] of $T: x)

Return minimum of elements in array x

function $E: min(set of $E: x)

Return minimum of elements in set x

function var int: min(var int: x, var int: y)

Return minimum of x and y

function var int: min(array [$U] of var int: x)

Return minimum of elements in array x

function var float: min(var float: x, var float: y)

Return minimum of x and y

function var float: min(array [$U] of var float: x)

Return minimum of elements in array x
function int: pow(int: x, int: y)

Return $x^y$

function var int: pow(var int: x, var int: y)

Return $x^y$

function float: pow(float: x, float: y)

Return $x^y$

function var float: pow(var float: x, var float: y)

Return $x^y$

function int: product(array [T] of int: x)

Return product of elements in array x

function var int: product(array [T] of var int: x)

Return product of elements in array x

function float: product(array [T] of float: x)

Return product of elements in array x

function var float: product(array [T] of var float: x)

Return product of elements in array x

function float: sqrt(float: x)

Return $\sqrt{x}$

function var float: sqrt(var float: x)

Return $\sqrt{x}$

function int: sum(array [T] of int: x)

Return sum of elements in array x
function var int: sum(array [\$T\] of var int: x)
Return sum of elements in array x

function float: sum(array [\$T\] of float: x)
Return sum of elements in array x

function var float: sum(array [\$T\] of var float: x)
Return sum of elements in array x

### 4.2.4.3 Exponential and logarithmic builtins

These builtins implement exponential and logarithmic functions.

function float: exp(float: x)
Return \( e^x \)

function var float: exp(var float: x)
Return \( e^x \)

function float: ln(float: x)
Return \( \ln x \)

function var float: ln(var float: x)
Return \( \ln x \)

function float: log(float: x, float: y)
Return \( \log_x y \)

function float: log10(float: x)
Return \( \log_{10} x \)

function var float: log10(var float: x)
Return \( \log_{10} x \)
4.2.4.4 Trigonometric functions

These builtins implement the standard trigonometric functions.

function float: log2(float: x)

Return log₂ x

function var float: log2(var float: x)

Return log₂ x

function float: acos(float: x)

Return acos x

function var float: acos(var float: x)

Return acos x

function float: acosh(float: x)

Return acosh x

function var float: acosh(var float: x)

Return acosh x

function float: asin(float: x)

Return asin x

function var float: asin(var float: x)

Return asin x

function float: asinh(float: x)

Return asinh x

function var float: asinh(var float: x)

Return asinh x
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>atan(float: x)</code></td>
<td>Return atan x</td>
</tr>
<tr>
<td><code>atan(var float: x)</code></td>
<td>Return atan x</td>
</tr>
<tr>
<td><code>atanh(float: x)</code></td>
<td>Return atanh x</td>
</tr>
<tr>
<td><code>atanh(var float: x)</code></td>
<td>Return atanh x</td>
</tr>
<tr>
<td><code>cos(float: x)</code></td>
<td>Return cos x</td>
</tr>
<tr>
<td><code>cos(var float: x)</code></td>
<td>Return cos x</td>
</tr>
<tr>
<td><code>cosh(float: x)</code></td>
<td>Return cosh x</td>
</tr>
<tr>
<td><code>cosh(var float: x)</code></td>
<td>Return cosh x</td>
</tr>
<tr>
<td><code>sin(float: x)</code></td>
<td>Return sin x</td>
</tr>
<tr>
<td><code>sin(var float: x)</code></td>
<td>Return sin x</td>
</tr>
<tr>
<td><code>sinh(float: x)</code></td>
<td>Return sinh x</td>
</tr>
</tbody>
</table>
function var float: sinh(var float: x)
Return sinh x

function float: tan(float: x)
Return tan x

function var float: tan(var float: x)
Return tan x

function float: tanh(float: x)
Return tanh x

function var float: tanh(var float: x)
Return tanh x

4.2.4.5 Logical operations

Logical operations are the standard operators of Boolean logic.

test "->"(bool: x, bool: y)
Usage: x -> y
Return truth value of x implies y

predicate "->"(var bool: x, var bool: y)
Usage: x -> y
Return truth value of x implies y

test "\"(bool: x, bool: y)
Usage: x \ y
Return truth value of x &and; y

predicate "\"(var bool: x, var bool: y)
Usage: $x \land y$
Return truth value of $x \land y$

```
test '<-'(bool: x, bool: y)
```

Usage: $x \leftarrow y$
Return truth value of $y$ implies $x$

```
predicate '<-'(var bool: x, var bool: y)
```

Usage: $x \leftarrow y$
Return truth value of $y$ implies $x$

```
test '<->'(bool: x, bool: y)
```

Usage: $x \leftrightarrow y$
Return truth value of $x$ if-and-only-if $y$

```
predicate '<->'(var bool: x, var bool: y)
```

Usage: $x \leftrightarrow y$
Return truth value of $x$ if-and-only-if $y$

```
test '/'(bool: x, bool: y)
```

Usage: $x \lor y$
Return truth value of $x \lor y$

```
predicate '/'(var bool: x, var bool: y)
```

Usage: $x \lor y$
Return truth value of $x \lor y$

```
test 'not'(bool: x)
```

Usage: $\neg x$
Return truth value of the negation of $x$

```
predicate 'not'(var bool: x)
```

298 Chapter 4.2. The MiniZinc library
Usage: `not x`
Return truth value of the negation of x

```mini
 test 'xor' (bool: x, bool: y)
```

Usage: `x xor y`
Return truth value of x xor y

```mini
 predicate 'xor' (var bool: x, var bool: y)
```

Usage: `x xor y`
Return truth value of x xor y

```mini
 predicate clause (array [T] of var bool: x, array [T] of var bool: y)
```

Return truth value of `(\forall i x[i]) \lor (\forall j \neg y[j])`

```mini
 predicate clause (array [T] of bool: x, array [T] of bool: y)
```

Return truth value of `(\forall i x[i]) \lor (\forall j \neg y[j])`

```mini
 test exists (array [T] of bool: x)
```

Return truth value of `\forall i x[i]`

```mini
 predicate exists (array [T] of var bool: x)
```

Return truth value of `\forall i x[i]`

```mini
 test forall (array [T] of bool: x)
```

Return truth value of `\forall i x[i]`

```mini
 predicate forall (array [T] of var bool: x)
```

Return truth value of `\forall i x[i]`

```mini
 test iffall (array [T] of bool: x)
```

Return truth value of `true \oplus (\oplus i x[i])`
predicate iffall(array [T] of var bool: x)

Return truth value of $\bigoplus (\oplus; x[i])$

test xorall(array [T] of bool: x)

Return truth value of $\bigoplus; x[i]$

predicate xorall(array [T] of var bool: x)

Return truth value of $\bigoplus; x[i]$

### 4.2.4.6 Set operations

These functions implement the basic operations on sets.

function set of $\mathbb{E}$: '..'($\mathbb{E}$: a, $\mathbb{E}$: b)

Usage: a .. b
Return the set \{a, ..., b\}

function set of float: '..'(float: a, float: b)

Usage: a .. b
Return the set \{a, ..., b\}

function set of $\mathbb{T}$: 'diff'(set of $\mathbb{T}$: x, set of $\mathbb{T}$: y)

Usage: x diff y
Return the set difference of sets x \ y

function var set of $\mathbb{T}$: 'diff'(var set of $\mathbb{T}$: x, var set of $\mathbb{T}$: y)

Usage: x diff y
Return the set difference of sets x \ y

test 'in'(int: x, set of int: y)

Usage: x in y
Test if x is an element of the set y
predicate 'in' (var int: x, var set of int: y)

Usage: x in y
x is an element of the set y

test 'in' (float: x, set of float: y)

Usage: x in y
Test if x is an element of the set y

predicate 'in' (var float: x, set of float: y)

Usage: x in y
Test if x is an element of the set y

function set of $T: 'intersect' (set of $T: x, set of $T: y)

Usage: x intersect y
Return the intersection of sets x and y

function var set of $$T: 'intersect' (var set of $$T: x,
                                  var set of $$T: y)

Usage: x intersect y
Return the intersection of sets x and y

test 'subset' (set of $T: x, set of $T: y)

Usage: x subset y
Test if x is a subset of y

predicate 'subset' (var set of int: x, var set of int: y)

Usage: x subset y
x is a subset of y

test 'superset' (set of $T: x, set of $T: y)

Usage: x superset y
Test if x is a superset of y
predicate 'superset'(var set of int: x, var set of int: y)

Usage: x superset y
x is a superset of y

function set of $T: 'symdiff'(set of $T: x, set of $T: y)

Usage: x symdiff y
Return the symmetric set difference of sets x and y

function var set of $$T: 'symdiff'(var set of $$T: x, var set of $$T: y)

Usage: x symdiff y
Return the symmetric set difference of sets x and y

function set of $T: 'union'(set of $T: x, set of $T: y)

Usage: x union y
Return the union of sets x and y

function var set of $$T: 'union'(var set of $$T: x, var set of $$T: y)

Usage: x union y
Return the union of sets x and y

function set of $U: array_intersect(array [$T] of set of $U: x)

Return the intersection of the sets in array x

function var set of int: array_intersect(array [int] of var set of int: x)

Return the intersection of the sets in array x

function set of $U: array_union(array [$T] of set of $U: x)

Return the union of the sets in array x

function var set of int: array_union(array [int] of var set of int: x)

Return the union of the sets in array x
function int: card(set of $T$: x)

Return the cardinality of the set x

function var int: card(var set of int: x)

Return the cardinality of the set x

function var $$E$: max(var set of $$E$: s)

Return the maximum of the set s

function var $$E$: min(var set of $$E$: s)

Return the minimum of the set s

4.2.4.7 Conditionals

These functions implement conditional (if-then-else-endif) constraints.

predicate if_then_else(array [int] of var bool: c, array [int] of int: x, var int: y)

Conditional constraint \{c[i] \land \neg c[1..i - 1] \rightarrow y = x[i]\}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of var int: x, var int: y)

Conditional constraint \{c[i] \land \neg c[1..i - 1] \rightarrow y = x[i]\}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of opt int: x, var opt int: y)

Conditional constraint \{c[i] \land \neg c[1..i - 1] \rightarrow y = x[i]\}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.
predicate if_then_else(array [int] of var bool: c, array [int] of var opt int: x, var opt int: y)

Conditional constraint \(\{c[i] \land \neg c[1..i-1] \rightarrow y = x[i]\}\)

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of bool: x, var bool: y)

Conditional constraint \(\{c[i] \land \neg c[1..i-1] \rightarrow y = x[i]\}\)

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of var bool: x, var bool: y)

Conditional constraint \(\{c[i] \land \neg c[1..i-1] \rightarrow y = x[i]\}\)

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of var opt bool: x, var opt bool: y)

Conditional constraint \(\{c[i] \land \neg c[1..i-1] \rightarrow y = x[i]\}\)

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of var opt bool: x, var opt bool: y)

Conditional constraint \(\{c[i] \land \neg c[1..i-1] \rightarrow y = x[i]\}\)

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

predicate if_then_else(array [int] of var bool: c, array [int] of float: x, var float: y)

Conditional constraint \(\{c[i] \land \neg c[1..i-1] \rightarrow y = x[i]\}\)

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.
Conditional constraint \{c[i] \land \lnot c[1..i - 1] \rightarrow y = x[i]\}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

```mini
predicate if_then_else(array [int] of var bool: c,
 array [int] of var float: x,
 var float: y)
```

Conditional constraint \{c[i] \land \lnot c[1..i - 1] \rightarrow y = x[i]\}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

```mini
predicate if_then_else(array [int] of var bool: c,
 array [int] of set of int: x,
 var set of int: y)
```

Conditional constraint \{c[i] \land \lnot c[1..i - 1] \rightarrow y = x[i]\}

This constraint is generated by the compiler for if-then-else expressions. The last entry in the c array is always the constant true, corresponding to the else case.

```mini
predicate if_then_else_partiality(array [int] of var bool: c,
 array [int] of var bool: d,
 var bool: b)
```

Conditional partiality constraint

This constraint is generated by the compiler for if-then-else expressions with potentially undefined cases. The last entry in the c array is always the constant true, corresponding to the else case. The d[i] variable represents whether case i is defined. Constrains that if b is defined, then the selected case must be defined, and if the selected case is undefined, then b must be undefined.

4.2.4.8 Array operations

These functions implement the basic operations on arrays.
### function array [int] of $T$: '++'(array [int] of $T$: x, array [int] of $T$: y)

**Usage:** x ++ y

Return the concatenation of arrays x and y.

```
```

**Usage:** x ++ y

Return the concatenation of arrays x and y.

```
```

**Usage:** x ++ y

Return the concatenation of arrays x and y.

```
function array [int] of var opt T: '++'(array [int] of var opt T: x, array [int] of var opt T: y)
```

**Usage:** x ++ y

Return the concatenation of arrays x and y.

```
function array [int] of V: array1d(array [U] of V: x)
```

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the array x in row-major order.

```
function array [int] of opt V: array1d(array [U] of opt V: x)
```

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the array x in row-major order.

```
function array [int] of var V: array1d(array [U] of var V: x)
```

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the array x in row-major order.

```
function array [int] of var opt V: array1d(array [U] of var opt V: x)
```

Return array x coerced to index set 1..length( x ). Coercions are performed by considering the array x in row-major order.
function array [$\text{S}$] of $\text{V}$: array1d(set of $\text{S}$: $\text{E}$, array [$\text{U}$] of $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to one-dimensional array with index set $\text{S}$. Coercions are performed by considering the array $\text{x}$ in row-major order.

function array [$\text{S}$] of opt $\text{V}$: array1d(set of $\text{S}$: $\text{E}$,
array [$\text{U}$] of opt $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to one-dimensional array with index set $\text{S}$. Coercions are performed by considering the array $\text{x}$ in row-major order.

function array [$\text{S}$] of var $\text{V}$: array1d(set of $\text{S}$: $\text{E}$,
array [$\text{U}$] of var $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to one-dimensional array with index set $\text{S}$. Coercions are performed by considering the array $\text{x}$ in row-major order.

function array [$\text{S}$] of var opt $\text{V}$: array1d(set of $\text{S}$: $\text{E}$,
array [$\text{U}$] of var opt $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to one-dimensional array with index set $\text{S}$. Coercions are performed by considering the array $\text{x}$ in row-major order.

function array [$\text{S}$, $\text{F}$] of $\text{V}$: array2d(set of $\text{S}$: $\text{E}$, set of $\text{F}$: $\text{F}$, array [$\text{U}$] of $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to two-dimensional array with index sets $\text{S}$ and $\text{F}$. Coercions are performed by considering the array $\text{x}$ in row-major order.

function array [$\text{S}$, $\text{F}$] of opt $\text{V}$: array2d(set of $\text{S}$: $\text{E}$, set of $\text{F}$: $\text{F}$, array [$\text{U}$] of opt $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to two-dimensional array with index sets $\text{S}$ and $\text{F}$. Coercions are performed by considering the array $\text{x}$ in row-major order.

function array [$\text{S}$, $\text{F}$] of var $\text{V}$: array2d(set of $\text{S}$: $\text{E}$, set of $\text{F}$: $\text{F}$, array [$\text{U}$] of var $\text{V}$: $\text{x}$)

Return array $\text{x}$ coerced to two-dimensional array with index sets $\text{S}$ and $\text{F}$. Coercions are performed by considering the array $\text{x}$ in row-major order.
Return array $x$ coerced to two-dimensional array with index sets $S_1$ and $S_2$. Coercions are performed by considering the array $x$ in row-major order.

Return array $x$ coerced to three-dimensional array with index sets $S_1$, $S_2$ and $S_3$. Coercions are performed by considering the array $x$ in row-major order.

Return array $x$ coerced to three-dimensional array with index sets $S_1$, $S_2$ and $S_3$. Coercions are performed by considering the array $x$ in row-major order.

Return array $x$ coerced to three-dimensional array with index sets $S_1$, $S_2$ and $S_3$. Coercions are performed by considering the array $x$ in row-major order.

Return array $x$ coerced to three-dimensional array with index sets $S_1$, $S_2$ and $S_3$. Coercions are performed by considering the array $x$ in row-major order.
Return array $x$ coerced to 4-dimensional array with index sets $S_1$, $S_2$, $S_3$ and $S_4$. Coercions are performed by considering the array $x$ in row-major order.

```plaintext
function array [$$E,$$F,$$G,$$H] of opt V: array4d(set of $$E: S_1,
 set of $$F: S_2,
 set of $$G: S_3,
 set of $$H: S_4,
 array [$$U] of opt $V: x)
```

Return array $x$ coerced to 4-dimensional array with index sets $S_1$, $S_2$, $S_3$ and $S_4$. Coercions are performed by considering the array $x$ in row-major order.

```plaintext
function array [$$E,$$F,$$G,$$H] of var V: array4d(set of $$E: S_1,
 set of $$F: S_2,
 set of $$G: S_3,
 set of $$H: S_4,
 array [$$U] of var $V: x)
```

Return array $x$ coerced to 4-dimensional array with index sets $S_1$, $S_2$, $S_3$ and $S_4$. Coercions are performed by considering the array $x$ in row-major order.

```plaintext
function array [$$E,$$F,$$G,$$H,$$I] of var opt V: array5d(set of $$E: S_1,
 set of $$F: S_2,
 set of $$G: S_3,
 set of $$H: S_4,
 set of $$I: S_5,
 array [$$U] of var $V: x)
```

Return array $x$ coerced to 4-dimensional array with index sets $S_1$, $S_2$, $S_3$ and $S_4$. Coercions are performed by considering the array $x$ in row-major order.

```plaintext
function array [$$E,$$F,$$G,$$H,$$I] of opt V: array5d(set of $$E: S_1,
 set of $$F: S_2,
 set of $$G: S_3,
 set of $$H: S_4,
 set of $$I: S_5,
 array [$$U] of opt $V: x)
```

Return array $x$ coerced to 5-dimensional array with index sets $S_1$, $S_2$, $S_3$, $S_4$ and $S_5$. Coercions are performed by considering the array $x$ in row-major order.

```plaintext
function array [$$E,$$F,$$G,$$H,$$I] of opt V: array5d(set of $$E: S_1,
 set of $$F: S_2,
 set of $$G: S_3,
 set of $$H: S_4,
 set of $$I: S_5,
 array [$$U] of opt $V: x)
```
Return array $x$ coerced to 5-dimensional array with index sets $S_1$, $S_2$, $S_3$, $S_4$ and $S_5$. Coercions are performed by considering the array $x$ in row-major order.

function array [\$E, \$F, \$G, \$H, \$I\] of var $V$: array5d(set of \$E: S_1,  
  set of \$F: S_2,  
  set of \$G: S_3,  
  set of \$H: S_4,  
  set of \$I: S_5,  
  array [\$U] of var $V$: x)
Return array \( x \) coerced to 6-dimensional array with index sets \( S_1, S_2, S_3, S_4, S_5 \) and \( S_6 \). Coercions are performed by considering the array \( x \) in row-major order.

```
function array [\$E,\$F,\$G,\$H,\$I,\$J\] of var \$V: array6d(set of \$E: S1,
set of \$F: S2,
set of \$G: S3,
set of \$H: S4,
set of \$I: S5,
set of \$J: S6,
array [\$U] of \$V: x)
```

Return array \( x \) coerced to 6-dimensional array with index sets \( S_1, S_2, S_3, S_4, S_5 \) and \( S_6 \). Coercions are performed by considering the array \( x \) in row-major order.

```
function array [\$E,\$F,\$G,\$H,\$I,\$J\] of var opt \$V: array6d(set of \$E: S1,
set of \$F: S2,
set of \$G: S3,
set of \$H: S4,
set of \$I: S5,
set of \$J: S6,
array [\$U] of \$V: x)
```

Return array \( x \) coerced to 6-dimensional array with index sets \( S_1, S_2, S_3, S_4, S_5 \) and \( S_6 \). Coercions are performed by considering the array \( x \) in row-major order.

```
function array [\$T\] of \$V: arrayXd(array [\$T] of var opt \$X: x,
array [\$U] of \$V: y)
```

Return array \( y \) coerced to array with same number of dimensions and same index sets as array \( x \). Coercions are performed by considering the array \( y \) in row-major order.

```
function array [\$T\] of opt \$V: arrayXd(array [\$T] of var opt \$X: x,
array [\$U] of opt \$V: y)
```

Return array \( y \) coerced to array with same number of dimensions and same index sets as array \( x \). Coercions are performed by considering the array \( y \) in row-major order.

```
function array [\$T\] of var \$V: arrayXd(array [\$T] of var opt \$X: x,
array [\$U] of var \$V: y)
```
Return array $y$ coerced to array with same number of dimensions and same index sets as array $x$. Coercions are performed by considering the array $y$ in row-major order.

```plaintext
function array [T] of var opt V: arrayXd(array [T] of var opt X: x, array [U] of var opt V: y)
```

Return array $y$ coerced to array with same number of dimensions and same index sets as array $x$. Coercions are performed by considering the array $y$ in row-major order.

```plaintext
function array [SE] of T: col(array [SE,int] of T: x, int: c)
```

Return column $c$ of array $x$

```plaintext
function array [SE] of opt T: col(array [SE,int] of opt T: x, int: c)
```

Return column $c$ of array $x$

```plaintext
function array [SE] of var T: col(array [SE,int] of var T: x, int: c)
```

Return column $c$ of array $x$

```plaintext
function array [SE] of var opt T: col(array [SE,int] of var opt T: x, int: c)
```

Return column $c$ of array $x$

```plaintext
test has_element(T: e, array [int] of T: x)
```

Test if $e$ is an element of array $x$

```plaintext
test has_element(T: e, array [int] of opt T: x)
```

Test if $e$ is an element of array $x$

```plaintext
predicate has_element(T: e, array [SE] of var opt T: x)
```

Test if $e$ is an element of array $x$

```plaintext
test has_index(int: i, array [int] of var opt T: x)
```

Test if $i$ is in the index set of $x$
function set of \$\$E\$: index_set(array \[\$\$E\$\] of var opt \$U\$: x)

Return index set of one-dimensional array \(x\)

function set of \$\$E\$: index_set_1of2(array \[\$\$E\$, int\] of var opt \$U\$: x)

Return index set of first dimension of two-dimensional array \(x\)

function set of \$\$E\$: index_set_1of3(array \[\$\$E\$, int, int\] of var opt \$U\$: x)

Return index set of first dimension of 3-dimensional array \(x\)

function set of \$\$E\$: index_set_1of4(array \[\$\$E\$, int, int, int\] of var opt \$U\$: x)

Return index set of first dimension of 4-dimensional array \(x\)

function set of \$\$E\$: index_set_1of5(array \[\$\$E\$, int, int, int, int\] of var opt \$U\$: x)

Return index set of first dimension of 5-dimensional array \(x\)

function set of \$\$E\$: index_set_1of6(array \[\$\$E\$, int, int, int, int, int\] of var opt \$U\$: x)

Return index set of first dimension of 6-dimensional array \(x\)

function set of \$\$E\$: index_set_2of2(array \[int, \$\$E\$\] of var opt \$U\$: x)

Return index set of second dimension of two-dimensional array \(x\)

function set of \$\$E\$: index_set_2of3(array \[int, \$\$E\$, int\] of var opt \$U\$: x)

Return index set of second dimension of 3-dimensional array \(x\)

function set of \$\$E\$: index_set_2of4(array \[int, \$\$E\$, int, int\] of var opt \$U\$: x)

Return index set of second dimension of 4-dimensional array \(x\)

function set of \$\$E\$: index_set_2of5(array \[int, \$\$E\$, int, int, int\] of var opt \$U\$: x)

Return index set of second dimension of 5-dimensional array \(x\)
function set of $E$: index_set_2of6(array [int,$E$,int,int,int] of var opt $U$: x)

Return index set of second dimension of 6-dimensional array x

function set of $E$: index_set_3of3(array [int,int,$E$] of var opt $U$: x)

Return index set of third dimension of 3-dimensional array x

function set of $E$: index_set_3of4(array [int,int,$E$,int] of var opt $U$: x)

Return index set of third dimension of 4-dimensional array x

function set of $E$: index_set_3of5(array [int,int,$E$,int,int] of var opt $U$: x)

Return index set of third dimension of 5-dimensional array x

function set of $E$: index_set_3of6(array [int,int,$E$,int,int,int] of var opt $U$: x)

Return index set of third dimension of 6-dimensional array x

function set of $E$: index_set_4of4(array [int,int,$E$,int] of var opt $U$: x)

Return index set of fourth dimension of 4-dimensional array x

function set of $E$: index_set_4of5(array [int,int,$E$,int,int] of var opt $U$: x)

Return index set of fourth dimension of 5-dimensional array x

function set of $E$: index_set_4of6(array [int,int,$E$,int,int,int] of var opt $U$: x)

Return index set of fourth dimension of 6-dimensional array x

function set of $E$: index_set_5of5(array [int,int,$E$,int,int,int] of var opt $U$: x)

Return index set of fifth dimension of 5-dimensional array x
function set of $E$: index_set_5of6(array [int,int,int,int,$E$,int] of var...
  opt $U$: x)

Return index set of fifth dimension of 6-dimensional array $x$

function set of $E$: index_set_6of6(array [int,int,int,int,$E$] of var...
  opt $U$: x)

Return index set of sixth dimension of 6-dimensional array $x$

test index_sets_agree(array [$T$] of var opt $U$: x,
  array [$T$] of var opt $W$: y)

Test if $x$ and $y$ have the same index sets

function int: length(array [$T$] of var opt $U$: x)

Return the length of array $x$

Note that the length is defined as the number of elements in the array, regardless of its dimensionality.

function array [$E$] of $T$: reverse(array [$E$] of $T$: x)

Return the array $x$ in reverse order

The resulting array has the same index set as $x$.

function array [$E$] of opt $T$: reverse(array [$E$] of opt $T$: x)

Return the array $x$ in reverse order

The resulting array has the same index set as $x$.

function array [$E$] of var $T$: reverse(array [$E$] of var $T$: x)

Return the array $x$ in reverse order

The resulting array has the same index set as $x$.

function array [$E$] of var opt $T$: reverse(array [$E$] of var opt $T$: x)

Return the array $x$ in reverse order

The resulting array has the same index set as $x$. 
```plaintext
function array [$$E$$] of T: row(array [int,$$E$$] of T: x, int: r)

Return row r of array x

function array [$$E$$] of opt T: row(array [int,$$E$$] of opt T: x, int: r)

Return row r of array x

function array [$$E$$] of var T: row(array [int,$$E$$] of var T: x, int: r)

Return row r of array x

function array [$$E$$] of var opt T: row(array [int,$$E$$] of var opt T: x, int: r)

Return row r of array x

function array [int] of T: slice_1d(array [$$E$$] of T: x, array [int] of set of int: s, set of int: dims1)

Return slice of array x specified by sets s, coerced to new 1d array with index set dims1

function array [int] of opt T: slice_1d(array [$$E$$] of opt T: x, array [int] of set of int: s, set of int: dims1)

Return slice of array x specified by sets s, coerced to new 1d array with index set dims1

function array [int] of var T: slice_1d(array [$$E$$] of var T: x, array [int] of set of int: s, set of int: dims1)

Return slice of array x specified by sets s, coerced to new 1d array with index set dims1

function array [int] of var opt T: slice_1d(array [$$E$$] of var opt T: x, array [int] of set of int: s, set of int: dims1)

Return slice of array x specified by sets s, coerced to new 1d array with index set dims1
```

316  Chapter 4.2. The MiniZinc library
function array [int,int] of $T$: slice_2d(array [E] of $T$: x, array [int] of set of int: s, set of int: dims1, set of int: dims2) returns slice of array x specified by sets s, coerced to new 2d array with index sets dims1 and dims2.

function array [int,int] of opt $T$: slice_2d(array [E] of opt $T$: x, array [int] of set of int: s, set of int: dims1, set of int: dims2) returns slice of array x specified by sets s, coerced to new 2d array with index sets dims1 and dims2.

function array [int,int] of var $T$: slice_2d(array [E] of var $T$: x, array [int] of set of int: s, set of int: dims1, set of int: dims2) returns slice of array x specified by sets s, coerced to new 2d array with index sets dims1 and dims2.

function array [int,int] of var opt $T$: slice_2d(array [E] of var opt $T$: x, array [int] of set of int: s, set of int: dims1, set of int: dims2) returns slice of array x specified by sets s, coerced to new 2d array with index sets dims1 and dims2.

function array [int,int,int] of $T$: slice_3d(array [E] of $T$: x, array [int] of set of int: s, set of int: dims1, set of int: dims2, set of int: dims3) returns slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2 and dims3.

function array [int,int,int] of opt $T$: slice_3d(array [E] of opt $T$: x, array [int] of set of int: s, set of int: dims1, set of int: dims2, set of int: dims3) returns slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2 and dims3.
Return slice of array $x$ specified by sets $s$, coerced to new 3d array with index sets $\text{dims1}, \text{dims2}$ and $\text{dims3}$

```plaintext
function array [int,int,int] of var T: slice_3d(array [E] of var T: x, array [int] of set of int: s, set of int: dims1, set of int: dims2, set of int: dims3)
```

Return slice of array $x$ specified by sets $s$, coerced to new 3d array with index sets $\text{dims1}, \text{dims2}$ and $\text{dims3}$

```plaintext
function array [int,int,int] of var opt T: slice_3d(array [E] of var opt T: x, array [int] of set of int: s, set of int: dims1, set of int: dims2, set of int: dims3)
```

Return slice of array $x$ specified by sets $s$, coerced to new 3d array with index sets $\text{dims1}, \text{dims2}$, $\text{dims3}$, $\text{dims4}$

```plaintext
function array [int,int,int] of T: slice_4d(array [E] of T: x, array [int] of set of int: s, set of int: dims1, set of int: dims2, set of int: dims3, set of int: dims4)
```

Return slice of array $x$ specified by sets $s$, coerced to new 3d array with index sets $\text{dims1}, \text{dims2}$, $\text{dims3}$, $\text{dims4}$

```plaintext
function array [int,int,int] of opt T: slice_4d(array [E] of opt T: x, array [int] of set of int: s, set of int: dims1, set of int: dims2, set of int: dims3, set of int: dims4)
```
function array [int,int,int] of var $T$: slice_4d(array [E] of var $T$: x, 
  array [int] of set of int: s, 
  set of int: dims1, 
  set of int: dims2, 
  set of int: dims3) 

Returns slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4

function array [int,int,int] of var opt $T$: slice_4d(array [E] of var opt $T$: x, 
  array [int] of set of int: s, 
  set of int: dims1, 
  set of int: dims2, 
  set of int: dims3) 

Returns slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4

function array [int,int,int] of $T$: slice_5d(array [E] of $T$: x, 
  array [int] of set of int: s, 
  set of int: dims1, 
  set of int: dims2, 
  set of int: dims3) 

Returns slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5

function array [int,int,int] of opt $T$: slice_5d(array [E] of opt $T$: x, 
  array [int] of set of int: s, 
  set of int: dims1, 
  set of int: dims2, 
  set of int: dims3) 

Returns slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5

4.2.4. Builtins
```plaintext
function array [int,int,int] of var T: slice_5d(array [E] of var T: x,
 array [int] of set of int: s,
 set of int: dims1,
 set of int: dims2,
 set of int: dims3,
 set of int: dims4,
 set of int: dims5)
```

Return slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5

```plaintext
function array [int,int,int] of var opt T: slice_5d(array [E] of var opt T: x,
 array [int] of set of int: s,
 set of int: dims1,
 set of int: dims2,
 set of int: dims3,
 set of int: dims4,
 set of int: dims5)
```

Return slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5

```plaintext
function array [int,int,int] of T: slice_6d(array [E] of T: x,
 array [int] of set of int: s,
 set of int: dims1,
 set of int: dims2,
 set of int: dims3,
 set of int: dims4,
 set of int: dims5,
 set of int: dims6)
```

Return slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5, dims6

```plaintext
function array [int,int,int] of opt T: slice_6d(array [E] of opt T: x,
 array [int] of set of int: s,
 set of int: dims1,
 set of int: dims2,
 set of int: dims3,
 set of int: dims4,
 set of int: dims5,
 set of int: dims6)
```

Return slice of array x specified by sets s, coerced to new 3d array with index sets dims1, dims2
, dims3, dims4, dims5, dims6

```
function array [int,int,int] of var T: slice_6d(array [E] of var T: x, array [int] of set of int: s,
 set of int: dims1,
 set of int: dims2,
 set of int: dims3,
 set of int: dims4,
 set of int: dims5,
 set of int: dims6)
```

Return slice of array $x$ specified by sets $s$, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5, dims6

```
function array [int,int,int] of var opt T: slice_6d(array [E] of var opt T: x, array [int] of set of int: s,
 set of int: dims1,
 set of int: dims2,
 set of int: dims3,
 set of int: dims4,
 set of int: dims5,
 set of int: dims6)
```

Return slice of array $x$ specified by sets $s$, coerced to new 3d array with index sets dims1, dims2, dims3, dims4, dims5, dims6

### 4.2.4.9 Array sorting operations

```
function array [int] of $$E$$: arg_sort(array [$$$E$$] of int: x)
```

Returns the permutation $p$ which causes $x$ to be in sorted order hence $x [ p [ i ] ] <= x [ p [ i +1] ]$.


```
function array [int] of $$E$$: arg_sort(array [$$$E$$] of float: x)
```

Returns the permutation $p$ which causes $x$ to be in sorted order hence $x [ p [ i ] ] <= x [ p [ i +1] ]$.


```
function array [$$$E$$] of int: sort(array [$$$E$$] of int: x)
```

4.2.4. Builtins 321
Return values from array $x$ sorted in non-decreasing order

$$\text{function array } [$$E$$] \text{ of float: sort(array } [$$E$$] \text{ of float: } x)$$

Return values from array $x$ sorted in non-decreasing order

$$\text{function array } [$$E$$] \text{ of bool: sort(array } [$$E$$] \text{ of bool: } x)$$

Return values from array $x$ sorted in non-decreasing order

$$\text{function array } [$$E$$] \text{ of var opt } T: \text{ sort_by(array } [$$E$$] \text{ of var opt } T: x, 
array [$$E$$] \text{ of int: } y)$$

Return array $x$ sorted by the values in $y$ in non-decreasing order

The sort is stable, i.e. if $y[i] = y[j]$ with $i < j$, then $x[i]$ will appear in the output before $x[j]$.

$$\text{function array } [$$E$$] \text{ of var opt } T: \text{ sort_by(array } [$$E$$] \text{ of var opt } T: x, 
array [$$E$$] \text{ of int: } y)$$

Return array $x$ sorted by the values in $y$ in non-decreasing order

The sort is stable, i.e. if $y[i] = y[j]$ with $i < j$, then $x[i]$ will appear in the output before $x[j]$.

$$\text{function array } [$$E$$] \text{ of var } T: \text{ sort_by(array } [$$E$$] \text{ of var } T: x, 
array [$$E$$] \text{ of int: } y)$$

Return array $x$ sorted by the values in $y$ in non-decreasing order

The sort is stable, i.e. if $y[i] = y[j]$ with $i < j$, then $x[i]$ will appear in the output before $x[j]$.

$$\text{function array } [$$E$$] \text{ of var opt } T: \text{ sort_by(array } [$$E$$] \text{ of var opt } T: x, 
array [$$E$$] \text{ of float: } y)$$

Return array $x$ sorted by the values in $y$ in non-decreasing order

The sort is stable, i.e. if $y[i] = y[j]$ with $i < j$, then $x[i]$ will appear in the output before $x[j]$.

$$\text{function array } [$$E$$] \text{ of var opt } T: \text{ sort_by(array } [$$E$$] \text{ of var opt } T: x, 
array [$$E$$] \text{ of float: } y)$$

Return array $x$ sorted by the values in $y$ in non-decreasing order

The sort is stable, i.e. if $y[i] = y[j]$ with $i < j$, then $x[i]$ will appear in the output before $x[j]$.
function array [$$E$$] of $T$: sort_by(array [$$E$$] of $T$: x,
array [$$E$$] of float: y)

Return array x sorted by the values in y in non-decreasing order
The sort is stable, i.e. if $y[i] = y[j]$ with $i < j$, then $x[i]$ will appear in the output before $x[j]$.

### 4.2.4.10 Coercions

These functions implement coercions, or channeling, between different types.

function float: bool2float(bool: b)

Return Boolean b coerced to a float

function array [$T$] of float: bool2float(array [$T$] of bool: x)

Return array of Booleans x coerced to an array of floats

function array [$T$] of var float: bool2float(array [$T$] of var bool: x)

Return array of Booleans x coerced to an array of floats

function var float: bool2float(var bool: b)

Return Boolean b coerced to a float

function int: bool2int(bool: b)

Return Boolean b coerced to an integer

function var int: bool2int(var bool: b)

Return Boolean b coerced to an integer

function array [$T$] of var int: bool2int(array [$T$] of var bool: b)

Return array of Booleans b coerced to an array of integers

function array [$T$] of int: bool2int(array [$T$] of bool: x)

Return array of Booleans x coerced to an array of integers

4.2.4. Builtins
function array [$T$] of set of int: bool2int(array [$T$] of set of bool: x)

Return array of sets of Booleans x coerced to an array of sets of integers

function array [$T$] of var int: bool2int(array [$T$] of var bool: x)

Return array of Booleans x coerced to an array of integers

function array [$T$] of var opt int: bool2int(array [$T$] of var opt bool: x)

Return array of Booleans x coerced to an array of integers

function int: ceil(float: x)

Return ⌈x⌉

function int: floor(float: x)

Return ⌊x⌋

function float: int2float(int: x)

Return integer x coerced to a float

function var float: int2float(var int: x)

Return integer x coerced to a float

function array [$T$] of float: int2float(array [$T$] of int: x)

Return array of integers x coerced to an array of floats

function array [$T$] of var float: int2float(array [$T$] of var int: x)

Return array of integers x coerced to an array of floats

function int: round(float: x)

Return x rounded to nearest integer

function array [int] of $S$E: set2array(set of $S$E: x)

Return a set of integers x coerced to an array of integers
4.2.4.11 String operations

These functions implement operations on strings.

**function string: \'++\'(string: s1, string: s2)**

Usage: s1 ++ s2
Return concatenation of s1 and s2

**function string: concat(array [\$T] of string: s)**

Return concatenation of strings in array s

**function string: file_path()**

Return path of file where this function is called

**function string: format(var opt \$T: x)**

Convert x into a string

**function string: format(var opt set of \$T: x)**

Convert x into a string

**function string: format(array [\$U] of var opt \$T: x)**

Convert x into a string

**function string: format(int: w, int: p, var opt \$T: x)**

Formatted to-string conversion
Converting the value x into a string right justified by the number of characters given by w, or left justified if w is negative.
The maximum length of the string representation of x is given by p, or the maximum number of digits after the decimal point for floating point numbers. It is a run-time error for p to be negative.

**function string: format(int: w, int: p, var opt set of \$T: x)**

Formatted to-string conversion
Converting the value x into a string right justified by the number of characters given by w, or left justified if w is negative.
The maximum length of the string representation of $x$ is given by $p$. It is a run-time error for $p$ to be negative.

```
function string: format(int: w, int: p, array [\$U] of var opt T: x)
```

Formatted to-string conversion

Converts the value $x$ into a string right justified by the number of characters given by $w$, or left justified if $w$ is negative.

The maximum length of the string representation of $x$ is given by $p$. It is a run-time error for $p$ to be negative.

```
function string: format(int: w, var opt T: x)
```

Formatted to-string conversion

Converts the value $x$ into a string right justified by the number of characters given by $w$, or left justified if $w$ is negative.

```
function string: format(int: w, var opt set of T: x)
```

Formatted to-string conversion

Converts the value $x$ into a string right justified by the number of characters given by $w$, or left justified if $w$ is negative.

```
function string: format_justify_string(int: w, string: x)
```

String justification

Returns the string $x$ right justified by the number of characters given by $w$, or left justified if $w$ is negative.

```
function string: join(string: d, array [\$T] of string: s)
```

Join string in array $s$ using delimiter $d$

```
function array [int] of string: outputJSON()
```

Return array for output of all variables in JSON format
function array [int] of string: outputJSON(bool: b)

Return array for output of all variables in JSON format, including objective if b is true

function array [int] of string: outputJSONParameters()

Return array for output of all parameters in JSON format

function string: show(var opt set of $T: x)

Convert x into a string

function string: show(var opt $T: x)

Convert x into a string

function string: show(array [$U] of var opt $T: x)

Convert x into a string

function string: show2d(array [int,int] of var opt $T: x)

Convert two-dimensional array x into a string

function string: show3d(array [int,int,int] of var opt $T: x)

Convert three-dimensional array x into a string

function string: showJSON(var opt $T: x)

Convert x into JSON string

function string: showJSON(array [$U] of var opt $T: x)

Convert x into JSON string

function string: show_float(int: w, int: p, var float: x)

Formatted to-string conversion for floats.
Converts the float x into a string right justified by the number of characters given by w, or left justified if w is negative. The number of digits to appear after the decimal point is given by p. It is a run-time error for p to be negative.
MiniZinc Handbook, Release 2.3.1

function string: show_int(int: w, var int: x)

Formatted to-string conversion for integers
Converts the integer x into a string right justified by the number of characters given by w, or left justified if w is negative.

function int: string_length(string: s)

Return length of s

4.2.4.12 Reflection operations

These functions return information about declared or inferred variable bounds and domains.

function set of int: dom(var int: x)

Return domain of x

function set of int: dom_array(array [\$T] of var int: x)

Return union of all domains of the elements in array x

function set of int: dom_bounds_array(array [\$T] of var int: x)

Return approximation of union of all domains of the elements in array x

function int: dom_size(var int: x)

Return cardinality of the domain of x

function $T: fix(var opt $T: x)

Check if the value of x is fixed at this point in evaluation. If it is fixed, return its value, otherwise abort.

function array [\$U] of $T: fix(array [\$U] of var opt $T: x)

Check if the value of every element of the array x is fixed at this point in evaluation. If all are fixed, return an array of their values, otherwise abort.

test has_bounds(var int: x)

Test if variable x has declared, finite bounds
<table>
<thead>
<tr>
<th>Function Call</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>test has_bounds(var float: x)</code></td>
<td>Test if variable x has declared, finite bounds</td>
</tr>
<tr>
<td><code>test has_ub_set(var set of int: x)</code></td>
<td>Test if variable x has a declared, finite upper bound</td>
</tr>
<tr>
<td><code>test is_fixed(var opt $T: x)</code></td>
<td>Test if x is fixed</td>
</tr>
<tr>
<td><code>test is_fixed(array [U] of var opt $T: x)</code></td>
<td>Test if every element of array x is fixed</td>
</tr>
<tr>
<td><code>function int: lb(var int: x)</code></td>
<td>Return lower bound of x</td>
</tr>
<tr>
<td><code>function int: lb(var opt int: x)</code></td>
<td>Return lower bound of x</td>
</tr>
<tr>
<td><code>function float: lb(var float: x)</code></td>
<td>Return lower bound of x</td>
</tr>
<tr>
<td><code>function set of int: lb(var set of int: x)</code></td>
<td>Return lower bound of x</td>
</tr>
<tr>
<td><code>function array [U] of int: lb(array [U] of var int: x)</code></td>
<td>Return array of lower bounds of the elements in array x</td>
</tr>
<tr>
<td><code>function array [U] of float: lb(array [U] of var float: x)</code></td>
<td>Return array of lower bounds of the elements in array x</td>
</tr>
<tr>
<td><code>function array [U] of set of int: lb(array [U] of var set of int: x)</code></td>
<td>Return array of lower bounds of the elements in array x</td>
</tr>
</tbody>
</table>
function int: lb_array(array [\$U\] of var opt int: x)

Return minimum of all lower bounds of the elements in array \(x\)

function float: lb_array(array [\$U\] of var float: x)

Return minimum of all lower bounds of the elements in array \(x\)

function set of int: lb_array(array [\$U\] of var set of int: x)

Return intersection of all lower bounds of the elements in array \(x\)

function int: ub(var int: x)

Return upper bound of \(x\)

function int: ub(var opt int: x)

Return upper bound of \(x\)

function float: ub(var float: x)

Return upper bound of \(x\)

function set of int: ub(var set of int: x)

Return upper bound of \(x\)

function array [\$U\] of int: ub(array [\$U\] of var int: x)

Return array of upper bounds of the elements in array \(x\)

function array [\$U\] of float: ub(array [\$U\] of var float: x)

Return array of upper bounds of the elements in array \(x\)

function array [\$U\] of set of int: ub(array [\$U\] of var set of int: x)

Return array of upper bounds of the elements in array \(x\)

function int: ub_array(array [\$U\] of var opt int: x)

Return maximum of all upper bounds of the elements in array \(x\)
function float: ub_array(array [\$U\] of var float: x)

Return maximum of all upper bounds of the elements in array x

function set of int: ub_array(array [\$U\] of var set of int: x)

Return union of all upper bounds of the elements in array x

### 4.2.4.13 Assertions and debugging functions

These functions help debug models and check that input data conforms to the expectations.

```plaintext
test abort(string: msg)
```

Abort evaluation and print message msg.

```plaintext
function T: assert(bool: b, string: msg, T: x)
```

If b is true, return x, otherwise abort with message msg.

```plaintext
function var T: assert(bool: b, string: msg, var T: x)
```

If b is true, return x, otherwise abort with message msg.

```plaintext
function var opt T: assert(bool: b, string: msg, var opt T: x)
```

If b is true, return x, otherwise abort with message msg.

```plaintext
function array [\$U\] of T: assert(bool: b,
 string: msg,
 array [\$U\] of T: x)
```

If b is true, return x, otherwise abort with message msg.

```plaintext
function array [\$U\] of var T: assert(bool: b,
 string: msg,
 array [\$U\] of var T: x)
```

If b is true, return x, otherwise abort with message msg.

```plaintext
function array [\$U\] of var opt T: assert(bool: b,
 string: msg,
 array [\$U\] of var opt T: x)
```

If b is true, return x, otherwise abort with message msg.
If \( b \) is true, return \( x \), otherwise abort with message \( \text{msg} \).

```plaintext
test assert(bool: b, string: \text{msg})
```

If \( b \) is true, return true, otherwise abort with message \( \text{msg} \).

```plaintext
function T: trace(string: \text{msg}, T: x)
```

Return \( x \), and print message \( \text{msg} \).

```plaintext
function var T: trace(string: \text{msg}, var T: x)
```

Return \( x \), and print message \( \text{msg} \).

```plaintext
function var opt T: trace(string: \text{msg}, var opt T: x)
```

Return \( x \), and print message \( \text{msg} \).

```plaintext
test trace(string: \text{msg})
```

Return true, and print message \( \text{msg} \).

```plaintext
function T: trace_stdout(string: \text{msg}, T: x)
```

Return \( x \), and print message \( \text{msg} \).

```plaintext
function var T: trace_stdout(string: \text{msg}, var T: x)
```

Return \( x \), and print message \( \text{msg} \).

```plaintext
function var opt T: trace_stdout(string: \text{msg}, var opt T: x)
```

Return \( x \), and print message \( \text{msg} \).

```plaintext
test trace_stdout(string: \text{msg})
```

Return true, and print message \( \text{msg} \).

### 4.2.4.14 Functions for enums
### 4.2.4.15 Random Number Generator builtin

These functions implement random number generators from different probability distributions.

#### Function: `enum_next` ($E$)

Return next greater enum value of $x$ in `enum e`.

#### Function: `enum_next` (var $E$)

Return next greater enum value of $x$ in `enum e`.

#### Function: `enum_prev` ($E$)

Return next smaller enum value of $x$ in `enum e`.

#### Function: `enum_prev` (var $E$)

Return next smaller enum value of $x$ in `enum e`.

#### Function: `to_enum` ($E$, int $x$)

Convert $x$ to enum type $X$.

#### Function: `to_enum` (var $E$)

Convert $x$ to enum type $X$.

#### Function: `to_enum` (array [$U$] of $E$)

Convert $x$ to enum type $X$.

#### Function: `to_enum` (array [$U$] of var $E$)

Convert $x$ to enum type $X$.

#### Function: `to_enum` (set of $E$, set of int)

Convert $x$ to enum type $X$. 

---

**MiniZinc Handbook, Release 2.3.1**
test bernoulli(float: p)

Return a boolean sample from the Bernoulli distribution defined by probability p

function int: binomial(int: t, float: p)

Return a sample from the binomial distribution defined by sample number t and probability p

function float: cauchy(float: mean, float: scale)

Return a sample from the cauchy distribution defined by mean, scale

function float: cauchy(int: mean, float: scale)

Return a sample from the cauchy distribution defined by mean, scale

function float: chisquared(int: n)

Return a sample from the chi-squared distribution defined by the degree of freedom n

function float: chisquared(float: n)

Return a sample from the chi-squared distribution defined by the degree of freedom n

function int: discrete_distribution(array [int] of int: weights)

Return a sample from the discrete distribution defined by the array of weights weights that assigns a weight to each integer starting from zero

function float: exponential(int: lambda)

Return a sample from the exponential distribution defined by lambda

function float: exponential(float: lambda)

Return a sample from the exponential distribution defined by lambda

function float: fdistribution(float: d1, float: d2)

Return a sample from the Fisher-Snedecor F-distribution defined by the degrees of freedom d1, d2
function float: fdistribution(int: d1, int: d2)

Return a sample from the Fisher-Snedecor F-distribution defined by the degrees of freedom d1, d2

function float: gamma(float: alpha, float: beta)

Return a sample from the gamma distribution defined by alpha, beta

function float: gamma(int: alpha, float: beta)

Return a sample from the gamma distribution defined by alpha, beta

function float: lognormal(float: mean, float: std)

Return a sample from the lognormal distribution defined by mean, std

function float: lognormal(int: mean, float: std)

Return a sample from the lognormal distribution defined by mean, std

function float: normal(float: mean, float: std)

Return a sample from the normal distribution defined by mean, std

function float: normal(int: mean, float: std)

Return a sample from the normal distribution defined by mean, std

function int: poisson(float: mean)

Return a sample from the poisson distribution defined by mean

function int: poisson(int: mean)

Return a sample from the poisson distribution defined by an integer mean

function float: tdistribution(float: n)

Return a sample from the student's t-distribution defined by the sample size n
function float: tdistribution(int: n)

Return a sample from the student's t-distribution defined by the sample size n

function float: uniform(float: lowerbound, float: upperbound)

Return a sample from the uniform distribution defined by lowerbound, upperbound

function int: uniform(int: lowerbound, int: upperbound)

Return a sample from the uniform distribution defined by lowerbound, upperbound

function float: weibull(float: shape, float: scale)

Return a sample from the Weibull distribution defined by shape, scale

function float: weibull(int: shape, float: scale)

Return a sample from the Weibull distribution defined by shape, scale

### 4.2.4.16 Special constraints

These predicates allow users to mark constraints as e.g. symmetry breaking or redundant, so that solvers can choose to implement them differently.

We cannot easily use annotations for this purpose, since annotations are propagated to all constraints in a decomposition, which may be incorrect for redundant or symmetry breaking constraints in the presence of common subexpression elimination (CSE).

predicate implied_constraint(var bool: b)

Mark b as an implied constraint (synonym for redundant_constraint)

predicate redundant_constraint(var bool: b)

Mark b as a redundant constraint

predicate symmetry_breaking_constraint(var bool: b)

Mark b as a symmetry breaking constraint

### 4.2.4.17 Language information

These functions return information about the MiniZinc system.
function int: mzn_compiler_version()

Return MiniZinc version encoded as an integer (major*10000+minor*1000+patch).

function string: mzn_version_to_string(int: v)

Return string representation of v given an integer major*10000+minor*1000+patch

4.2.5 FlatZinc builtins

These are the standard constraints that need to be supported by FlatZinc solvers (or redefined in the redefinitions.mzn file).

4.2.5.1 Integer FlatZinc builtins

predicate array_int_element(var int: b,
    array [int] of int: as,
    var int: c)

Constrains as [ b ] = c

predicate array_int_maximum(var int: m, array [int] of var int: x)

Constrains m to be the maximum value of the (non-empty) array x

predicate array_int_minimum(var int: m, array [int] of var int: x)

Constrains m to be the minimum value of the (non-empty) array x

predicate array_var_int_element(var int: b,
    array [int] of var int: as,
    var int: c)

Constrains as [ b ] = c

predicate int_abs(var int: a, var int: b)

Constrains b to be the absolute value of a

predicate int_div(var int: a, var int: b, var int: c)

Constrains a / b = c
predicate int_eq(var int: a, var int: b)

Constrains a to be equal to b

predicate int_eq_reif(var int: a, var int: b, var bool: r)

Constrains ( a = b ) ↔ r

predicate int_le(var int: a, var int: b)

Constrains a to be less than or equal to b

predicate int_le_reif(var int: a, var int: b, var bool: r)

Constrains ( a ≤ b ) ↔ r

predicate int_lin_eq(array [int] of int: as,
array [int] of var int: bs,
int: c)

Constrains c = \sum_i as[i] * bs[i]

predicate int_lin_eq_reif(array [int] of int: as,
array [int] of var int: bs,
int: c,
var bool: r)

Constrains r ↔ ( c = \sum_i as[i] * bs[i] )

predicate int_lin_le(array [int] of int: as,
array [int] of var int: bs,
int: c)

Constrains \sum as[i] * bs[i] ≤ c

predicate int_lin_le_reif(array [int] of int: as,
array [int] of var int: bs,
int: c,
var bool: r)

Constrains r ↔ (\sum as[i] * bs[i] ≤ c )

predicate int_lin_ne(array [int] of int: as,
array [int] of var int: bs,
4.2.5. FlatZinc builtins

Constrains $c \neq \sum_i as[i] * bs[i]$

```
predicate int_lin_ne_reif(array [int] of int: as,
 array [int] of var int: bs,
 int: c,
 var bool: r)
```

Constrains $r \leftrightarrow (c \neq \sum_i as[i] * bs[i])$

```
predicate int_lt(var int: a, var int: b)
```

Constrains $a < b$

```
predicate int_lt_reif(var int: a, var int: b, var bool: r)
```

Constrains $r \leftrightarrow (a < b)$

```
predicate int_max(var int: a, var int: b, var int: c)
```

Constrains $\max(a, b) = c$

```
predicate int_min(var int: a, var int: b, var int: c)
```

Constrains $\min(a, b) = c$

```
predicate int_mod(var int: a, var int: b, var int: c)
```

Constrains $a \% b = c$

```
predicate int_ne(var int: a, var int: b)
```

Constrains $a \neq b$

```
predicate int_ne_reif(var int: a, var int: b, var bool: r)
```

```
r \leftrightarrow (a \neq b)
```

```
predicate int_plus(var int: a, var int: b, var int: c)
```

Constrains $a + b = c$
**predicate int_pow**(var int: x, var int: y, var int: z)

Constrains $z = x^y$

**predicate int_pow_fixed**(var int: x, int: y, var int: z)

Constrains $z = x^y$

**predicate int_times**(var int: a, var int: b, var int: c)

Constrains $a \times b = c$

### 4.2.5.2 Bool FlatZinc builtins

**predicate array_bool_and**(array [int] of var bool: as, var bool: r)

Constrains $r \leftrightarrow \bigwedge_i as[i]$

**predicate array_bool_element**(var int: b, array [int] of bool: as, var bool: c)

Constrains $as[b] = c$

**predicate array_bool_or**(array [int] of var bool: as, var bool: r)

Constrains $r \leftrightarrow \bigvee_i as[i]$

**predicate array_bool_xor**(array [int] of var bool: as)

Constrains $r \leftrightarrow \bigoplus_i as[i]$

**predicate array_var_bool_element**(var int: b, array [int] of var bool: as, var bool: c)

Constrains $as[b] = c$

**predicate bool2int**(var bool: a, var int: b)

Constrains $b \in \{0,1\}$ and $a \leftrightarrow b = 1$
**MiniZinc Handbook, Release 2.3.1**

4.2.5. FlatZinc builtins

```plaintext
predicate bool_and(var bool: a, var bool: b, var bool: r)

Constrains r ↔ a ∧ b

predicate bool_clause(array [int] of var bool: as,
 array [int] of var bool: bs)

Constrains ∨, as[i] ∨ ∨, bs[j]

predicate bool_eq(var bool: a, var bool: b)

Constrains a = b

predicate bool_eq_reif(var bool: a, var bool: b, var bool: r)

Constrains r ↔ (a = b)

predicate bool_le(var bool: a, var bool: b)

Constrains a ≤ b

predicate bool_le_reif(var bool: a, var bool: b, var bool: r)

Constrains r ↔ (a ≤ b)

predicate bool_lin_eq(array [int] of int: as,
 array [int] of var bool: bs,
 var int: c)

Constrains c = ∑, as[i] * bs[i]

predicate bool_lin_le(array [int] of int: as,
 array [int] of var bool: bs,
 int: c)

Constrains c ≤ ∑, as[i] * bs[i]

predicate bool_lt(var bool: a, var bool: b)

Constrains a < b

predicate bool_lt_reif(var bool: a, var bool: b, var bool: r)

Constrains r ↔ (a < b)
```
predicate bool_not(var bool: a, var bool: b)

Constrains a ≠ b

predicate bool_or(var bool: a, var bool: b, var bool: r)

Constrains r ↔ a ∨ b

predicate bool_xor(var bool: a, var bool: b, var bool: r)

Constrains r ↔ a ⊕ b

predicate bool_xor(var bool: a, var bool: b)

Constrains a ⊕ b

4.2.5.3 Set FlatZinc builtins

predicate array_set_element(var int: b,
array [int] of set of int: as,
var set of int: c)

Constrains as [ b ] = c

predicate array_var_set_element(var int: b,
array [int] of var set of int: as,
var set of int: c)

Constrains as [ b ] = c

predicate set_card(var set of int: S, var int: x)

Constrains x = | S |

predicate set_diff(var set of int: x,
var set of int: y,
var set of int: r)

Constrains r = x \ y

predicate set_eq(var set of int: x, var set of int: y)

Constrains x = y
<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set_eq_reif(x, y, r)</code></td>
<td>Constrains $r \iff (x = y)$</td>
</tr>
<tr>
<td><code>set_in(x, S)</code></td>
<td>Constrains $x \in S$</td>
</tr>
<tr>
<td><code>set_in(x, Y)</code></td>
<td>Constrains $x \in S$</td>
</tr>
<tr>
<td><code>set_in_reif(x, S, r)</code></td>
<td>Constrains $r \iff (x \in S)$</td>
</tr>
<tr>
<td><code>set_in_reif(x, Y, r)</code></td>
<td>Constrains $r \iff (x \in S)$</td>
</tr>
<tr>
<td><code>set_intersect(x, y, r)</code></td>
<td>Constrains $r = x \cap y$</td>
</tr>
<tr>
<td><code>set_le(x, y)</code></td>
<td>Constrains $x \leq y$ (lexicographic order)</td>
</tr>
<tr>
<td><code>set_lt(x, y)</code></td>
<td>Constrains $x &lt; y$ (lexicographic order)</td>
</tr>
<tr>
<td><code>set_ne(x, y)</code></td>
<td>Constrains $x \neq y$</td>
</tr>
<tr>
<td><code>set_ne_reif(x, y, r)</code></td>
<td>Constrains $r \iff (x \neq y)$</td>
</tr>
</tbody>
</table>

**4.2.5. FlatZinc builtins**
Constrains \( r \leftrightarrow (x \neq y) \)

```plaintext
predicate set_subset(var set of int: x, var set of int: y)
```

Constrains \( x \subseteq y \)

```plaintext
predicate set_subset_reif(var set of int: x, var set of int: y, var bool: r)
```

Constrains \( r \leftrightarrow (x \subseteq y) \)

```plaintext
predicate set_superset(var set of int: x, var set of int: y)
```

Constrains \( x \supseteq y \)

```plaintext
predicate set_symdiff(var set of int: x, var set of int: y, var set of int: r)
```

Constrains \( r \) to be the symmetric difference of \( x \) and \( y \)

```plaintext
predicate set_union(var set of int: x, var set of int: y, var set of int: r)
```

Constrains \( r = x \cup y \)

### 4.2.5.4 Float FlatZinc builtins

```plaintext
predicate array_float_element(var int: b, array [int] of float: as, var float: c)
```

Constrains \( \text{as}[b] = c \)

```plaintext
predicate array_float_maximum(var int: m, array [int] of var int: x)
```

Constrains \( m \) to be the maximum value of the (non-empty) array \( x \)

```plaintext
predicate array_float_minimum(var int: m, array [int] of var int: x)
```

Constrains \( m \) to be the minimum value of the (non-empty) array \( x \)
**predicate** array_var_float_element(var int: b,  
array [int] of var float: as,  
var float: c)

Constrains as [ b ] = c

**predicate** float_abs(var float: a, var float: b)

Constrains b to be the absolute value of a

**predicate** float_acos(var float: a, var float: b)

Constrains b = acos( a )

**predicate** float_acosh(var float: a, var float: b)

Constrains b = acosh( a )

**predicate** float_asin(var float: a, var float: b)

Constrains b = asin( a )

**predicate** float_asinh(var float: a, var float: b)

Constrains b = asinh( a )

**predicate** float_atan(var float: a, var float: b)

Constrains b = atan( a )

**predicate** float_atanh(var float: a, var float: b)

Constrains b = atanh( a )

**predicate** float_cos(var float: a, var float: b)

Constrains b = cos( a )

**predicate** float_cosh(var float: a, var float: b)

Constrains b = cosh( a )

---

4.2.5. **FlatZinc builtins**
predicate float_div(var float: a, var float: b, var float: c)

Constrains \( a / b = c \)

predicate float_dom(var float: x, array[int] of float: as)

Constrains the domain of \( x \) using the values in \( as \), using each pair of values as \([2^i \cdot i-1.. an / 2\) as a possible range

predicate float_eq(var float: a, var float: b)

Constrains \( a = b \)

predicate float_eq_reif(var float: a, var float: b, var bool: r)

Constrains \( r \leftrightarrow (a = b) \)

predicate float_exp(var float: a, var float: b)

Constrains \( b = \exp(a) \)

predicate float_in(var float: a, float: b, float: c)

Constrains \( a \in [b, c] \)

predicate float_in_reif(var float: a, float: b, float: c, var bool: r)

Constrains \( r \leftrightarrow a \in [b, c] \)

predicate float_le(var float: a, var float: b)

Constrains \( a \leq b \)

predicate float_le_reif(var float: a, var float: b, var bool: r)

Constrains \( r \leftrightarrow (a \leq b) \)

predicate float_lin_eq(array[int] of float: as,
array[int] of var float: bs,
float: c)

Constrains \( c = \sum_i as[i] * bs[i] \)
predicate float_lin_eq_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r ↔ (c = \sum_i as[i] * bs[i])

predicate float_lin_le(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c ≤ \sum_i as[i] * bs[i]

predicate float_lin_le_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r ↔ (c ≤ \sum_i as[i] * bs[i])

predicate float_lin_lt(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c < \sum_i as[i] * bs[i]

predicate float_lin_lt_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r ↔ (c < \sum_i as[i] * bs[i])

predicate float_lin_ne(array [int] of float: as,
array [int] of var float: bs,
float: c)

Constrains c ≠ \sum_i as[i] * bs[i]

predicate float_lin_ne_reif(array [int] of float: as,
array [int] of var float: bs,
float: c,
var bool: r)

Constrains r ↔ (c ≠ \sum_i as[i] * bs[i])
```plaintext
predicate float_ln(var float: a, var float: b)
Constrains b = ln(a)

predicate float_log10(var float: a, var float: b)
Constrains b = log_{10}(a)

predicate float_log2(var float: a, var float: b)
Constrains b = log_{2}(a)

predicate float_lt(var float: a, var float: b)
Constrains a < b

predicate float_lt_reif(var float: a, var float: b, var bool: r)
Constrains r ↔ (a < b)

predicate float_max(var float: a, var float: b, var float: c)
Constrains max(a, b) = c

predicate float_min(var float: a, var float: b, var float: c)
Constrains min(a, b) = c

predicate float_ne(var float: a, var float: b)
Constrains a ≠ b

predicate float_ne_reif(var float: a, var float: b, var bool: r)
Constrains r ↔ (a ≠ b)

predicate float_plus(var float: a, var float: b, var float: c)
Constrains a + b = c

predicate float_pow(var float: x, var float: y, var float: z)
Constrains z = x^{y}
```
predicate float_sin(var float: a, var float: b)

Constrains $b = \sin(a)$

predicate float_sinh(var float: a, var float: b)

Constrains $b = \sinh(a)$

predicate float_sqrt(var float: a, var float: b)

Constrains $b = \sqrt{a}$

predicate float_tan(var float: a, var float: b)

Constrains $b = \tan(a)$

predicate float_tanh(var float: a, var float: b)

Constrains $b = \tanh(a)$

predicate float_times(var float: a, var float: b, var float: c)

Constrains $a \times b = c$

predicate int2float(var int: x, var float: y)

Constrains $y = x$

### 4.2.5.5 FlatZinc builtins added in MiniZinc 2.0.0.

These functions and predicates define built-in operations of the MiniZinc language that have been added in MiniZinc 2.0.0. Solvers that support these natively need to include a file called redefinitions-2.0.mzn in their solver library that redefines these predicates as builtins.

predicate array_float_maximum(var float: m,
                               array [int] of var float: x)

Constrains $m$ to be the maximum value in array $x$.

predicate array_float_minimum(var float: m,
                               array [int] of var float: x)

Constrains $m$ to be the minimum value in array $x$. 
predicate array_int_maximum(var int: m, array [int] of var int: x)

Constrains \( m \) to be the maximum value in array \( x \).

predicate array_int_minimum(var int: m, array [int] of var int: x)

Constrains \( m \) to be the minimum value in array \( x \).

predicate bool_clause_reif(array [int] of var bool: as,
                          array [int] of var bool: bs,
                          var bool: b)

Reified clause constraint. Constrains \( b \leftrightarrow \bigvee_i as[i] \lor \bigvee_j \neg bs[j] \).

4.2.5.6 FlatZinc builtins added in MiniZinc 2.0.2.

These functions and predicates define built-in operations of the MiniZinc language that have been added in MiniZinc 2.0.2. Solvers that support these natively need to include a file called redefinitions-2.0.2.mzn in their solver library that redefines these predicates as builtins.

predicate array_var_bool_element_nonshifted(var int: idx,
                                           array [int] of var bool: x,
                                           var bool: c)

Element constraint on array with MiniZinc index set, constrains \( x[\text{idx}] = c \) This can be overridden in a solver that can perform the index calculation more efficiently than using a MiniZinc decomposition.

predicate array_var_float_element_nonshifted(var int: idx,
                                               array [int] of var float: x,
                                               var float: c)

Element constraint on array with MiniZinc index set, constrains \( x[\text{idx}] = c \) This can be overridden in a solver that can perform the index calculation more efficiently than using a MiniZinc decomposition.

predicate array_var_int_element_nonshifted(var int: idx,
                                            array [int] of var int: x,
                                            var int: c)

Element constraint on array with MiniZinc index set, constrains \( x[\text{idx}] = c \) This can be overridden in a solver that can perform the index calculation more efficiently than using a MiniZinc decomposition.
Element constraint on array with MiniZinc index set, constrains \( x[i] = c \) This can be overridden in a solver that can perform the index calculation more efficiently than using a MiniZinc decomposition.

### 4.2.5.7 FlatZinc builtins added in MiniZinc 2.1.0.

These functions and predicates define built-in operations of the MiniZinc language that have been added in MiniZinc 2.1.0. Solvers that support these natively need to include a file called redefinitions-2.1.0.mzn in their solver library that redefines these predicates as builtins.

```plaintext
predicate float_dom(var float: x, array [int] of float: as)
```

Constrains \( x \) to take one of the values in \( as \)

```plaintext
predicate float_in(var float: x, float: a, float: b)
```

Constrains \( a \leq x \leq b \)

### 4.2.5.8 FlatZinc builtins added in MiniZinc 2.1.1.

These functions and predicates define built-in operations of the MiniZinc language that have been added in MiniZinc 2.1.1. Solvers that support these natively need to include a file called redefinitions-2.1.1.mzn in their solver library that redefines these predicates as builtins.

```plaintext
function var $$E: max(var set of $$E: s)
```

Returns variable constrained to be equal to the maximum of the set \( s \). An alternative implementation can be found in the comments of the source code.

```plaintext
function var $$E: min(var set of $$E: s)
```

Returns variable constrained to be equal to the minimum of the set \( s \). An alternative implementation can be found in the comments of the source code.

### 4.2.6 Global constraints

These constraints represent high-level modelling abstractions, for which many solvers implement special, efficient inference algorithms.
4.2.6.1 All-Different and related constraints

**predicate all_different(array [\$X\] of var int: x)**

Constrain the array of integers \( x \) to be all different.

**predicate all_different(array [\$X\] of var set of int: x)**

Constrain the array of sets of integers \( x \) to be all different.

**predicate all_disjoint(array [\$X\] of var set of int: S)**

Constrain the array of sets of integers \( S \) to be pairwise disjoint.

**predicate all_equal(array [\$X\] of var int: x)**

Constrain the array of integers \( x \) to be all equal

**predicate all_equal(array [\$X\] of var set of int: x)**

Constrain the array of sets of integers \( x \) to be all equal

**predicate alldifferent_except_0(array [\$X\] of var int: vs)**

Constrain the array of integers \( vs \) to be all different except those elements that are assigned the value 0.

**predicate nvalue(var int: n, array [int] of var int: x)**

Requires that the number of distinct values in \( x \) is \( n \).

**function var int: nvalue(array [int] of var int: x)**

Returns the number of distinct values in \( x \).

**predicate symmetric_all_different(array [int] of var int: x)**

Requires the array of integers \( x \) to be all different, and for all \( i, x[i] = j \rightarrow x[j] = i \).

4.2.6.2 Lexicographic constraints
predicate lex2(array [int,int] of var int: x)

Require adjacent rows and adjacent columns in the array x to be lexicographically ordered. Adjacent rows and adjacent columns may be equal.

predicate lex_greater(array [int] of var bool: x,
array [int] of var bool: y)

Requires that the array x is strictly lexicographically greater than array y. Compares them from first to last element, regardless of indices.

predicate lex_greater(array [int] of var int: x,
array [int] of var int: y)

Requires that the array x is strictly lexicographically greater than array y. Compares them from first to last element, regardless of indices.

predicate lex_greater(array [int] of var float: x,
array [int] of var float: y)

Requires that the array x is strictly lexicographically greater than array y. Compares them from first to last element, regardless of indices.

predicate lex_greater(array [int] of var set of int: x,
array [int] of var set of int: y)

Requires that the array x is strictly lexicographically greater than array y. Compares them from first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var bool: x,
array [int] of var bool: y)

Requires that the array x is lexicographically greater than or equal to array y. Compares them from first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var int: x,
array [int] of var int: y)

Requires that the array x is lexicographically greater than or equal to array y. Compares them from first to last element, regardless of indices.

predicate lex_greatereq(array [int] of var float: x,
array [int] of var float: y)

Requires that the array x is lexicographically greater than or equal to array y. Compares them from first to last element, regardless of indices.
<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lex_greatereq(array [int] of var set of int: x, array [int] of var set of int: y)</code></td>
<td>Requires that the array $x$ is lexicographically greater than or equal to array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_less(array [int] of var bool: x, array [int] of var bool: y)</code></td>
<td>Requires that the array $x$ is strictly lexicographically less than array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_less(array [int] of var int: x, array [int] of var int: y)</code></td>
<td>Requires that the array $x$ is strictly lexicographically less than array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_less(array [int] of var float: x, array [int] of var float: y)</code></td>
<td>Requires that the array $x$ is strictly lexicographically less than array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_less(array [int] of var set of int: x, array [int] of var set of int: y)</code></td>
<td>Requires that the array $x$ is strictly lexicographically less than array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_lesseq(array [int] of var bool: x, array [int] of var bool: y)</code></td>
<td>Requires that the array $x$ is lexicographically less than or equal to array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_lesseq(array [int] of var float: x, array [int] of var float: y)</code></td>
<td>Requires that the array $x$ is lexicographically less than or equal to array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
<tr>
<td><code>lex_lesseq(array [int] of var int: x, array [int] of var int: y)</code></td>
<td>Requires that the array $x$ is lexicographically less than or equal to array $y$. Compares them from first to last element, regardless of indices.</td>
</tr>
</tbody>
</table>
Requires that the array \( x \) is lexicographically less than or equal to array \( y \). Compares them from first to last element, regardless of indices.

\[
\text{predicate lex_lesseq}\left(\text{array [int] of var set of int: } x, \text{ array [int] of var set of int: } y\right)
\]

Requires that the array \( x \) is lexicographically less than or equal to array \( y \). Compares them from first to last element, regardless of indices.

\[
\text{predicate seq_precede_chain}\left(\text{array [int] of var int: } x\right)
\]

Requires that \( i \) precedes \( i + 1 \) in the array \( x \) for all positive \( i \).

\[
\text{predicate seq_precede_chain}\left(\text{array [int] of var set of int: } x\right)
\]

Requires that \( i \) appears in a set in array \( x \) before \( i + 1 \) for all positive \( i \).

\[
\text{predicate strict_lex2}\left(\text{array [int,int] of var int: } x\right)
\]

Require adjacent rows and adjacent columns in the array \( x \) to be lexicographically ordered. Adjacent rows and adjacent columns cannot be equal.

\[
\text{predicate value_precede}\left(\text{int: } s, \text{ int: } t, \text{ array [int] of var int: } x\right)
\]

Requires that \( s \) precede \( t \) in the array \( x \).

Precedence means that if any element of \( x \) is equal to \( t \), then another element of \( x \) with a lower index is equal to \( s \).

\[
\text{predicate value_precede}\left(\text{int: } s, \text{ int: } t, \text{ array [int] of var set of int: } x\right)
\]

Requires that \( s \) precede \( t \) in the array \( x \).

Precedence means that if an element of \( x \) contains \( t \) but not \( s \), then another element of \( x \) with lower index contains \( s \) but not \( t \).

\[
\text{predicate value_precede_chain}\left(\text{array [int] of int: } c, \text{ array [int] of var int: } x\right)
\]

Requires that \( c[i] \) precedes \( c[i+1] \) in the array \( x \).

Precedence means that if any element of \( x \) is equal to \( c[i+1] \), then another element of \( x \) with a lower index is equal to \( c[i] \).
predicate value_precede_chain(array [int] of int: c, array [int] of var set of int: x)

Requires that c[i] precedes c[i+1] in the array x.
Precedence means that if an element of x contains c[i+1] but not c[i], then another element of x with lower index contains c[i] but not c[i+1].

4.2.6.3 Sorting constraints

function array [int] of var int: arg_sort(array [int] of var int: x)

Returns the permutation p which causes x to be in sorted order hence x[p[i]] <= x[p[i+1]].
The permutation is the stable sort hence x[p[i]] = x[p[i+1]] → p[i] < p[i+1].

function array [int] of var int: arg_sort(array [int] of var float: x)

Returns the permutation p which causes x to be in sorted order hence x[p[i]] <= x[p[i+1]].
The permutation is the stable sort hence x[p[i]] = x[p[i+1]] → p[i] < p[i+1].

predicate arg_sort(array [int] of var int: x, array [int] of var int: p)

Constrains p to be the permutation which causes x to be in sorted order hence x[p[i]] <= x[p[i+1]].
The permutation is the stable sort hence x[p[i]] = x[p[i+1]] → p[i] < p[i+1].

predicate arg_sort(array [int] of var float: x, array [int] of var int: p)

Constrains p to be the permutation which causes x to be in sorted order hence x[p[i]] <= x[p[i+1]].
The permutation is the stable sort hence x[p[i]] = x[p[i+1]] → p[i] < p[i+1].

predicate decreasing(array [int] of var bool: x)

Requires that the array x is in decreasing order (duplicates are allowed).

predicate decreasing(array [int] of var float: x)

Requires that the array x is in decreasing order (duplicates are allowed).
**predicate decreasing(array [int] of var int: x)**

Requires that the array x is in decreasing order (duplicates are allowed).

**predicate decreasing(array [int] of var set of int: x)**

Requires that the array x is in decreasing order (duplicates are allowed).

**predicate increasing(array [int] of var bool: x)**

Requires that the array x is in increasing order (duplicates are allowed).

**predicate increasing(array [int] of var float: x)**

Requires that the array x is in increasing order (duplicates are allowed).

**predicate increasing(array [int] of var int: x)**

Requires that the array x is in increasing order (duplicates are allowed).

**predicate increasing(array [int] of var set of int: x)**

Requires that the array x is in increasing order (duplicates are allowed).

**predicate sort(array [int] of var int: x, array [int] of var int: y)**

Requires that the multiset of values in x are the same as the multiset of values in y but y is in sorted order.

**function array [int] of var int: sort(array [int] of var int: x)**

Return a multiset of values that is the same as the multiset of values in x but in sorted order.

### 4.2.6.4 Channeling constraints

**predicate int_set_channel(array [int] of var int: x, array [int] of var set of int: y)**

Requires that array of int variables x and array of set variables y are related such that ( x[i] = j ) & 8596; ( i in y[j] ).
predicate inverse(array [int] of var int: f,  
array [int] of var int: invf)

Constrains two arrays of int variables, \( f \) and \( \text{invf} \), to represent inverse functions. All the values in each array must be within the index set of the other array.

function array [int] of var int: inverse(array [int] of var int: f)

Given a function \( f \) represented as an array, return the inverse function.

predicate inverse_set(array [int] of var set of int: f,  
array [int] of var set of int: invf)

Constrains two arrays of set of int variables, \( f \) and \( \text{invf} \), so that \( a \in f[i] \iff i \in \text{invf}[j] \). All the values in each array's sets must be within the index set of the other array.

predicate link_set_to_booleans(var set of int: s,  
array [int] of var bool: b)

Constrain the array of Booleans \( b \) to be a representation of the set \( s \): \( i \in s \iff b[i] \). The index set of \( b \) must be a superset of the possible values of \( s \).

### 4.2.6.5 Counting constraints

predicate among(var int: n, array [int] of var int: x, set of int: v)

Requires exactly \( n \) variables in \( x \) to take one of the values in \( v \).

function var int: among(array [int] of var int: x, set of int: v)

Returns the number of variables in \( x \) that take one of the values in \( v \).

predicate at_least(int: n, array [int] of var int: x, int: v)

Requires at least \( n \) variables in \( x \) to take the value \( v \).

predicate at_least(int: n,  
array [int] of var set of int: x,  
set of int: v)

Requires at least \( n \) variables in \( x \) to take the value \( v \).
<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate at_most(int: n, array [int] of var int: x, int: v)</code></td>
<td></td>
</tr>
<tr>
<td>Requires at most ( n ) variables in ( x ) to take the value ( v ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate at_most(int: n, array [int] of var set of int: x, set of int: v)</code></td>
<td></td>
</tr>
<tr>
<td>Requires at most ( n ) variables in ( x ) to take the value ( v ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate at_most1(array [int] of var set of int: s)</code></td>
<td></td>
</tr>
<tr>
<td>Requires that each pair of sets in ( s ) overlap in at most one element.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate count(array [int] of var int: x, var int: y, var int: c)</code></td>
<td></td>
</tr>
<tr>
<td>Constrains ( c ) to be the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>function var int: count(array [int] of var int: x, var int: y)</code></td>
<td></td>
</tr>
<tr>
<td>Returns the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate count_eq(array [int] of var int: x, var int: y, var int: c)</code></td>
<td></td>
</tr>
<tr>
<td>Constrains ( c ) to be the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>function var int: count_eq(array [int] of var int: x, var int: y)</code></td>
<td></td>
</tr>
<tr>
<td>Returns the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate count_geq(array [int] of var int: x, var int: y, var int: c)</code></td>
<td></td>
</tr>
<tr>
<td>Constrains ( c ) to be greater than or equal to the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate count_gt(array [int] of var int: x, var int: y, var int: c)</code></td>
<td></td>
</tr>
<tr>
<td>Constrains ( c ) to be strictly greater than the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>predicate count_leq(array [int] of var int: x, var int: y, var int: c)</code></td>
<td></td>
</tr>
<tr>
<td>Constrains ( c ) to be less than or equal to the number of occurrences of ( y ) in ( x ).</td>
<td></td>
</tr>
</tbody>
</table>
**predicate count_lt(array [int] of var int: x, var int: y, var int: c)**

Constrains c to be strictly less than the number of occurrences of y in x.

**predicate count_neq(array [int] of var int: x, var int: y, var int: c)**

Constrains c to be not equal to the number of occurrences of y in x.

**predicate distribute(array [int] of var int: card, array [int] of var int: value, array [int] of var int: base)**

Requires that card[i] is the number of occurrences of value[i] in base. The values in value need not be distinct.

**function array [int] of var int: distribute(array [int] of var int: value, array [int] of var int: base)**

Returns an array of the number of occurrences of value[i] in base. The values in value need not be distinct.

**predicate exactly(int: n, array [int] of var int: x, int: v)**

Requires exactly n variables in x to take the value v.

**predicate exactly(int: n, array [int] of var set of int: x, set of int: v)**

Requires exactly n variables in x to take the value v.

**predicate global_cardinality(array [int] of var int: x, array [int] of int: cover, array [int] of var int: counts)**

Requires that the number of occurrences of cover[i] in x is counts[i].

**function array [int] of var int: global_cardinality(array [int] of var int: x, array [int] of var int: cover)**

Returns the number of occurrences of cover[i] in x.
predicate global_cardinality_closed(array [int] of var int: x, 
     array [int] of int: cover, 
     array [int] of var int: counts)

Requires that the number of occurrences of \( i \) in \( x \) is \( \text{counts}[i] \).
The elements of \( x \) must take their values from \( \text{cover} \).

function array [int] of var int: global_cardinality_closed(array [int] of 
     var int: x, 
     int: cover)

Returns an array with number of occurrences of \( i \) in \( x \).
The elements of \( x \) must take their values from \( \text{cover} \).

predicate global_cardinality_low_up(array [int] of var int: x, 
     array [int] of int: cover, 
     array [int] of int: lbound, 
     array [int] of int: ubound)

Requires that for all \( i \), the value \( \text{cover}[i] \) appears at least \( \text{lbound}[i] \) and at most \( \text{ubound}[i] \) times in the array \( x \).

predicate global_cardinality_low_up_closed(array [int] of var int: x, 
     array [int] of int: cover, 
     array [int] of int: lbound, 
     array [int] of int: ubound)

Requires that for all \( i \), the value \( \text{cover}[i] \) appears at least \( \text{lbound}[i] \) and at most \( \text{ubound}[i] \) times in the array \( x \).
The elements of \( x \) must take their values from \( \text{cover} \).

4.2.6.6 Packing constraints

predicate bin_packing(int: c, 
     array [int] of var int: bin, 
     array [int] of int: w)

Requires that each item \( i \) with weight \( w[i] \), be put into \( \text{bin}[i] \) such that the sum of the weights of the items in each bin does not exceed the capacity \( c \).
Assumptions: \( \forall i, w[i] \geq 0 \cdot c \geq 0 \)
**predicate bin_packing_capa(array [int] of int: c,
                        array [int] of var int: bin,
                        array [int] of int: w)**

Requires that each item \( i \) with weight \( w[i] \), be put into \( \text{bin}[i] \) such that the sum of the weights of the items in each bin \( b \) does not exceed the capacity \( c[b] \).

Assumptions: -forall \( i, w[i] >= 0 \) -forall \( b, c[b] >= 0 \)

**predicate bin_packing_load(array [int] of var int: load,
                            array [int] of var int: bin,
                            array [int] of int: w)**

Requires that each item \( i \) with weight \( w[i] \), be put into \( \text{bin}[i] \) such that the sum of the weights of the items in each bin \( b \) is equal to \( \text{load}[b] \).

Assumptions: -forall \( i, w[i] >= 0 \)

**function array [int] of var int: bin_packing_load(array [int] of var int: ...
                                           ...bin,
                                           array [int] of int: w)**

Returns the load of each bin resulting from packing each item \( i \) with weight \( w[i] \) into \( \text{bin}[i] \), where the load is defined as the sum of the weights of the items in each bin.

Assumptions:
- forall \( i, w[i] >= 0 \)

**predicate diffn(array [int] of var int: x,
                  array [int] of var int: y,
                  array [int] of var int: dx,
                  array [int] of var int: dy)**

Constrains rectangles \( i \), given by their origins \( (x[i], y[i]) \) and sizes \( (dx[i], dy[i]) \), to be non-overlapping. Zero-width rectangles can still not overlap with any other rectangle.

**predicate diffn_k(array [int,int] of var int: box_posn,
                    array [int,int] of var int: box_size)**

Constrains \( k \)-dimensional boxes to be non-overlapping. For each box \( i \) and dimension \( j \), \( \text{box_posn}[i,j] \) is the base position of the box in dimension \( j \), and \( \text{box_size}[i,j] \) is the size in that dimension. Boxes whose size is 0 in any dimension still cannot overlap with any other box.

**predicate diffn_nonstrict(array [int] of var int: x,
                           array [int] of var int: y,
                           array [int] of var int: dx,
                           array [int] of var int: dy)**
Constrains rectangles $i$, given by their origins $(x[i], y[i])$ and sizes $(dx[i], dy[i])$, to be non-overlapping. Zero-width rectangles can be packed anywhere.

```
predicate diffn_nonstrict_k(array [int,int] of var int: box_posn, array [int,int] of var int: box_size)
```

Constrains $k$-dimensional boxes to be non-overlapping. For each box $i$ and dimension $j$, $box\_posn[i,j]$ is the base position of the box in dimension $j$, and $box\_size[i,j]$ is the size in that dimension. Boxes whose size is 0 in at least one dimension can be packed anywhere.

```
```

A global non-overlap constraint for $k$ dimensional objects. It enforces that no two objects overlap.

Parameters:
- $k$: the number of dimensions
- rect_size: the size of each box in $k$ dimensions
- rect_offset: the offset of each box from the base position in $k$ dimensions
- shape: the set of rectangles defining the $i$-th shape.
- $x$: the base position of each object. $x[i,j]$ is the position of object $i$ in dimension $j$.
- kind: the shape used by each object.

```
```

A global non-overlap constraint for $k$ dimensional objects. It enforces that no two objects overlap, and that all objects fit within a global $k$ dimensional bounding box.

Parameters:
- $k$: the number of dimensions
- rect_size: the size of each box in $k$ dimensions
- rect_offset: the offset of each box from the base position in $k$ dimensions
- shape: the set of rectangles defining the $i$-th shape.
• *x*: the base position of each object. \( x[i, j] \) is the position of object \( i \) in dimension \( j \).
• *kind*: the shape used by each object.
• *l*: is an array of lower bounds, \( l[i] \) is the minimum bounding box for all objects in dimension \( i \).
• *u*: is an array of upper bounds, \( u[i] \) is the maximum bounding box for all objects in dimension \( i \).

\[
\text{predicate geost_nonoverlap}_k(\text{array [int] of var int: x1, array [int] of int: w1, array [int] of var int: x2, array [int] of int: w2})
\]

A global non-overlap constraint for 2 dimensional objects. It enforces that no two objects overlap and zero-length objects do not appear in the middle of other objects.

Parameters:
• *x1*: first coordinate of each object
• *w2*: width in first dimension for each object
• *x2*: second coordinate of each object
• *w2*: width in second dimension for each object

\[
\]

A global non-overlap constraint for \( k \) dimensional objects. It enforces that no two objects overlap, and that all objects fit within a global \( k \) dimensional bounding box. In addition, it enforces that the bounding box is the smallest one containing all objects, i.e., each of the \( 2k \) boundaries is touched by at least by one object.

Parameters:
• *k*: the number of dimensions
• *rect_size*: the size of each box in \( k \) dimensions
• *rect_offset*: the offset of each box from the base position in \( k \) dimensions
• *shape*: the set of rectangles defining the \( i \)-th shape.
• *x*: the base position of each object. \( x[i, j] \) is the position of object \( i \) in dimension \( j \).
• *kind*: the shape used by each object.
• *l*: is an array of lower bounds, \( l[i] \) is the minimum bounding box for all objects in dimension \( i \).
• u: is an array of upper bounds, \( u[i] \) is the maximum bounding box for all objects in dimension \( i \).

```plaintext
predicate knapsack(array [int] of int: w,
array [int] of int: p,
array [int] of var int: x,
var int: W,
var int: P)
```

Requires that items are packed in a knapsack with certain weight and profit restrictions.

Assumptions:

- Weights \( w \) and profits \( p \) must be non-negative
- \( w, p \) and \( x \) must have the same index sets

Parameters:

- \( w \): weight of each type of item
- \( p \): profit of each type of item
- \( x \): number of items of each type that are packed
- \( W \): sum of sizes of all items in the knapsack
- \( P \): sum of profits of all items in the knapsack

### 4.2.6.7 Scheduling constraints

```plaintext
predicate alternative(var opt int: s0,
var int: d0,
array [int] of var opt int: s,
array [int] of var int: d)
```

Alternative constraint for optional tasks. Task \((s0, d0)\) spans the optional tasks \((s[i], d[i])\) in the array arguments and at most one can occur.

```plaintext
predicate cumulative(array [int] of var int: s,
array [int] of var int: d,
array [int] of var int: r,
var int: b)
```

Requires that a set of tasks given by start times \( s \), durations \( d \), and resource requirements \( r \), never require more than a global resource bound \( b \) at any one time.

Assumptions: - for all \( i \), \( d[i] >= 0 \) and \( r[i] >= 0 \)

```plaintext
predicate cumulative(array [int] of var opt int: s,
array [int] of var int: d,
array [int] of var int: r,
```
Requires that a set of tasks given by start times \( s \), durations \( d \), and resource requirements \( r \), never require more than a global resource bound \( b \) at any one time. Start times are optional variables, so that absent tasks do not need to be scheduled.

Assumptions: - forall \( i \), \( d[i] \geq 0 \) and \( r[i] \geq 0 \)

\[
\text{predicate disjunctive(array [int] of var int: s,}
\text{array [int] of var int: d)}
\]

Requires that a set of tasks given by start times \( s \) and durations \( d \) do not overlap in time. Tasks with duration 0 can be scheduled at any time, even in the middle of other tasks.

Assumptions: - forall \( i \), \( d[i] \geq 0 \)

\[
\text{predicate disjunctive(array [int] of var opt int: s,}
\text{array [int] of var int: d)}
\]

Requires that a set of tasks given by start times \( s \) and durations \( d \) do not overlap in time. Tasks with duration 0 can be scheduled at any time, even in the middle of other tasks. Start times are optional variables, so that absent tasks do not need to be scheduled.

Assumptions: - forall \( i \), \( d[i] \geq 0 \)

\[
\text{predicate disjunctive_strict(array [int] of var int: s,}
\text{array [int] of var int: d)}
\]

Requires that a set of tasks given by start times \( s \) and durations \( d \) do not overlap in time. Tasks with duration 0 CANNOT be scheduled at any time, but only when no other task is running.

Assumptions: - forall \( i \), \( d[i] \geq 0 \)

\[
\text{predicate disjunctive_strict(array [int] of var opt int: s,}
\text{array [int] of var int: d)}
\]

Requires that a set of tasks given by start times \( s \) and durations \( d \) do not overlap in time. Tasks with duration 0 CANNOT be scheduled at any time, but only when no other task is running. Start times are optional variables, so that absent tasks do not need to be scheduled.

Assumptions: - forall \( i \), \( d[i] \geq 0 \)

\[
\text{predicate span(var opt int: s0,}
\text{var int: d0,}
\text{array [int] of var opt int: s,}
\text{array [int] of var int: d)}
\]

Span constraint for optional tasks. Task \( (s0, d0) \) spans the optional tasks \( (s[i], d[i]) \) in the array arguments.
4.2.6.8 Graph constraints

```
predicate bounded_dpath(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 array [int] of int: w,
 var int: s,
 var int: t,
 array [int] of var bool: ns,
 array [int] of var bool: es,
 var int: K)
```

Constrains the subgraph \(ns\) and \(es\) of a given directed graph to be a path from \(s\) to \(t\) of weight \(K\).

\(N\) is the number of nodes in the given graph \(E\) is the number of edges in the given graph \(\text{from}\) is the leaving node \(1..N\) for each edge \(\text{to}\) is the entering node \(1..N\) for each edge \(w\) is the weight of each edge \(s\) is the source node (which may be variable) \(t\) is the dest node (which may be variable) \(ns\) is a Boolean for each node whether it is in the subgraph \(es\) is a Boolean for each edge whether it is in the subgraph \(K\) is the cost of the path

```
predicate bounded_dpath(array [int] of N: from,
 array [int] of N: to,
 var N: s,
 var N: t,
 array [N] of var bool: ns,
 array [int] of var bool: es,
 var int: K)
```

Constrains the subgraph \(ns\) and \(es\) of a given directed graph to be a path from \(s\) to \(t\) of weight \(K\).

\(\text{from}\) is the leaving node for each edge \(\text{to}\) is the entering node for each edge \(w\) is the weight of each edge \(s\) is the source node (which may be variable) \(t\) is the dest node (which may be variable) \(ns\) is a Boolean for each node whether it is in the subgraph \(es\) is a Boolean for each edge whether it is in the subgraph \(K\) is the cost of the path

```
predicate bounded_path(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 array [int] of int: w,
 var int: s,
 var int: t,
 array [int] of var bool: ns,
 array [int] of var bool: es,
 var int: K)
```

4.2.6. Global constraints
Constrains the subgraph \( ns \) and \( es \) of a given undirected graph to be a path from \( s \) to \( t \) of weight \( K \).

\( N \) is the number of nodes in the given graph \( E \) is the number of edges in the given graph \( from \) is the leaving node 1.. \( N \) for each edge \( to \) is the entering node 1.. \( N \) for each edge \( w \) is the weight of each edge \( s \) is the source node (which may be variable) \( t \) is the dest node (which may be variable) \( ns \) is a Boolean for each node whether it is in the subgraph \( es \) is a Boolean for each edge whether it is in the subgraph \( K \) is the cost of the path

```plaintext
predicate bounded_path(array [int] of $\$N$: from,
array [int] of $\$N$: to,
array [int] of int: w,
var $\$N$: s,
var $\$N$: t,
array [$\$N$] of var bool: ns,
array [int] of var bool: es,
var int: K)
```

Constrains the subgraph \( ns \) and \( es \) of a given undirected graph to be connected.

\( from \) is the leaving node for each edge \( to \) is the entering node for each edge \( w \) is the weight of each edge \( s \) is the source node (which may be variable) \( t \) is the dest node (which may be variable) \( ns \) is a Boolean for each node whether it is in the subgraph \( es \) is a Boolean for each edge whether it is in the subgraph

```plaintext	predicate connected(array [int] of $\$N$: from,
array [int] of $\$N$: to,
array [$\$N$] of var bool: ns,
array [int] of var bool: es)
```

Constrains the set of edges \( es \) of a given directed graph to be a weighted spanning tree rooted at \( r \) of weight \( W \).

\( N \) is the number of nodes in the given graph \( E \) is the number of edges in the given graph \( from \) is the leaving node 1.. \( N \) for each edge \( to \) is the entering node 1.. \( N \) for each edge \( w \) is the weight

```plaintext
d_weighted_spanning_tree(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 array [int] of int: w,
 var int: r,
 array [int] of var bool: es,
 var int: K)
```
of each edge \( r \) is the root node (which may be variable) \( es \) is a Boolean for each edge whether it is in the subgraph \( K \) is the weight of the tree

```plaintext
predicate dag(array [int] of $$N$$: from,
 array [int] of $$N$$: to,
 array [$$N$$] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph \( ns \) and \( es \) of a given directed graph to be a DAG.

\( from \) is the leaving node for each edge \( to \) is the entering node for each edge \( ns \) is a Boolean for each node whether it is in the subgraph \( es \) is a Boolean for each edge whether it is in the subgraph

```plaintext
predicate dconnected(array [int] of $$N$$: from,
 array [int] of $$N$$: to,
 array [$$N$$] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph \( ns \) and \( es \) of a given directed graph to be connected.

\( from \) is the leaving node for each edge \( to \) is the entering node for each edge \( ns \) is a Boolean for each node whether it is in the subgraph \( es \) is a Boolean for each edge whether it is in the subgraph

```plaintext
predicate dpath(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 var int: s,
 var int: t,
 array [int] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph \( ns \) and \( es \) of a given directed graph to be a path from \( s \) to \( t \).

\( N \) is the number of nodes in the given graph \( E \) is the number of edges in the given graph \( from \) is the leaving node 1.. \( N \) for each edge \( to \) is the entering node 1.. \( N \) for each edge \( s \) is the source node (which may be variable) \( t \) is the dest node (which may be variable) \( ns \) is a Boolean for each node whether it is in the subgraph \( es \) is a Boolean for each edge whether it is in the subgraph

```plaintext
predicate dpath(array [int] of $$N$$: from,
 array [int] of $$N$$: to,
 var $$N$$: s,
 var $$N$$: t,
 array [$$N$$] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph \( ns \) and \( es \) of a given directed graph to be a path from \( s \) to \( t \).
from is the leaving node for each edge to is the entering node for each edge s is the source node (which may be variable) t is the dest node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

```mzinc
predicate dreachable(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 var int: r,
 array [int] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph ns and es of a given directed graph to be reachable from r.

N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

```mzinc
predicate dreachable(array [int] of N: from,
 array [int] of N: to,
 var N: r,
 array [N] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph ns and es of a given directed graph to be reachable from r.

from is the leaving node for each edge to is the entering node for each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

```mzinc
predicate dsteiner(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 array [int] of int: w,
 var int: r,
 array [int] of var bool: ns,
 array [int] of var bool: es,
 var int: K)
```

Constrains the subgraph ns and es of a given directed graph to be a weighted spanning tree rooted at r of weight $w$.

N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge w is the weight of each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph K is the weight of the tree
predicate dtree(int: N, 
    int: E, 
    array [int] of int: from, 
    array [int] of int: to, 
    var int: r, 
    array [int] of var bool: ns, 
    array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be a tree rooted at r.
N is the number of nodes in the given graph E is the number of edges in the given graph from
is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge r is the root
node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is
a Boolean for each edge whether it is in the subgraph

predicate dtree(array [int] of $N$: from, 
    array [int] of $N$: to, 
    var $N$: r, 
    array [$$N$$] of var bool: ns, 
    array [int] of var bool: es)

Constrains the subgraph ns and es of a given directed graph to be at tree rooted at r.
from is the leaving node for each edge to is the entering node for each edge r is the root node
(which may be variable) ns is a Boolean for each node whether it is in the subgraph es is
a Boolean for each edge whether it is in the subgraph

predicate path(int: N, 
    int: E, 
    array [int] of int: from, 
    array [int] of int: to, 
    var int: s, 
    var int: t, 
    array [int] of var bool: ns, 
    array [int] of var bool: es)

Constrains the subgraph ns and es of a given undirected graph to be a path from s to t.
N is the number of nodes in the given graph E is the number of edges in the given graph from
is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge s is the source
node (which may be variable) t is the dest node (which may be variable) ns is a Boolean for each
node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

predicate path(array [int] of $$N$$: from, 
    array [int] of $$N$$: to, 
    var $$N$$: s, 
    var $$N$$: t, 
    array [$$N$$] of var bool: ns, 
    array [int] of var bool: es)
Constrains the subgraph ns and es of a given undirected graph to be a path from s to t.
from is the leaving node for each edge to is the entering node for each edge s is the source node (which may be variable) t is the dest node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

```mini
predicate reachable(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 var int: r,
 array [int] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph ns and es of a given undirected graph to be reachable from r.
N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

```mini
predicate reachable(array [int] of $$N: from,
 array [int] of $$N: to,
 var $$N: r,
 array [$$N] of var bool: ns,
 array [int] of var bool: es)
```

Constrains the subgraph ns and es of a given undirected graph to be reachable from r.
from is the leaving node for each edge to is the entering node for each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

```mini
predicate steiner(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 array [int] of int: w,
 array [int] of var bool: ns,
 array [int] of var bool: es,
 var int: K)
```

Constrains the set of edges es of a given undirected graph to be a weighted spanning tree of weight W.
N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge w is the weight of each edge ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph K is the weight of the tree
predicate subgraph(int: N,
    int: E,
    array[int] of int: from,
    array[int] of int: to,
    array[int] of var bool: ns,
    array[int] of var bool: es)

Constraints that ns and es is a subgraph of a given directed graph.

N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

class predicate subgraph(array[int] of $$N$$: from,
    array[int] of $$N$$: to,
    array[$$N$$] of var bool: ns,
    array[int] of var bool: es)

Constraints that ns and es is a subgraph of a given directed graph.

from is the leaving node for each edge to is the entering node for each edge ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

class predicate tree(int: N,
    int: E,
    array[int] of int: from,
    array[int] of int: to,
    var int: r,
    array[int] of var bool: ns,
    array[int] of var bool: es)

Constraints the subgraph ns and es of a given undirected graph to be a tree rooted at r.

N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph

class predicate tree(array[int] of $$N$$: from,
    array[int] of $$N$$: to,
    var $$N$$: r,
    array[$$N$$] of var bool: ns,
    array[int] of var bool: es)

Constraints the subgraph ns and es of a given undirected graph to be at tree rooted at r.

from is the leaving node for each edge to is the entering node for each edge r is the root node (which may be variable) ns is a Boolean for each node whether it is in the subgraph es is a Boolean for each edge whether it is in the subgraph.
Boolean for each edge whether it is in the subgraph

```plaintext
predicate weighted_spanning_tree(int: N,
 int: E,
 array [int] of int: from,
 array [int] of int: to,
 array [int] of int: w,
 array [int] of var bool: es,
 var int: K)
```

Constrains the set of edges es of a given undirected graph to be a weighted spanning tree of weight W.

N is the number of nodes in the given graph E is the number of edges in the given graph from is the leaving node 1.. N for each edge to is the entering node 1.. N for each edge w is the weight of each edge es is a Boolean for each edge whether it is in the subgraph K is the weight of the tree *

### 4.2.6.9 Extensional constraints (table, regular etc.)

```plaintext
predicate cost_mdd(array [int] of var int: x,
 int: N,
 array [int] of int: level,
 int: E,
 array [int] of int: from,
 array [int] of set of int: label,
 array [int] of int: cost,
 array [int] of int: to,
 var int: totalcost)
```

Requires that x defines a path in the cost MDD with total edge weight totalcost.

N is the number of nodes, the root node is node 1 level is the level of each node, the root is level 1, T is level length (x)+1 E is the number of edges from is the leaving node (1.. N )for each edge label is the set of value of the x variable for each edge cost is the cost for each edge to is the entering node for each edge, where 0 = T node totalcost is the total cost of the path defined by x

```plaintext
predicate cost_regular(array [int] of var int: x,
 int: Q,
 int: S,
 array [int,int] of int: d,
 int: q∅,
 set of int: F,
 array [int,int] of int: c,
 var int: C)
```

The sequence of values in array x (which must all be in the range 1.. S ) is accepted by the DFA of Q states with input 1.. S and transition function d (which maps (1.. Q , 1.. S ) -> 0.. Q ) and
initial state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ). We reserve state 0 to be an always failing state. Each edge has an associated cost c, and C is the sum of costs taken on the accepting path for x .

```
predicate mdd(array [int] of var int: x,
 int: N,
 array [int] of int: level,
 int: E,
 array [int] of int: from,
 array [int] of set of int: label,
 array [int] of int: to)
```

Requires that x defines a path from root to true node T through the MDD defined by

N is the number of nodes, the root node is node 1 level is the level of each node, the root is level 1, T is level length (x)+1 E is the number of edges from is the leaving node (1.. N )for each edge label is the set of values of the x variable for each edge to is the entering node for each edge, where 0 = T node

```
predicate regular(array [int] of var int: x,
 int: Q,
 int: S,
 array [int,int] of int: d,
 int: q0,
 set of int: F)
```

The sequence of values in array x (which must all be in the range 1.. S ) is accepted by the DFA of Q states with input 1.. S and transition function d (which maps (1.. Q , 1.. S ) -> 0.. Q )) and initial state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ). We reserve state 0 to be an always failing state.

```
predicate regular_nfa(array [int] of var int: x,
 int: Q,
 set of int: S,
 array [int,int] of int: d,
 int: q0,
 set of int: F)
```

The sequence of values in array x (which must all be in the set S ) is accepted by the DFA of Q states with input S and transition function d (which maps (1.. Q , S ) -> 0.. Q )) and initial state q0 (which must be in 1.. Q ) and accepting states F (which all must be in 1.. Q ). We reserve state 0 to be an always failing state.

```
predicate regular_nfa(array [int] of var int: x,
 int: Q,
 set of int: S,
 array [int,int] of set of int: d,
 int: q0,
 set of int: F)
```

4.2.6. Global constraints
The sequence of values in array $x$ (which must all be in the range $1..S$) is accepted by the NFA of $Q$ states with input $1..S$ and transition function $d$ (which maps $(1..Q, 1..S) \rightarrow \text{set of } 1..Q$) and initial state $q0$ (which must be in $1..Q$) and accepting states $F$ (which all must be in $1..Q$).

```
predicate regular_nfa(array [int] of var int: x,
 int: Q,
 set of int: S,
 array [int,int] of set of int: d,
 int: q0,
 set of int: F)
```

The sequence of values in array $x$ (which must all be in the range $S$) is accepted by the NFA of $Q$ states with input $S$ and transition function $d$ (which maps $(1..Q, S) \rightarrow \text{set of } 1..Q$) and initial state $q0$ (which must be in $1..Q$) and accepting states $F$ (which all must be in $1..Q$).

```
predicate table(array [int] of var bool: x, array [int,int] of bool: t)
```

Represents the constraint $x$ in $t$ where we consider each row in $t$ to be a tuple and $t$ as a set of tuples.

```
predicate table(array [int] of var int: x, array [int,int] of int: t)
```

Represents the constraint $x$ in $t$ where we consider each row in $t$ to be a tuple and $t$ as a set of tuples.

```
set of int: NEURON_TYPE
```

Constrain the output layer of a neural net to take the value defined by the input layer The arguments are inputs: an array of float variables $\text{input\_ids}$: $\text{array[int]}$ of NODE outputs: an array of float variables $\text{output\_ids}$: $\text{array[int]}$ of NODE bias: $\text{array[NODE]}$ of float edge_weight: $\text{array[EDGE]}$ of float (dummy one at end!) $\text{edge\_parent}$: $\text{array[EDGE]}$ of NEURON (start neuron for edge) $\text{first\_edge}$: $\text{array[NODE]}$ of $1..m+1$ neuron_type: \{\text{RELU, STEP, LINEAR, SOFTPLUS}\}

### 4.2.6.10 Other declarations

```
function var $$E: arg_max(array [$$E] of var int: x)
```

Returns the index of the maximum value in the array $x$. When breaking ties the least index is returned.

```
function var $$E: arg_max(array [$$E] of var bool: x)
```

Returns the index of the maximum value in the array $x$. When breaking ties the least index is returned.
function var $E$: arg_max(array [$E$] of var float: x)

Returns the index of the maximum value in the array x. When breaking ties the least index is returned.

function var $E$: arg_min(array [$E$] of var int: x)

Returns the index of the minimum value in the array x. When breaking ties the least index is returned.

function var $E$: arg_min(array [$E$] of var bool: x)

Returns the index of the minimum value in the array x. When breaking ties the least index is returned.

function var $E$: arg_min(array [$E$] of var float: x)

Returns the index of the minimum value in the array x. When breaking ties the least index is returned.

predicate circuit(array [int] of var int: x)

Constrains the elements of x to define a circuit where x[i] = j means that j is the successor of i.

predicate disjoint(var set of int: s1, var set of int: s2)

Requires that sets s1 and s2 do not intersect.

predicate maximum(var int: m, array [int] of var int: x)

Constrains m to be the maximum of the values in x.
Assumptions: |x| > 0.

predicate maximum(var float: m, array [int] of var float: x)

Constrains m to be the maximum of the values in x.
Assumptions: |x| > 0.

predicate maximum_arg(array [int] of var int: x, var int: i)

Constrains i to be the index of the maximum value in the array x. When breaking ties the least index is returned.

4.2.6. Global constraints
Assumption: \(|x| > 0\)

\[
\text{predicate maximum_arg(array [int] of var bool: x, var int: i)}
\]

Constrain \(i\) to be the index of the maximum value in the array \(x\). When breaking ties the least index is returned.

Assumption: \(|x| > 0\)

\[
\text{predicate maximum_arg(array [int] of var float: x, var int: i)}
\]

Constrain \(i\) to be the index of the maximum value in the array \(x\). When breaking ties the least index is returned.

Assumption: \(|x| > 0\)

\[
\text{predicate member(array [int] of var bool: x, var bool: y)}
\]

Requires that \(y\) occurs in the array \(x\).

\[
\text{predicate member(array [int] of var float: x, var float: y)}
\]

Requires that \(y\) occurs in the array \(x\).

\[
\text{predicate member(array [int] of var int: x, var int: y)}
\]

Requires that \(y\) occurs in the array \(x\).

\[
\text{predicate member(array [int] of var set of int: x, var set of int: y)}
\]

Requires that \(y\) occurs in the array \(x\).

\[
\text{predicate member(var set of int: x, var int: y)}
\]

Requires that \(y\) occurs in the set \(x\).

\[
\text{predicate minimum(var float: m, array [int] of var float: x)}
\]

Constrains \(m\) to be the minimum of the values in \(x\).

Assumptions: \(|x| > 0\).

\[
\text{predicate minimum(var int: m, array [int] of var int: x)}
\]
Constrains \( m \) to be the minimum of the values in \( x \).

Assumptions: \(| x | > 0\).

**predicate minimum_arg(array [int] of var int: x, var int: i)**

Constrain \( i \) to be the index of the minimum value in the array \( x \). When breaking ties the least index is returned.

Assumption: \(| x | > 0\)

**predicate minimum_arg(array [int] of var bool: x, var int: i)**

Constrain \( i \) to be the index of the minimum value in the array \( x \). When breaking ties the least index is returned.

Assumption: \(| x | > 0\)

**predicate minimum_arg(array [int] of var float: x, var int: i)**

Constrain \( i \) to be the index of the minimum value in the array \( x \). When breaking ties the least index is returned.

Assumption: \(| x | > 0\)


Defines a network flow constraint.

Parameters:

- \( \text{arc} \): a directed arc of the flow network. Arc \( i \) connects node \( \text{arc}[i,1] \) to node \( \text{arc}[i,2] \).
- \( \text{balance} \): the difference between input and output flow for each node.
- \( \text{flow} \): the flow going through each arc.


Defines a network flow constraint with cost.

Parameters:

- \( \text{arc} \): a directed arc of the flow network. Arc \( i \) connects node \( \text{arc}[i,1] \) to node \( \text{arc}[i,2] \).
• balance: the difference between input and output flow for each node.
• weight: the unit cost of the flow through the arc.
• flow: the flow going through each arc.
• cost: the overall cost of the flow.

`predicate partition_set(array [int] of var set of int: S,
set of int: universe)`

Constrains the sets in array S to partition the universe.

`function var float: piecewise_linear(var float: x,
array [int] of float: xi,
array [int] of float: vi)`

Return a piecewise-linear interpolation of the given point sequence as a function of x.

`predicate piecewise_linear(var float: x,
var float: y,
array [int] of float: xi,
array [int] of float: vi)`

Constrains y(x) to be a piecewise-linear interpolation of the provided point sequence.

`predicate range(array [int] of var int: x,
var set of int: s,
var set of int: t)`

Requires that the image of function x (represented as an array) on set of values s is t. ub( s ) must be a subset of index_set( x ) otherwise an assertion failure will occur.

`function var set of int: range(array [int] of var int: x,
var set of int: s)`

Returns the image of function x (represented as an array) on set of values s. ub( s ) must be a subset of index_set( x ) otherwise an assertion failure will occur.

`predicate roots(array [int] of var int: x,
var set of int: s,
var set of int: t)`

Requires that x[i] in t for all i in s.

`function var set of int: roots(array [int] of var int: x,
var set of int: t)"
Returns $s$ such that $x[i]$ in $t$ for all $i$ in $s$

\[
\text{predicate} \quad \text{sliding\_sum}(\text{int}: \text{low}, \\
\quad \text{int}: \text{up}, \\
\quad \text{int}: \text{seq}, \\
\quad \text{array [int] of var int}: \text{vs})
\]

Requires that in each subsequence $\text{vs}[i], \ldots, \text{vs}[i+\text{seq}-1]$ the sum of the values belongs to the interval $[\text{low}, \text{up}]$.

\[
\text{predicate} \quad \text{subcircuit}(\text{array [int] of var int}: \text{x})
\]

Constrains the elements of $x$ to define a subcircuit where $x[i] = j$ means that $j$ is the successor of $i$ and $x[i] = i$ means that $i$ is not in the circuit.

\[
\text{predicate} \quad \text{sum\_pred}(\text{var int}: \text{i}, \\
\quad \text{array [int] of set of int}: \text{sets}, \\
\quad \text{array [int] of int}: \text{cs}, \\
\quad \text{var int}: \text{s})
\]

Requires that the sum of $\text{cs}[i_1]..\text{cs}[i_N]$ equals $s$, where $i_1..i_N$ are the elements of the $i$th set in $\text{sets}$.

Nb: not called ‘sum’ as in the constraints catalog because ‘sum’ is a MiniZinc built-in function.

\[
\text{predicate} \quad \text{sum\_set}(\text{array [int] of int}: \text{vs}, \\
\quad \text{array [int] of int}: \text{ws}, \\
\quad \text{var set of int}: \text{x}, \\
\quad \text{var int}: \text{s})
\]

Requires that the sum of the weights $\text{ws}[i_1]..\text{ws}[i_N]$ equals $s$, where $\text{vs}[i_1]..\text{vs}[i_N]$ are the elements appearing in set $x$

### 4.2.7 Additional declarations for Gecode

These annotations and predicates are available for the Gecode solver. In order to use them in a model, include the file “gecode.mzn”.

### 4.2.7.1 Additional Gecode search annotations

#### Parameters

\[
\text{annotation} \quad \text{activity\_max}
\]

Select variable with largest activity count

---

4.2.7. Additional declarations for Gecode 381
### Annotation Selection Strategies

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>activity_min</code></td>
<td>Select variable with smallest activity count</td>
</tr>
<tr>
<td><code>activity_size_max</code></td>
<td>Select variable with largest activity count divided by domain size</td>
</tr>
<tr>
<td><code>activity_size_min</code></td>
<td>Select variable with smallest activity count divided by domain size</td>
</tr>
<tr>
<td><code>afc_max</code></td>
<td>Select variable with largest accumulated failure count</td>
</tr>
<tr>
<td><code>afc_min</code></td>
<td>Select variable with smallest accumulated failure count</td>
</tr>
<tr>
<td><code>afc_size_max</code></td>
<td>Select variable with largest accumulated failure count divided by domain size</td>
</tr>
<tr>
<td><code>afc_size_min</code></td>
<td>Select variable with smallest accumulated failure count divided by domain size</td>
</tr>
<tr>
<td><code>random</code></td>
<td>Select random variable</td>
</tr>
</tbody>
</table>

### Functions and Predicates

<table>
<thead>
<tr>
<th>Function/Predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bool_default_search(ann: varsel, ann: valsel)</code></td>
<td>Specify default search strategy for Boolean variables to use variable selection strategy <code>varsel</code> and value choice strategy <code>valsel</code></td>
</tr>
<tr>
<td><code>float_default_search(ann: varsel, ann: valsel)</code></td>
<td></td>
</tr>
</tbody>
</table>
Specify default search strategy for float variables to use variable selection strategy `varsel`, and value choice strategy `valsel`.

```plaintext
annotation int_default_search(ann: varsel, ann: valsel)
```

Specify default search strategy for integer variables to use variable selection strategy `varsel`, and value choice strategy `valsel`.

```plaintext
annotation relax_and_reconstruct(array [int] of var int: x,
 int: percentage)
```

Simple large neighbourhood search strategy: upon restart, for each variable in `x`, the probability of it being fixed to the previous solution is `percentage` (out of 100).

```plaintext
annotation relax_and_reconstruct(array [int] of var int: x,
 int: percentage,
 array [int] of int: y)
```

Simple large neighbourhood search strategy: upon restart, for each variable in `x`, the probability of it being fixed to the previous solution is `percentage` (out of 100). Start from an initial solution `y`.

```plaintext
annotation set_default_search(ann: varsel, ann: valsel)
```

Specify default search strategy for set variables to use variable selection strategy `varsel`, and value choice strategy `valsel`.

### 4.2.7.2 Additional Gecode constraints

```plaintext
predicate among_seq(array [int] of var int: x,
 set of int: S,
 int: l,
 int: m,
 int: n)
```

Every subsequence of `x` of length `l` has at least `m` and at most `n` occurrences of the values in `S`.

```plaintext
predicate among_seq(array [int] of var bool: x,
 bool: b,
 int: l,
 int: m,
 int: n)
```

Every subsequence of `x` of length `l` has at least `m` and at most `n` occurrences of the values in `S`.

---

**4.2.7. Additional declarations for Gecode**
predicate circuit_cost(array [int] of int: c, 
array [int] of var int: x, 
var int: z)

Constrains the elements of x to define a circuit where x[i] = j means that j is the successor of i. Additionally, constrain z to be the cost of the circuit. Each edge cost is defined by array c.

circuit_cost_array(array [int] of int: c, 
array [int] of var int: x, 
array [int] of var int: y, 
var int: z)

Constrains the elements of x to define a circuit where x[i] = j means that j is the successor of i. Additionally, constrain z to be the cost of the circuit. Each edge cost is defined by array c. The variables y[i] are constrained to be the edge cost of the node x[i].

gecode_array_set_element_intersect(var set of int: x, 
array [int] of var set of int: y, 
var set of int: z)

Constrain z to be the intersection of all sets in y that are selected by x: i ∈ z ↔ ∀j ∈ x : (i ∈ y[j])

gecode_array_set_element_intersect_in(var set of int: x, 
array [int] of var set of int: y, 
var set of int: z, 
set of int: u)

Constrain z to be a subset of u, and z to be the intersection of all sets in y that are selected by x: i ∈ z ↔ ∀j ∈ x : (i ∈ y[j])

gecode_array_set_element_partition(var set of int: x, 
array [int] of var set of int: y, 
var set of int: z)

Constrain z to be the disjoint union of all sets in y that are selected by x: i ∈ z ↔ ∃j ∈ x : (i ∈ y[j]) and i ∈ x ∧ j ∈ x ∧ i ≠ j → y[i] ∩ y[j] = ∅

4.2.8 Additional declarations for Chuffed

These annotations and predicates are available for the Chuffed solver. In order to use them in a model, include the file “chuffed.mzn”.

384 Chapter 4.2. The MiniZinc library
4.2.8.1 Additional Chuffed search annotations

Parameters

- **annotation largest_smallest**

  Choose the variable with the largest smallest value in its domain

- **annotation random_order**

  Choose a random variable

- **annotation smallest_largest**

  Choose the variable with the smallest largest value in its domain

Functions and Predicates

- **annotation priority_search(array [int] of var int: x, array [int] of ann: search, ann: select, ann: explore)**

  Specify search on a group of searches `search`, for which variables x act as delegates for the search selection with variable selection strategy `select`, and exploration strategy `explore`.
CHAPTER 4.3

Interfacing Solvers to FlatZinc

This document describes the interface between the MiniZinc system and FlatZinc solvers.

4.3.1 Specification of FlatZinc

This document is the specification of the FlatZinc modelling language. It also includes a definition of the standard command line options a FlatZinc solver should support in order to work with the miniZinc driver program (and the MiniZinc IDE).

FlatZinc is the target constraint modelling language into which MiniZinc models are translated. It is a very simple solver independent problem specification language, requiring minimal implementation effort to support.

Throughout this document: \( r_1, r_2 \) denote float literals; \( x_1, x_2, \ldots, x_k, i, j, k \) denote int literals; \( y_1, y_2, \ldots, y_k, y_i \) denote literal array elements.

4.3.1.1 Comments

Comments start with a percent sign \( \% \) and extend to the end of the line. Comments can appear anywhere in a model.

4.3.1.2 Types

There are three varieties of types in FlatZinc.

- \textit{Parameter} types apply to fixed values that are specified directly in the model.
- \textit{Variable} types apply to values computed by the solver during search. Every parameter type has a corresponding variable type; the variable type being distinguished by a \texttt{var} keyword.
Annotations and strings: annotations can appear on variable declarations, constraints, and on the solve goal. They provide information about how a variable or constraint should be treated by the solver (e.g., whether a variable should be output as part of the result or whether a particular constraint should be implemented using domain consistency). Strings may appear as arguments to annotations, but nowhere else.

Parameter types

Parameters are fixed quantities explicitly specified in the model (see rule `<par-type>` in Section 4.3.6).

<table>
<thead>
<tr>
<th>Type</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>true or false</td>
</tr>
<tr>
<td>float</td>
<td>float</td>
</tr>
<tr>
<td>int</td>
<td>int</td>
</tr>
<tr>
<td>set of int</td>
<td>subset of int</td>
</tr>
<tr>
<td>array [1.. n] of bool</td>
<td>array of bools</td>
</tr>
<tr>
<td>array [1.. n] of float</td>
<td>array of floats</td>
</tr>
<tr>
<td>array [1.. n] of int</td>
<td>array of ints</td>
</tr>
<tr>
<td>array [1.. n] of set of int</td>
<td>array of sets of ints</td>
</tr>
</tbody>
</table>

A parameter may be used where a variable is expected, but not vice versa.

In predicate declarations the following additional parameter types are allowed.

<table>
<thead>
<tr>
<th>Type</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_a \ldots r_b)</td>
<td>bounded float</td>
</tr>
<tr>
<td>(x_a \ldots x_b)</td>
<td>int in range</td>
</tr>
<tr>
<td>({ x_a, x_b, \ldots, x_k })</td>
<td>int in set</td>
</tr>
<tr>
<td>set of (x_a \ldots x_b)</td>
<td>subset of int range</td>
</tr>
<tr>
<td>set of ({ x_a, x_b, \ldots, x_k })</td>
<td>subset of int set</td>
</tr>
<tr>
<td>array [1.. n] of (r_a \ldots r_b)</td>
<td>array of floats in range</td>
</tr>
<tr>
<td>array [1.. n] of (x_a \ldots x_b)</td>
<td>array of ints in range</td>
</tr>
<tr>
<td>array [1.. n] of set of (x_a \ldots x_b)</td>
<td>array of sets of ints in range</td>
</tr>
<tr>
<td>array [1.. n] of set of ({ x_a, x_b, \ldots, x_k })</td>
<td>array of subsets of set</td>
</tr>
</tbody>
</table>

A range \(x_a \ldots x_b\) denotes a closed interval \(\{x | x_a \leq x \leq x_b\}\) (same for float ranges).

An array type appearing in a predicate declaration may use just int instead of 1.. n for the array index range in cases where the array argument can be of any length.

Variable types

Variables are quantities decided by the solver (see rules `<basic-var-type>` and `<array-var-type>` in Section 4.3.6).
### Variable type

<table>
<thead>
<tr>
<th>Variable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>var bool</td>
</tr>
<tr>
<td>var float</td>
</tr>
<tr>
<td>var ra .. rb</td>
</tr>
<tr>
<td>var int</td>
</tr>
<tr>
<td>var xa .. xb</td>
</tr>
<tr>
<td>var { xa, xb, ..., xk }</td>
</tr>
<tr>
<td>var set of xa .. xb</td>
</tr>
<tr>
<td>var set of { xa, xb, ..., xk }</td>
</tr>
<tr>
<td>array [1.. n] of var bool</td>
</tr>
<tr>
<td>array [1.. n] of var float</td>
</tr>
<tr>
<td>array [1.. n] of var ra .. rb</td>
</tr>
<tr>
<td>array [1.. n] of var int</td>
</tr>
<tr>
<td>array [1.. n] of var xa .. xb</td>
</tr>
<tr>
<td>array [1.. n] of var set of xa .. xb</td>
</tr>
<tr>
<td>array [1.. n] of var set of { xa, xb, ..., xk }</td>
</tr>
</tbody>
</table>

In predicate declarations the following additional variable types are allowed.

<table>
<thead>
<tr>
<th>Variable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>var set of int</td>
</tr>
<tr>
<td>array [1.. n] of var set of int</td>
</tr>
</tbody>
</table>

An array type appearing in a predicate declaration may use just int instead of 1.. n for the array index range in cases where the array argument can be of any length.

#### The string type

String literals and literal arrays of string literals can appear as annotation arguments, but not elsewhere. Strings have the same syntax as in C programs (namely, they are delimited by double quotes and the backslash character is used for escape sequences).

Examples:

```
"" % The empty string.
"Hello." % A string with an embedded newline, tab and _quotes.
"Hello,\nWorld\t"quoted!"
```

### 4.3.1.3 Values and expressions

(See rule `<expr>` in Section 4.3.6)

Examples of literal values:

Type Literals: bool true, false float 2.718, -1.0, 3.0e8 int -42, 0, 69 set of int {}, {2, 3, 5}, 1..10 arrays [], [ y_a, ..., y_k ]
where each array element \( y_i \) is either: a non-array literal, or the name of a non-array parameter or variable, \( v \). For example:

\[
[1, 2, 3] \quad % \text{Just literals}
\]
\[
[x, y, z] \quad % x, y, \text{and} z \text{are variables or parameters.}
\]
\[
[x, 3] \quad % \text{Mix of identifiers and literals}
\]

Section 4.3.6 gives the regular expressions specifying the syntax for float and int literals.

### 4.3.1.4 FlatZinc models

A FlatZinc model consists of:

1. zero or more external predicate declarations (i.e., a non-standard predicate that is supported directly by the target solver);
2. zero or more parameter declarations;
3. zero or more variable declarations;
4. zero or more constraints;
5. a solve goal

in that order.

FlatZinc uses the UTF-8 character set. Non-ASCII characters can only appear in string literals.

FlatZinc syntax is case sensitive (\texttt{foo} and \texttt{Foo} are different names). Identifiers start with a letter ([\texttt{A-Za-z}]) and are followed by any sequence of letters, digits, or underscores ([\texttt{A-Za-z0-9}_]). Additionally, identifiers of variable or parameter names may start with an underscore. Identifiers that correspond to the names of predicates, predicate parameters and annotations cannot have leading underscores.

The following keywords are reserved and cannot be used as identifiers: \texttt{annotation}, \texttt{any}, \texttt{array}, \texttt{bool}, \texttt{case}, \texttt{constraint}, \texttt{diff}, \texttt{div}, \texttt{else}, \texttt{elseif}, \texttt{end}, \texttt{enum}, \texttt{false}, \texttt{float}, \texttt{function}, \texttt{if}, \texttt{in}, \texttt{include}, \texttt{int}, \texttt{intersect}, \texttt{let}, \texttt{list}, \texttt{maximize}, \texttt{minimize}, \texttt{mod}, \texttt{not}, \texttt{of}, \texttt{satisfy}, \texttt{subset}, \texttt{superset}, \texttt{output}, \texttt{par}, \texttt{predicate}, \texttt{record}, \texttt{set}, \texttt{solve}, \texttt{string}, \texttt{symdiff}, \texttt{test}, \texttt{then}, \texttt{true}, \texttt{tuple}, \texttt{union}, \texttt{type}, \texttt{var}, \texttt{where}, \texttt{xor}. Note that some of these keywords are not used in FlatZinc. They are reserved because they are keywords in Zinc and MiniZinc.

FlatZinc syntax is insensitive to whitespace.

### 4.3.1.5 Predicate declarations

(See rule \texttt{<predicate-item>} in Section 4.3.6)

Predicates used in the model that are not standard FlatZinc must be declared at the top of a FlatZinc model, before any other lexical items. Predicate declarations take the form

\[
<\text{predicate-item}> ::= \"predicate\" \texttt{<identifier>} "(" [ \texttt{<pred-param-type>} :\ldots \texttt{<identifier>} "\), \ldots \}]\" ;
\]
Annotations are not permitted anywhere in predicate declarations.

It is illegal to supply more than one predicate declaration for a given <identifier>.

Examples:

```plaintext
% m is the median value of {x, y, z}.
% predicate median_of_3(var int: x, var int: y, var int: z, var int: m);
%
% all_different([x1, .., xn]) iff
% for all i, j in 1..n: xi != xj.
%
% predicate all_different(array [int] of var int: xs);
%
% exactly_one([x1, .., xn]) iff
% there exists an i in 1..n: xi = true
% and for all j in 1..n: j != i -> xj = false.
%
% predicate exactly_one(array [int] of var bool: xs);
```

### 4.3.1.6 Parameter declarations

(See rule param_decl in Section 4.3.6)

Parameters have fixed values and must be assigned values:

```plaintext
<par-decl-item> ::= <par-type> "=" <par-expr> ";"
```

where <par-type> is a parameter type, <var-par-identifier> is an identifier, and <par-expr> is a literal value (either a basic integer, float or bool literal, or a set or array of such literals).

Annotations are not permitted anywhere in parameter declarations.

Examples:

```plaintext
float: pi = 3.141;
array [1..7] of int: fib = [1, 1, 2, 3, 5, 8, 13];
bool: beer_is_good = true;
```

### 4.3.1.7 Variable declarations

(See rule var_decl in Section 4.3.6)

Variables have variable types and can be declared with optional assignments. The assignment can fix a variable to a literal value, or create an alias to another variable. Arrays of variables always have an assignment, defining them in terms of an array literal that can contain identifiers of variables or constant literals. Variables may be declared with zero or more annotations.
where `<basic-var-type>` and `<array-var-type>` are variable types, `<var-par-identifier>` is an identifier, `<annotations>` is a (possibly empty) set of annotations, `<basic-expr>` is an identifier or a literal, and `<array.literal>` is a literal array value.

Examples:

```plaintext
var 0..9: digit;
var bool: b;
var set of 1..3: s;
var 0.0..1.0: x;
var int: y :: mip; % 'mip' annotation: y should be a MIP variable.
array [1..3] of var 1..10: b = [y, 3, digit];
```

### 4.3.1.8 Constraints

(See rule `<constraint-item>` in Section 4.3.6)

Constraints take the following form and may include zero or more annotations:

```plaintext
<constraint-item> ::= "constraint" <identifier> "(" [<expr> "," ...] ")"<annotations> ";"
```

The arguments expressions `<expr>` can be literal values or identifiers.

Examples:

```plaintext
constraint int.le(0, x); % 0 <= x
constraint int.lt(x, y); % x < y
constraint int.le(y, 10); % y <= 10
 % 'domain': use domain consistency for this constraint:
 % 2x + 3y = 10
constraint int.lin_eq([2, 3], [x, y, 10]) :: domain;
```

### 4.3.1.9 Solve item

(See rule `<solve-item>` in Section 4.3.6)

A model finishes with a solve item, taking one of the following forms:

```plaintext
<solve-item> ::= "solve" <annotations> "satisfy" ";"
 | "solve" <annotations> "minimize" <basic-expr> ";"
```
The first alternative searches for any satisfying assignment, the second one searches for an assignment minimizing the given expression, and the third one for an assignment maximizing the expression. The `<basic-expr>` can be either a variable identifier or a literal value (if the objective function is constant).

A solution consists of a complete assignment where all variables in the model have been given a fixed value.

Examples:

```plaintext
solve satisfy; % Find any solution using the default strategy.
solve minimize w; % Find a solution minimizing w, using the default strategy.
% First label the variables in xs in the order x[1], x[2], ...
% trying values in ascending order.
solve :: int_search(xs, input_order, indomain_min, complete)
satisfy; % Find any solution.
% First use first-fail on these variables, splitting domains % at each choice point.
solve :: int_search([x, y, z], first_fail, indomain_split, complete)
maximize x; % Find a solution maximizing x.
```

### 4.3.1.10 Annotations

Annotations are optional suggestions to the solver concerning how individual variables and constraints should be handled (e.g., a particular solver may have multiple representations for int variables) and how search should proceed. An implementation is free to ignore any annotations it does not recognise, although it should print a warning on the standard error stream if it does so. Annotations are unordered and idempotent: annotations can be reordered and duplicates can be removed without changing the meaning of the annotations.

An annotation is prefixed by ::, and either just an identifier or an expression that looks like a predicate call:

```plaintext
<annotations> ::= ["::" <annotation>]*
<annotation> ::= <identifier>
 | <identifier> "(" <ann-expr> "," ... ")"
<ann-expr> ::= <expr>
 | <annotation>
```

The arguments of the second alternative can be any expression or other annotations (without the leading ::).
Search annotations

While an implementation is free to ignore any or all annotations in a model, it is recommended that implementations at least recognise the following standard annotations for solve items.

```markdown
seq_search([<searchannotation>, ...])
```

allows more than one search annotation to be specified in a particular order (otherwise annotations can be handled in any order).

A `<searchannotation>` is one of the following:

```markdown
int_search(<vars>, <varchoiceannotation>, <assignmentannotation>, ...
 <strategyannotation>)

bool_search(<vars>, <varchoiceannotation>, <assignmentannotation>, ...
 <strategyannotation>)

set_search(<vars>, <varchoiceannotation>, <assignmentannotation>, ...
 <strategyannotation>)
```

where `<vars>` is the identifier of an array variable or an array literal specifying the variables to be assigned (ints, bools, or sets respectively). Note that these arrays may contain literal values.

`<varchoiceannotation>` specifies how the next variable to be assigned is chosen at each choice point. Possible choices are as follows (it is recommended that implementations support the starred options):

<table>
<thead>
<tr>
<th><code>&lt;varchoiceannotation&gt;</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>input_order</code></td>
<td>Choose variables in the order they appear in <code>vars</code>.</td>
</tr>
<tr>
<td><code>first_fail</code></td>
<td>Choose the variable with the smallest domain.</td>
</tr>
<tr>
<td><code>anti_first_fail</code></td>
<td>Choose the variable with the largest domain.</td>
</tr>
<tr>
<td><code>smallest</code></td>
<td>Choose the variable with the smallest value in its domain.</td>
</tr>
<tr>
<td><code>largest</code></td>
<td>Choose the variable with the largest value in its domain.</td>
</tr>
<tr>
<td><code>occurrence</code></td>
<td>Choose the variable with the largest number of attached constraints.</td>
</tr>
<tr>
<td><code>most_constrained</code></td>
<td>Choose the variable with the smallest domain, breaking ties using the number of constraints.</td>
</tr>
<tr>
<td><code>max_regret</code></td>
<td>Choose the variable with the largest difference between the two smallest values in its domain.</td>
</tr>
<tr>
<td><code>dom_w_deg</code></td>
<td>Choose the variable with the smallest value of domain size divided by weighted degree, where the weighted degree is the number of times the variables been in a constraint which failed</td>
</tr>
</tbody>
</table>

`<assignmentannotation>` specifies how the chosen variable should be constrained. Possible choices are as follows (it is recommended that implementations support at least the starred options):

...
<table>
<thead>
<tr>
<th>Assignment Strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>indomain_min</code></td>
<td>Assign the smallest value in the variable's domain.</td>
</tr>
<tr>
<td><code>indomain_max</code></td>
<td>Assign the largest value in the variable's domain.</td>
</tr>
<tr>
<td><code>indomain_middle</code></td>
<td>Assign the value in the variable's domain closest to the mean of its current bounds.</td>
</tr>
<tr>
<td><code>indomain_median</code></td>
<td>Assign the middle value in the variable's domain.</td>
</tr>
<tr>
<td><code>indomain</code></td>
<td>Nondeterministically assign values to the variable in ascending order.</td>
</tr>
<tr>
<td><code>indomain_random</code></td>
<td>Assign a random value from the variable's domain.</td>
</tr>
<tr>
<td><code>indomain_split</code></td>
<td>Bisect the variable's domain, excluding the upper half first.</td>
</tr>
<tr>
<td><code>indomain_reverse_split</code></td>
<td>Bisect the variable's domain, excluding the lower half first.</td>
</tr>
<tr>
<td><code>indomain_interval</code></td>
<td>If the variable's domain consists of several contiguous intervals, reduce the domain to the first interval. Otherwise just split the variable's domain.</td>
</tr>
</tbody>
</table>

Of course, not all assignment strategies make sense for all search annotations (e.g., `bool_search` and `indomain_split`).

Finally, `<strategyannotation>` specifies a search strategy; implementations should at least support complete (i.e., exhaustive search).

**Output annotations**

Model output is specified through variable annotations. Non-array output variables are annotated with `output_var`. Array output variables are annotated with `output_array([x_1 .. x_2, ...])` where `x_1 .. x_2, ...` are the index set ranges of the original MiniZinc array (which may have had multiple dimensions and/or index sets that do not start at 1). See Section 4.3.2 for details on the output format.

**Variable definition annotations**

To support solvers capable of exploiting functional relationships, a variable defined as a function of other variables may be annotated thus:

```plaintext
var int: x :: is_defined_var;
...
constraint int_plus(y, z, x) :: defines_var(x);
```

(The `defines_var` annotation should appear on exactly one constraint.) This allows a solver to represent `x` internally as a representation of `y+z` rather than as a separate constrained variable. The `is_defined_var` annotation on the declaration of `x` provides “early warning” to the solver that such an option is available.

**Intermediate variables**

Intermediate variables introduced during conversion of a MiniZinc model to FlatZinc may be annotated thus:
This information is potentially useful to the solver’s search strategy.

**Constraint annotations**

Annotations can be placed on constraints advising the solver how the constraint should be implemented. Here are some constraint annotations supported by some solvers:

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds or boundsZ</td>
<td>Use integer bounds propagation.</td>
</tr>
<tr>
<td>boundsR</td>
<td>Use real bounds propagation.</td>
</tr>
<tr>
<td>boundsD</td>
<td>A tighter version of boundsZ where support for the bounds must exist.</td>
</tr>
<tr>
<td>domain</td>
<td>Use domain propagation.</td>
</tr>
<tr>
<td>priority(k)</td>
<td>Where k is an integer constant indicating propagator priority.</td>
</tr>
</tbody>
</table>

### 4.3.2 Output

An implementation can produce three types of output: solutions, statistics, and errors.

#### 4.3.2.1 Solution output

An implementation must output values for all and only the variables annotated with `output_var` or `output_array` (output annotations must not appear on parameters). Output must be printed to the standard output stream.

For example:

```plaintext
var 1..10: x :: output_var;
var 1..10: y; % y is not output.
 % Output zs as a "flat" representation of a 2D array:
array [1..4] of var int: zs :: output_array([1..2, 1..2]);
```

All non-error output must be sent to the standard output stream.

Output must take the following form:

```plaintext
<var-par-identifier> = <basic-literal-expr> ;
```

or, for array variables,

```plaintext
<var-par-identifier> = array<\text{N}d(<a>.., ..., [<y1>, <y2>, ..., <yk>]);
```

where `\text{N}` is the number of index sets specified in the corresponding `output_array` annotation, `..<b>, ..., <y1>, <y2>, ..., <yk>` are the index set ranges, and `<y1>, <y2>, ..., <yk>` are literals of the element type.
Using this format, the output of a FlatZinc model solution is suitable for input to a MiniZinc model as a data file (this is why parameters are not included in the output).

Implementations must ensure that all model variables (not just the output variables) have satisfying assignments before printing a solution.

The output for a solution must be terminated with ten consecutive minus signs on a separate line: ----------.

Multiple solutions may be output, one after the other, as search proceeds. How many solutions should be output depends on the mode the solver is run in as controlled by the -a command line flag (see Section 4.3.4).

If at least one solution has been found and search then terminates having explored the whole search space, then ten consecutive equals signs should be printed on a separate line: =========.

If no solutions have been found and search terminates having explored the whole search space, then ======UNSATISFIABLE===== should be printed on a separate line.

If the objective of an optimization problem is unbounded, then ======UNBOUNDED===== should be printed on a separate line.

If no solutions have been found and search terminates having not explored the whole search space, then ======UNKNOWN===== should be printed on a separate line.

Implementations may output further information about the solution(s), or lack thereof, in the form of FlatZinc comments.

Examples:

Asking for a single solution to this model:

```plaintext
var 1..3: x :: output_var;
solve satisfy
```

might produce this output:

```plaintext
x = 1;

```

Asking for all solutions to this model:

```plaintext
array [1..2] of var 1..3: xs :: output_array([1..2]);
constraint int_lt(xs[1], xs[2]); // x[1] < x[2].
solve satisfy
```

might produce this output:

```plaintext
xs = array1d(1..2, [1, 2]);

xs = array1d(1..2, [1, 3]);

xs = array1d(1..2, [2, 3]);

```
Asking for a single solution to this model:

```plaintext
var 1..10: x :: output_var;
solve maximize x;
```

should produce this output:

```plaintext
x = 10;
=====
```

The row of equals signs indicates that a complete search was performed and that the last result printed is the optimal solution.

Running a solver on this model with some termination condition (such as a very short time-out):

```plaintext
var 1..10: x :: output_var;
solve maximize x;
```

might produce this output:

```plaintext
x = 1;

x = 2;

x = 3;

```

Because the output does not finish with `========`, search did not finish, hence these results must be interpreted as approximate solutions to the optimization problem.

Asking for a solution to this model:

```plaintext
var 1..3: x :: output_var;
var 4..6: y :: output_var;
constraint int_lt(y, x); % y < x.
solve satisfy;
```

should produce this output:

```plaintext
========UNSATISFIABLE========
```

indicating that a complete search was performed and no solutions were found (i.e., the problem is unsatisfiable).
4.3.2.2 Statistics output

FlatZinc solvers can output statistics in a standard format so that it can be read by scripts, for example, in order to run experiments and automatically aggregate the results. Statistics should be printed to the standard output stream in the form of FlatZinc comments that follow a specific format. Statistics can be output at any time during the solving, i.e., before the first solution, between solutions, and after the search has finished. Statistics output corresponding to a solution should be the last one before its ‘———’ separator.

Each value should be output on a line of its own in the following format:

```
%%%mzn-stat: <name>=<value>
```

Each block of statistics is terminated by a line of its own with the following format:

```
%%%mzn-stat-end
```

Example

```
%%%mzn-stat: objective=1e+308
%%%mzn-stat: objectiveBound=0
%%%mzn-stat: nodes=0
%%%mzn-stat: solveTime=2.3567
%%%mzn-stat-end

(no feasible solution found yet but something can be printed...)

%%%mzn-stat: objective=12345
%%%mzn-stat: objectiveBound=122
%%%mzn-stat: nodes=35
%%%mzn-stat: solveTime=78.5799
%%%mzn-stat-end

(the corresponding feasible solution with value 12345 goes here
 or before its statistics but above the separator)

%%%mzn-stat: objective=379
%%%mzn-stat: objectiveBound=379
%%%mzn-stat: nodes=4725
%%%mzn-stat: solveTime=178.5799
%%%mzn-stat-end

(the corr. optimal solution with value 379 goes here)

%%%mzn-stat: objective=379

(<= this is the concluding output)

%%%mzn-stat: objectiveBound=379
%%%mzn-stat: nodes=13456

```
The `<name>` describes the kind of statistics gathered, and the `<value>` can be any value of a MiniZinc type. The following names are considered standard statistics:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes</td>
<td>int</td>
<td>Number of search nodes</td>
</tr>
<tr>
<td>openNodes</td>
<td>int</td>
<td>Number of open search nodes</td>
</tr>
<tr>
<td>objective</td>
<td>float</td>
<td>Current objective value</td>
</tr>
<tr>
<td>objectiveBound</td>
<td>float</td>
<td>Dual bound on the objective value</td>
</tr>
<tr>
<td>failures</td>
<td>int</td>
<td>Number of leaf nodes that were failed</td>
</tr>
<tr>
<td>restarts</td>
<td>int</td>
<td>Number of times the solver restarted the search</td>
</tr>
<tr>
<td>variables</td>
<td>int</td>
<td>Number of variables</td>
</tr>
<tr>
<td>intVariables</td>
<td>int</td>
<td>Number of integer variables created</td>
</tr>
<tr>
<td>boolVariables</td>
<td>int</td>
<td>Number of bool variables created</td>
</tr>
<tr>
<td>floatVariables</td>
<td>int</td>
<td>Number of float variables created</td>
</tr>
<tr>
<td>setVariables</td>
<td>int</td>
<td>Number of set variables created</td>
</tr>
<tr>
<td>propagators</td>
<td>int</td>
<td>Number of propagators created</td>
</tr>
<tr>
<td>propagations</td>
<td>int</td>
<td>Number of propagator invocations</td>
</tr>
<tr>
<td>peakDepth</td>
<td>int</td>
<td>Peak depth of search tree</td>
</tr>
<tr>
<td>nogoods</td>
<td>int</td>
<td>Number of nogoods created</td>
</tr>
<tr>
<td>backjumps</td>
<td>int</td>
<td>Number of backjumps</td>
</tr>
<tr>
<td>peakMem</td>
<td>float</td>
<td>Peak memory (in Mbytes)</td>
</tr>
<tr>
<td>initTime</td>
<td>float</td>
<td>Initialisation time (in seconds)</td>
</tr>
<tr>
<td>solveTime</td>
<td>float</td>
<td>Solving time (in seconds)</td>
</tr>
</tbody>
</table>

### 4.3.2.3 Error and warning output

Errors and warnings must be output to the standard error stream. When an error occurs, the implementation should exit with a non-zero exit code, signaling failure.

### 4.3.3 Solver-specific Libraries

Constraints in FlatZinc can call standard predicates as well as solver-specific predicates. Standard predicates are the ones that the MiniZinc compiler assumes to be present in all solvers. Without further customisation, the compiler will try to compile the entire model into a set of these standard predicates.

Solvers can use custom predicates and redefine standard predicates by supplying a `solver specific library` of predicate declarations. Examples of such libraries can be found in the binary distribution of MiniZinc, inside the `share/minizinc/gecode` and `share/minizinc/chuffed` directories.

The solver-specific library needs to be made available to the MiniZinc compiler by specifying its location in the solver’s configuration file, see Section 4.3.5.
4.3.3.1 Standard predicates

FlatZinc solvers need to support the predicates listed as FlatZinc builtins in the library reference documentation, see Section 4.2.5.

Any standard predicate that is not supported by a solver needs to be redefined. This can be achieved by placing a file called redefinitions.mzn in the solver's MiniZinc library, which can contain alternative definitions of predicates, or define them as unsupported using the abort predicate.

Example for a redefinitions.mzn:

```plaintext
% Redefine float_sinh function in terms of exp
predicate float_sinh(var float: a, var float: b) =
 b == (exp(a)-exp(-a))/2.0;

% Mark float_tanh as unsupported
predicate float_tanh(var float: a, var float: b) =
 abort("The builtin float_tanh is not supported by this solver.");
```

The redefinition can use the full MiniZinc language. Note, however, that redefining builtin predicates in terms of MiniZinc expressions can lead to problems if the MiniZinc compiler translates the high-level expression back to the redefined builtin.

The reference documentation (Section 4.2.5) also contains sections on builtins that were added in later versions of MiniZinc. In order to maintain backwards compatibility with solvers that don't support these, they are organised in redefinition files with a version number attached, such as redefinitions-2.0.mzn. In order to declare support for these builtins, the solver-specific library must contain the corresponding redefinitions file, with the predicates either redefined in terms of other predicates, or declared as supported natively by the solver by providing a predicate declaration without a body.

Example for a redefinitions-2.0.mzn that declares native support for the predicates added in MiniZinc 2.0:

```plaintext
predicate bool_clause_reif(array[int] of var bool: as,
 array[int] of var bool: bs,
 var bool: b);
predicate array_int_maximum(var int: m, array[int] of var int: x);
predicate array_float_maximum(var float: m, array[int] of var float: x);
predicate array_int_minimum(var int: m, array[int] of var int: x);
predicate array_float_minimum(var float: m, array[int] of var float: x);
```

4.3.3.2 Solver-specific predicates

Many solvers have built-in support for some of the constraints in the MiniZinc standard library. But without declaring which constraints they support, MiniZinc will assume that they don't support any except for the standard FlatZinc builtins mentioned in the section above.

A solver can declare that it supports a non-standard constraint by overriding one of the files of the standard library in its own solver-specific library. For example, assume that a solver supports the
all_different constraint on integer variables. In the standard library, this constraint is defined in the file fzn_all_different_int.mzn, with the following implementation:

```plaintext
predicate fzn_all_different_int(array[int] of var int: x) =
 forall(i, j in index_set(x) where i < j) (x[i] != x[j]);
```

A solver, let's call it OptiSolve, that supports this constraint natively can place a file with the same name, fzn_all_different_int.mzn, in its library, and redefine it as follows:

```plaintext
predicate optisolve_alldifferent(array[int] of var int: x);
predicate fzn_all_different_int(array[int] of var int: x) =
 optisolve_alldifferent(x);
```

When a MiniZinc model that contains the all_different constraint is now compiled with the OptiSolve library, the generated FlatZinc will contain calls to the newly defined predicate optisolve_alldifferent.

**Note:** The solver-specific library has been reorganised for MiniZinc version 2.3.0. Previously, a solver library would contain e.g. the file bin_packing.mzn in order to override the bin_packing constraint. With version 2.3.0, this is still possible (in order to maintain backwards compatibility). However, the predicate bin_packing from file bin_packing.mzn now delegates to the predicate fzn_bin_packing in fzn_bin_packing.mzn. This enables the bin_packing predicate to check that the arguments are correct using assertions, before delegating to the solver-specific predicate. If your solver still uses the old library layout (i.e., overriding bin_packing.mzn instead of fzn_bin_packing.mzn), you should consider updating it to the new standard.

### 4.3.3.3 Reified and half-reified predicates

A reified constraint is a constraint that is not simply enforced, but whose truth value is bound to a Boolean variable. For example, a MiniZinc expression `var bool: b = all_different(x);` would constrain b to be true if and only if the variables x take pairwise different values.

If a predicate is called in such a reified context, the MiniZinc compiler will try to find a version of the predicate with `_reif` added to its identifier and an additional `var bool` argument. For the above example, the compiler will try to generate the following FlatZinc code:

```plaintext
var bool: b;
constraint all_different_reif(x, b);
```

If the `_reif` predicate does not exist, the compiler will try to use the definition of the original predicate. However, this may not be ideal: the original definition may make use of free variables in a `let` expression (which is not allowed in reified contexts), or it may lead to inefficient solving.

Solver libraries should therefore provide reified versions of constraints whenever possible. The library contains files `fzn_<constraintname>_reif.mzn` for this purpose.

When a reified constraint is used in a positive context (see Section 2.3.6), the MiniZinc compiler can use a special version, called a half-reified predicate and identified by an `_imp` suffix, instead of the `_reif` predicate. Half-reified predicates essentially represent constraints that are implied by a Boolean variable rather than being equivalent to one. This typically leads to simpler
translations or more efficient propagation (e.g., a half-reified `all_different` only needs to check whether it is false, but it never has to implement the negation of the actual constraint).

For example, `constraint y=0 \ all_different(x)` might be translated as follows:

```plaintext
var bool: X_INTRODUCED_1;
var bool: X_INTRODUCED_2;
constraint int_eq_imp(y, 0, X_INTRODUCED_1);
constraint all_different_imp(x, X_INTRODUCED_2);
constraint array_bool_or([X_INTRODUCED_1, X_INTRODUCED_2]);
```

MiniZinc will decide whether to use half-reification case by case based on the availability of the `_imp` predicate. As for reified constraints, it may be beneficial to provide specialised half-reified versions if the solver supports them.

### 4.3.4 Command-Line Interface and Standard Options

In order to work with the `minizinc` command line driver, a FlatZinc solver must be an executable (which can include e.g. shell scripts) that can be invoked as follows:

```
$ <executable-name> [options] model.fzn
```

where `<executable-name>` is the name of the executable. Solvers may support the following standard options:

- `-a`
  Instructs the solver to report all solutions in the case of satisfaction problems, or print intermediate solutions of increasing quality in the case of optimisation problems.

- `-n <i>`
  Instructs the solver to stop after reporting `i` solutions (only used with satisfaction problems).

- `-f`
  Instructs the solver to conduct a “free search”, i.e., ignore any search annotations. The solver is not required to ignore the annotations, but it is allowed to do so.

- `-s`
  Print statistics during and/or after the search for solutions. Statistics should be printed as FlatZinc comments to the standard output stream. See below for a standard format for statistics.

- `-v`
  Print log messages (verbose solving) to the standard error stream. If solvers choose to print to standard output instead, all messages must be valid comments (i.e., start with a `%` character).

- `-p <i>`
  Run with `i` parallel threads (for multi-threaded solvers).

- `-r <i>`
  Use `i` as the random seed (for any random number generators the solver may be using).
-t <ms>
   Wall time limit ms milliseconds.

### 4.3.5 Solver Configuration Files

In order for a solver to be available to MiniZinc, it has to be described in a *solver configuration file*. This is a simple file, in JSON or .dzn format, that contains some basic information such as the solver’s name, version, where its library of global constraints can be found, and a path to its executable. Examples are given in section Solver Backends in User Manual.

A solver configuration file must have file extension .msc (for MiniZinc Solver Configuration), and can be placed in any of the following locations:

- In the `minizinc/solvers/` directory of the MiniZinc installation. If you install MiniZinc from the binary distribution, this directory can be found at `/usr/share/minizinc/solvers` on Linux systems, inside the MiniZincIDE application on macOS system, and in the Program Files\MiniZinc IDE (bundled) folder on Windows.
- In the directory `$HOME/.minizinc/solvers` on Linux and macOS systems, and the Application Data directory on Windows systems.
- In any directory listed on the `MZN_SOLVER_PATH` environment variable (directories are separated by `:` on Linux and macOS, and by `;` on Windows systems).
- In any directory listed in the `mzn_solver_path` option of the global or user-specific configuration file (see Section 3.1.4)
- Alternatively, you can use the MiniZinc IDE to create solver configuration files, see Section 3.2.5.2 for details.

Solver configuration files must be valid JSON or .dzn files. As a JSON file, it must be an object with certain fields. As a .dzn file, it must consist of assignment items.

For example, a simple solver configuration in JSON format could look like this:

```json
{
 "name": "My Solver",
 "version": "1.0",
 "id": "org.myorg.my_solver",
 "executable": "fzn-mysolver"
}
```

The same configuration in .dzn format would look like this:

```dzn
name = "My Solver";
version = "1.0";
id = "org.myorg.my_solver";
executable = "fzn-mysolver";
```

Here is a list of all configuration options recognised by the configuration file parser. Any valid configuration file must at least contain the fields name, version, id, and executable.
• **name** (string, required): The name of the solver (displayed, together with the version, when you call `minizinc --solvers`, and in the MiniZinc IDE).

• **version** (string, required): The version of the solver.

• **id** (string, required): A unique identifier for the solver, “reverse domain name” notation.

• **executable** (string, required): The executable for this solver that can run FlatZinc files. This can be just a file name (in which case the solver has to be on the current PATH), or an absolute path to the executable, or a relative path (which is interpreted relative to the location of the configuration file).

• **mznlib** (string, default ""): The solver-specific library of global constraints and redefinitions. This should be the name of a directory (either an absolute path or a relative path, interpreted relative to the location of the configuration file). For solvers whose libraries are installed in the same location as the MiniZinc standard library, this can also take the form `-G<solverlib>`, e.g., `-Ggecode` (this is mostly the case for solvers that ship with the MiniZinc binary distribution).

• **tags** (list of strings, default empty): Each solver can have one or more tags that describe its features in an abstract way. Tags can be used for selecting a solver using the `--solver` option. There is no fixed list of tags, however we recommend using the following tags if they match the solver's behaviour:
  - "cp": for Constraint Programming solvers
  - "mip": for Mixed Integer Programming solvers
  - "float": for solvers that support float variables
  - "api": for solvers that use the internal C++ API

• **stdFlags** (list of strings, default empty): Which of the standard solver command line flags are supported by this solver. The standard flags are `-a`, `-n`, `-s`, `-v`, `-p`, `-r`, `-f`, `-t`.

• **extraFlags** (list of list of strings, default empty): Extra command line flags supported by the solver. Each entry must be a list of four strings. The first string is the name of the option (e.g. "--special-algorithm"). The second string is a description that can be used to generate help output (e.g. "which special algorithm to use"). The third string specifies the type of the argument ("int", "bool", "float", "string" or "opt"). The fourth string is the default value. The following types have an additional extended syntax:
  - "int:n:m" where n and m are integers, gives lower and upper bounds for the supported values
  - "float:n:m" where n and m are floating point numbers, gives lower and upper bounds for the supported values
  - "bool:onstring:offstring" specifies strings to add to the command line flag to turn it on (onstring) and off (offstring). E.g., ["-interrupt","whether to catch Ctrl-C","bool:false:true","true"] specifies a command line option that can be called as `-interrupt true` or `-interrupt false`. The standard behaviour (just "bool") means that the option is either added to the command line or not.
  - "opt:first option:second option:...:last option" specifies a list of possible values for the option

• **supportsMzn** (bool, default false): Whether the solver can run MiniZinc directly (i.e., it implements its own compilation or interpretation of the model).
• `supportsFzn` (bool, default true): Whether the solver can run FlatZinc. This should be the case for most solvers.

• `needsSolns2Out` (bool, default true): Whether the output of the solver needs to be passed through the MiniZinc output processor.

• `needsMznExecutable` (bool, default false): Whether the solver needs to know the location of the MiniZinc executable. If true, it will be passed to the solver using the `mzn-executable` option.

• `needsStdlibDir` (bool, default false): Whether the solver needs to know the location of the MiniZinc standard library directory. If true, it will be passed to the solver using the `stdlib-dir` option.

• `isGUIApplication` (bool, default false): Whether the solver has its own graphical user interface, which means that MiniZinc will detach from the process and not wait for it to finish or to produce any output.

### 4.3.6 Grammar

This is the full grammar for FlatZinc. It is a proper subset of the MiniZinc grammar (see Section 4.1.14). However, instead of specifying all the cases in the MiniZinc grammar that do not apply to FlatZinc, the BNF syntax below contains only the relevant syntactic constructs. It uses the same notation as in Section 4.1.2.

```plaintext
% A FlatZinc model
<model> ::= [
 [<predicate-item>]*
 [<par-decl-item>]*
 [<var-decl-item>]*
 [<constraint-item>]*
<solve-item>

% Predicate items
<predicate-item> ::= "predicate" <identifier> "(" [<pred-param-type> :. ...] ")" ";"

% Identifiers
<identifier> ::= [A-Za-z][A-Za-z0-9_]*

<basic-par-type> ::= "bool"
 | "int"
 | "float"
 | "set of int"

<par-type> ::= <basic-par-type>
 | "array" "[" <index-set> "]" "of" <basic-par-type>

<basic-var-type> ::= "var" "bool"
 | "var" "int"
 | "var" <int-literal> ".." <int-literal>
```
4.3.6. Grammar
% Float literals
<float-literal> ::= [0-9]+[0-9]+
               | [0-9]+[0-9]+[Ee][+-]?[0-9]+
               | [0-9]+[Ee][+-][0-9]+

% Set literals
<set-literal> ::= "{ [ <int-literal> "," ... ] "}"
               | <int-literal> "." <int-literal>
               | "{ [ <float-literal> "," ... ] "}"
               | <float-literal> "." <float-literal>

<array-literal> ::= "[ [ <basic-expr> "," ... ] ]"
<par-array-literal> ::= "[ [ <basic-literal-expr> "," ... ] ]"

% Parameter declarations
<par-decl-item> ::= <par-type> ":" <var-par-identifier> "+" <par-expr> ";"

% Variable declarations
<var-decl-item> ::= <basic-var-type> ":" <var-par-identifier> <annotations>
                   <annotation> ","
                   [ "=" <basic-expr> ] ","
                   | <array-var-type> ":" <var-par-identifier> <annotations>
                   "=" <array-literal> ";"

% Constraint items
<constraint-item> ::= "constraint" <identifier> "( [ <expr> "," ... ] ")" <annotations>

% Solve item
<solve-item> ::= "solve" <annotations> "satisfy" ";"
               | "solve" <annotations> "minimize" <basic-expr> ";"
               | "solve" <annotations> "maximize" <basic-expr> ";"

% Annotations
<annotations> ::= [ ":" <annotation> ]*

<annotation> ::= <identifier>
               | <identifier> "(" <ann-expr> "," ... ")"

<ann-expr> ::= <expr>
              | <annotation>

% End of FlatZinc grammar
# Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>,</td>
<td>Builtins, 282, 283</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>Builtins, 282, 283</td>
<td></td>
</tr>
<tr>
<td>'^='</td>
<td>Builtins, 287, Option type support, 276</td>
<td></td>
</tr>
<tr>
<td>'+'</td>
<td>Builtins, 288, Option type support, 277</td>
<td></td>
</tr>
<tr>
<td>'++'</td>
<td>Builtins, 305, 306, 325</td>
<td></td>
</tr>
<tr>
<td>','</td>
<td>Builtins, 288, 289, Option type support, 277</td>
<td></td>
</tr>
<tr>
<td>'-&gt;&gt;'</td>
<td>Builtins, 297</td>
<td></td>
</tr>
<tr>
<td>'..'</td>
<td>Builtins, 300</td>
<td></td>
</tr>
<tr>
<td>'/'</td>
<td>Builtins, 289</td>
<td></td>
</tr>
<tr>
<td>'/'</td>
<td>Builtins, 289, 290</td>
<td></td>
</tr>
<tr>
<td>'^'</td>
<td>Builtins, 285, 286</td>
<td></td>
</tr>
<tr>
<td>'^&gt;'</td>
<td>Builtins, 289, 290</td>
<td></td>
</tr>
<tr>
<td>']'</td>
<td>Builtins, 298</td>
<td></td>
</tr>
<tr>
<td>'&gt;=,'</td>
<td>Builtins, 287, Option type support, 278</td>
<td></td>
</tr>
<tr>
<td>','</td>
<td>Builtins, 284, Option type support, 277</td>
<td></td>
</tr>
<tr>
<td>'&lt;:'</td>
<td>Builtins, 298</td>
<td></td>
</tr>
<tr>
<td>'&lt;-&gt;'</td>
<td>Builtins, 298</td>
<td></td>
</tr>
<tr>
<td>'&lt;='</td>
<td>Builtins, 284, Option type support, 277, 278</td>
<td></td>
</tr>
<tr>
<td>'diff'</td>
<td>Builtins, 300</td>
<td></td>
</tr>
<tr>
<td>'div'</td>
<td>Builtins, 290, Option type support, 278</td>
<td></td>
</tr>
<tr>
<td>'in'</td>
<td>Builtins, 300, 301</td>
<td></td>
</tr>
<tr>
<td>'intersect'</td>
<td>Builtins, 301</td>
<td></td>
</tr>
<tr>
<td>'mod'</td>
<td>Builtins, 290, Option type support, 278, 279</td>
<td></td>
</tr>
<tr>
<td>'not'</td>
<td>Builtins, 298, Option type support, 274</td>
<td></td>
</tr>
<tr>
<td>'subset'</td>
<td>Builtins, 301</td>
<td></td>
</tr>
<tr>
<td>'superset'</td>
<td>Builtins, 301</td>
<td></td>
</tr>
<tr>
<td>'symdiff'</td>
<td>Builtins, 302</td>
<td></td>
</tr>
<tr>
<td>'union'</td>
<td>Builtins, 302</td>
<td></td>
</tr>
<tr>
<td>'xor'</td>
<td>Builtins, 299</td>
<td></td>
</tr>
<tr>
<td>'*',</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>'+',</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>'-',</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>- --input-from-stdin</td>
<td>command line option, 141</td>
<td></td>
</tr>
<tr>
<td>-MIPDMaxDensEE &lt;n&gt;</td>
<td>command line option, 141</td>
<td></td>
</tr>
</tbody>
</table>
–MIPDMaxIntvEE <n>
command line option, 141
–allow-multiple-assignments
command line option, 142
–compile-solution-checker <file>.mzc.mzn
command line option, 142
–compiler-statistics
command line option, 140
–config-dirs
command line option, 140
–error-msg
command line option, 144
–fzn <file>, –output-fzn-to-file <file>
command line option, 142
–help <id>
command line option, 140
–help, -h
command line option, 139
–ignore-stdlib
command line option, 141
–instance-check-only
command line option, 141
–keep-paths
command line option, 143
–model-interface-only
command line option, 141
–model-types-only
command line option, 141
–no-flush-output
command line option, 144
–no-optimize
command line option, 141
–no-output-comments
command line option, 144
–no-output-ozn, -O-
command line option, 142
–non-unique
command line option, 144
–only-range-domains
command line option, 142
–output-base <name>
command line option, 142
–output-mode <item|dzn|json>
command line option, 143
–output-non-canonical <file>
command line option, 144
–output-objective
command line option, 143
–output-ozn-to-stdout
command line option, 143
–output-paths
command line option, 143
–output-paths-to-file <file>
command line option, 143
–output-paths-to-stdout
command line option, 143
–output-raw <file>
command line option, 144
–output-time
command line option, 144
–output-to-stdout, –output-fzn-to-stdout
command line option, 143
–output-paths-to-file <file>
command line option, 144
–pre-passes <n>
command line option, 142
–sac
command line option, 142
–search-complete-msg <msg>
command line option, 144
–shave
command line option, 142
–soln-comma <s>, –solution-comma <s>
command line option, 143
–soln-sep <s>, –soln-separator <s>, –
solution-separator <s>
command line option, 143
–solver <id>, –solver <solver configuration
file>.msc
command line option, 140
–solver-statistics
command line option, 140
–solvers
command line option, 140
–solvers-json
command line option, 140
–stdlib-dir <dir>
command line option, 141
–two-pass
command line option, 141
–two-passes <n>
command line option, 141
–unbounded-msg
command line option, 142
–unknown-msg
command line option, 143
–unsat-msg (~unsatisfiable-msg)
command line option, 143
–unsatorunbnd-msg
command line option, 143
–use-gecode
command line option, 142
–verbose-compilation
command line option, 140

–verbose-solving
   command line option, 141
–version
   command line option, 139
-D <data>, –cmdline-data <data>
   command line option, 141
-D fMIPdomains=false
   command line option, 141
-G –globals-dir –mzn-globals-dir <dir>
   command line option, 141
-I –search-dir
   command line option, 141
-O, –ozn, –output-ozn-to-file <file>
   command line option, 142
-O<n>
   command line option, 142
-Werror
   command line option, 143
-a
   command line option, 403
-a, –all-solutions
   command line option, 140
-c, –canonicalize
   command line option, 144
-c, –compile
   command line option, 140
-d <file>, –data <file>
   command line option, 141
-e, –model-check-only
   command line option, 141
-f
   command line option, 403
-f, –free-search
   command line option, 140
-i <n>, –ignore-lines <n>, –ignore-leading-lines <n>
   command line option, 143
-n <i>
   command line option, 403
-n <i>, –num-solutions <i>
   command line option, 140
-o <file>, –output-to-file <file>
   command line option, 143
-p <i>
   command line option, 403
-p <i>, –parallel <i>
   command line option, 141
-r <i>
   command line option, 403
-r <i>, –random-seed <i>
   command line option, 141
-s
   command line option, 403
-s, –statistics
   command line option, 140
-t <ms>
   command line option, 140
-v
   command line option, 403
-v, -l, –verbose
   command line option, 140
=, 24
==, 24
~*, 24
~+
   Option type support, 281
~-
   Option type support, 281
~=
   Option type support, 281
>, 24
>=, 24
<, 24
<=, 24

A
abrupt
   Builtins, 331
abs
   Builtins, 290, 291
absent
   Option type support, 274, 281
acos
   Builtins, 295
acosh
   Builtins, 295
activity_max
   Additional declarations for Gecode, 381
activity_min
   Additional declarations for Gecode, 381
activity_size_max
   Additional declarations for Gecode, 382
activity_size_min
   Additional declarations for Gecode, 382
add_to_output
   Annotations, 265
Additional declarations for Chuffed
largest_smallest, 385
priority_search, 385
random_order, 385
smallest_largest, 385
Additional declarations for Gecode
   activity_max, 381
   activity_min, 381
   activity_size_max, 382
   activity_size_min, 382
   afc_max, 382
   afc_min, 382
   afc_size_max, 382
   afc_size_min, 382
   among_seq, 383
   bool_default_search, 382
   circuit_cost, 383
   circuit_cost_array, 384
   float_default_search, 382
   gecode_array_set_element_intersect, 384
   gecode_array_set_element_intersect_in, 384
   gecode_array_set_element_partition, 384
   int_default_search, 383
   random, 382
   relax_and_reconstruct, 383
   set_default_search, 383
   afc_max
      Additional declarations for Gecode, 382
   afc_min
      Additional declarations for Gecode, 382
   afc_size_max
      Additional declarations for Gecode, 382
   afc_size_min
      Additional declarations for Gecode, 382
   aggregation function, 43
      exists, 43
      forall, 43
      ifall, 43
      max, 43
      min, 43
      product, 43
      sum, 43
      xorall, 43
   all_different
      Global constraints, 352
   all_disjoint
      Global constraints, 352
   all_equal
      Global constraints, 352
   alldifferent, 61
   alldifferent_except_0
      Global constraints, 352
   alternative
      Global constraints, 365
   among
   Global constraints, 358
   among_seq
      Additional declarations for Gecode, 383
   ann, 91
   annotation, 32, 85, 91
   Annotations
      add_to_output, 265
      anti_first_fail, 268
      bool_search, 271
      bounds, 267
      complete, 270
      constraint_name, 266
      defines_var, 266
      doc_comment, 267
      dom_w_deg, 268
      domain, 268
      domain_change_constraint, 265
      expression_name, 267
      first_fail, 268
      float_search, 271, 272
      impact, 268
      indomain, 269
      indomain_interval, 269
      indomain_max, 269
      indomain_median, 269
      indomain_middle, 269
      indomain_min, 269
      indomain_random, 269
      indomain_reverse_split, 269
      indomain_split, 269
      indomain_split_random, 270
      input_order, 268
      int_search, 272
      is_defined_var, 265
      is_reverse_map, 265
      largest, 268
      max_regret, 268
      maybe_partial, 265
      most_constrained, 268
      mzn_break_here, 266
      mzn_check_enum_var, 267
      mzn_check_var, 266
      mzn_constraint_name, 267
      mzn_expression_name, 267
      mzn_path, 267
      mzn_rhs_from_assignment, 266
      occurrence, 268
      outdomain_max, 270
      outdomain_median, 270
      outdomain_min, 270
      outdomain_random, 270
output_array, 267
output_only, 266
output_var, 266
promise_total, 266
restart_constant, 271
restart_geometric, 271
restart_linear, 271
restart_luby, 271
restart_none, 270
seq_search, 272
set_search, 272
smallest, 269
var_is_introduced, 266
warm_start, 273, 274
warm_start_array, 274

anti_first_fail
Annotations, 268
arg_max
Builtins, 291
Global constraints, 376
arg_min
Builtins, 291
Global constraints, 377
arg_sort
Builtins, 321
Global constraints, 356
argument, 70, 79
array, 35
access, 41, 54
index set, 40
unbounded, 70
literal
1D, 41
2D, 41
array1d
Builtins, 306, 307
array2d
Builtins, 307
array3d
Builtins, 308
array4d
Builtins, 308, 309
array5d
Builtins, 309, 310
array6d
Builtins, 310, 311
array_bool_and
FlatZinc builtins, 340
array_bool_element
FlatZinc builtins, 340
array_float_element
FlatZinc builtins, 344
array_float_maximum
FlatZinc builtins, 344
array_float_minimum
FlatZinc builtins, 344
array_int_element
FlatZinc builtins, 337
array_int_maximum
FlatZinc builtins, 337
array_int_minimum
FlatZinc builtins, 337
array_intersect
Builtins, 302
array_set_element
FlatZinc builtins, 342
array_union
Builtins, 302
array_var_bool_element
FlatZinc builtins, 340
array_var_bool_element_nonshifted
FlatZinc builtins, 350
array_var_float_element
FlatZinc builtins, 344
array_var_float_element_nonshifted
FlatZinc builtins, 350
array_var_int_element
FlatZinc builtins, 337
array_var_int_element_nonshifted
FlatZinc builtins, 350
array_var_set_element
FlatZinc builtins, 342
array_var_set_element_nonshifted
FlatZinc builtins, 350
arrayXd
Builtins, 311, 312
asin
Builtins, 295
asinh
Builtins, 295
assert, 28
Builtins, 331, 332
assignment, 22, 75
at_least
Global constraints, 358
at_most
Global constraints, 358, 359
at_most1
Global constraints, 359
atan
Builtins, 295, 296
atanh
Builtins, 296
B
bernoulli
Builtins, 333
bin_packing
Global constraints, 361
bin_packing_capa
Global constraints, 361
bin_packing_load
Global constraints, 362
binomial
Builtins, 334
bool2float
Builtins, 323
bool2int, 50, 55
Builtins, 323, 324
FlatZinc builtins, 340
Option type support, 279
bool_and
FlatZinc builtins, 340
bool_clause
FlatZinc builtins, 341
bool_clause_reif
FlatZinc builtins, 350
bool_default_search
Additional declarations for Gecode, 382
bool_eq
FlatZinc builtins, 341
Option type support, 274, 275
bool_eq_reif
FlatZinc builtins, 341
bool_le
FlatZinc builtins, 341
bool_le_reif
FlatZinc builtins, 341
bool_lin_eq
FlatZinc builtins, 341
bool_lin_le
FlatZinc builtins, 341
bool_lt
FlatZinc builtins, 341
bool_lt_reif
FlatZinc builtins, 341
bool_not
FlatZinc builtins, 341
bool_or
FlatZinc builtins, 342
bool_search, 90
Annotations, 271
Option type support, 275
bool_xor
FlatZinc builtins, 342
Boolean, 22, 50
bounded_dpath
Global constraints, 367
bounded_path
Global constraints, 367, 368
bounds
Annotations, 267
Builtins
' =', 282, 283
'**', 287
'+', 288
'+-', 305, 306, 325
',', 288, 289
'->', 297
'.', 300
'/', 289
'\/', 297
'=', 285, 286
'^', 289, 290
'\/', 298
'>', 286
'>=', 287
'<', 284
'<-', 298
'<=>', 298
'<=', 284
diff', 300
div', 290
'in', 300, 301
'intersect', 301
'mod', 290
'not', 298
'subset', 301
'superset', 301
'symdiff', 302
'union', 302
'xor', 299
abort, 331
abs, 290, 291
acos, 295
acosh, 295
arg_max, 291
arg_min, 291
arg_sort, 321
array1d, 306, 307
array2d, 307
array3d, 308
array4d, 308, 309
array5d, 309, 310
array6d, 310, 311
array_intersect, 302
array_union, 302
arrayXd, 311, 312
asin, 295
asinh, 295
assert, 331, 332
atan, 295, 296
atanh, 296
bernoulli, 333
binomial, 334
bool2float, 323
bool2int, 323, 324
card, 302, 303
cauhy, 334
cell, 324
chisquared, 334
clause, 299
col, 312
concat, 325
cos, 296
cosh, 296
discrete_distribution, 334
dom, 328
dom_array, 328
dom_bounds_array, 328
dom_size, 328
enum_next, 332, 333
enum_prev, 333
exists, 299
exp, 294
exponential, 334
fdistribution, 334
file_path, 325
fix, 328
floor, 324
forall, 299
format, 325, 326
format_justify_string, 326
gamma, 335
has_bounds, 328
has_element, 312
has_index, 312
has_ub_set, 329
if_then_else, 303-305
if_then_else_partiality, 305
iffall, 299
implied_constraint, 336
index_set, 312
index_set_1of2, 313
index_set_1of3, 313
index_set_1of4, 313
index_set_1of5, 313
index_set_1of6, 313
index_set_2of2, 313
index_set_2of3, 313
index_set_2of4, 313
index_set_2of5, 313
index_set_2of6, 313
index_set_3of3, 314
index_set_3of4, 314
index_set_3of5, 314
index_set_3of6, 314
index_set_4of4, 314
index_set_4of5, 314
index_set_4of6, 314
index_set_5of5, 314
index_set_5of6, 314
index_set_6of6, 315
index_sets_agree, 315
int2float, 324
is_fixed, 329
join, 326
lb, 329
lb_array, 329, 330
length, 315
ln, 294
log, 294
log10, 294
log2, 294, 295
lognormal, 335
max, 291, 292, 303
min, 292, 303
mzn_compiler_version, 336
mzn_version_to_string, 337
normal, 335
outputJSON, 326
outputJSONParameters, 327
poisson, 335
pow, 292, 293
product, 293
redundant_constraint, 336
reverse, 315
round, 324
row, 315, 316
set2array, 324
show, 327
show2d, 327
show3d, 327
show_float, 327
show_int, 327
showJSON, 327
sin, 296
sinh, 296
slice_1d, 316
slice_2d, 316, 317
slice_3d, 317, 318
slice_4d, 318, 319
slice_5d, 319, 320
slice_6d, 320, 321
sort, 321, 322
sqrt, 293
string_length, 328
sum, 293, 294
symmetry_breaking_constraint, 336
tan, 297
tanh, 297
tdistribution, 335
to_enum, 333
trace, 332
trace_stdout, 332
ub, 330
ub_array, 330, 331
uniform, 336
weibull, 336
xorall, 300

int2float, 56
col

Builtins, 312

card

Builtins, 302, 303

cauhy

Builtins, 334

ceil

Builtins, 324

chisquared

Builtins, 334

circuit

Global constraints, 377
circuit_cost

Additional declarations for Gecode, 383
circuit_cost_array

Additional declarations for Gecode, 384

clause

Builtins, 299

coercion

automatic, 56
bool2int, 56

C

card

Builtins, 302, 303
cauhy

Builtins, 334

ceil

Builtins, 324

chisquared

Builtins, 334

circuit

Global constraints, 377
circuit_cost

Additional declarations for Gecode, 383
circuit_cost_array

Additional declarations for Gecode, 384

clause

Builtins, 299

coercion

automatic, 56
bool2int, 56
-solver-statistics, 140
-solvers, 140
-solvers-json, 140
-stdlib-dir <dir>, 141
-two-pass, 142
-unbounded-msg, 143
-unknown-msg, 144
-unsat-msg (–unsatisfiable-msg), 143
-unsatorunbnd-msg, 143
-use-gecode, 142
-verbose-compilation, 140
-verbose-solving, 141
-version, 139
-D <data>, –cmdline-data <data>, 141
-fMIPdomains=false | hyperpage, 141
-G –globals-dir –mzn-globals-dir <dir>, 141
-I –search-dir, 141
-O, –ozn, –output-ozn-to-file <file>, 142
-O<n>, 142
-Werror, 143
-a, 403
-a, –all-solutions, 140
-c, –canonicalize, 144
-c, –compile, 140
-d <file>, –data <file>, 141
-e, –model-check-only, 141
-f, 403
-f, –free-search, 140
-i <n>, –ignore-lines <n>, –ignore-leading-lines <n>, 143
-n <i>, 403
-n <i>, –num-solutions <i>, 140
-o <file>, –output-to-file <file>, 143
-p <i>, 403
-p <i>, –parallel <i>, 141
-r <i>, 403
-r <i>, –random-seed <i>, 141
-s, 403
-s, –statistics, 140
-t <ms>, 403
-v, 403
-v, -l, –verbose, 140

Compiler options
mzn_check_only_range_domains, 282
mzn_min_version_required, 282
mzn_opt_only_range_domains, 282

complete
Annotations, 270
comprehension, 79
generator, 42

list, 44
set, 42
concat
Builtins, 252

global constraints, 368
constraint, 23
complex, 50
higher order, 55
local, 76
redundant, 100
set, 56

constraint_name
Annotations, 266

context, 75
mixed, 77
negative, 75, 77
cos
Builtins, 296
cosh
Builtins, 296
cost_mdd
Global constraints, 374
cost_regular
Global constraints, 374
count
Global constraints, 359
count_eq
Global constraints, 359
count_geq
Global constraints, 359
count_gt
Global constraints, 359
count_leq
Global constraints, 359
count_lt
Global constraints, 359
count_neq
Global constraints, 360
cumulative, 61

D
d_weighted_spanning_tree
Global constraints, 368
dag
Global constraints, 369
data file, 26
command line, 28
dconnected
Global constraints, 369
decision variable, see variable decreasing
  Global constraints, 356, 357
defines_var
  Annotations, 266
deopt
  Option type support, 275, 281
DFA, 65
diffn
  Global constraints, 362
diffn_k
  Global constraints, 362
diffn_nonstrict
  Global constraints, 362
diffn_nonstrict_k
  Global constraints, 363
discrete_distribution
  Builtins, 334
disjoint
  Global constraints, 377
disjunctive
  Global constraints, 366
disjunctive_strict
  Global constraints, 366
distribute
  Global constraints, 360
div, 26
doc_comment
  Annotations, 267
dom
  Builtins, 328
dom_array
  Builtins, 328
dom_bounds_array
  Builtins, 328
dom_size
  Builtins, 328
dom_w_deg, 90
  Annotations, 268
domain, 23
  Annotations, 268
  reflection, 77, 78
domain_change_constraint
  Annotations, 265
dpath
  Global constraints, 369
dreachable
  Global constraints, 370
dsteiner
  Global constraints, 370
dtree
Global constraints, 370, 371
E
  element
    Option type support, 275, 276, 279
elem
  Builtins, 332, 333
elem_prev
  Builtins, 333
enumerated type, 40, 41
enumerated types, 32
  Global constraints, 360
exists, 43
  Builtins, 299
  Option type support, 276
exp
  Builtins, 294
exponential
  Builtins, 334
expression, 91
  arithmetic, 26
  assert, 70
  Boolean, 50, 69
  conditional, 46
  generator call, 43
  let, 77
expression_name
  Annotations, 267
F
false, 50
fdistribution
  Builtins, 334
file_path
  Builtins, 325
first_fail, 90
  Annotations, 268
fix, 60
  Builtins, 328
fixed, 32, 42, 60
FlatZinc builtins
  array_bool_and, 340
  array_bool_element, 340
  array_bool_or, 340
  array_bool_xor, 340
  array_float_element, 344
  array_float_maximum, 344, 349
  array_float_minimum, 344, 349
  array_int_element, 337
  array_int_maximum, 337, 349
  array_int_minimum, 337, 350
set_ne, 343
set_ne_reif, 343
set_subset, 344
set_subset_reif, 344
set_superset, 344
set_symdiff, 344
set_union, 344

float_abs
FlatZinc builtins, 345

float_acos
FlatZinc builtins, 345

float_acosh
FlatZinc builtins, 345

float_asin
FlatZinc builtins, 345

float_asinh
FlatZinc builtins, 345

float_atan
FlatZinc builtins, 345

float_atanh
FlatZinc builtins, 345

float_cos
FlatZinc builtins, 345

float_cosh
FlatZinc builtins, 345

float_default_search
Additional declarations for Gecode, 382

float_div
FlatZinc builtins, 345

float_dom
FlatZinc builtins, 346, 351

float_eq
FlatZinc builtins, 346

float_eq_reif
FlatZinc builtins, 346

float_exp
FlatZinc builtins, 346

float_in
FlatZinc builtins, 346

float_in_reif
FlatZinc builtins, 346

float_le
FlatZinc builtins, 346

float_le_reif
FlatZinc builtins, 347

float_lin_eq
FlatZinc builtins, 346

float_lin_eq_reif
FlatZinc builtins, 347

float_lin_le
FlatZinc builtins, 347

float_lin_le_reif
FlatZinc builtins, 347

float_lin_lt
FlatZinc builtins, 347

float_lin_lt_reif
FlatZinc builtins, 347

float_lin_ne
FlatZinc builtins, 347

float_lin_ne_reif
FlatZinc builtins, 347

float_in
FlatZinc builtins, 347

float_log10
FlatZinc builtins, 348

float_log2
FlatZinc builtins, 348

float_max
FlatZinc builtins, 348

float_min
FlatZinc builtins, 348

float_ne
FlatZinc builtins, 348

float_ne_reif
FlatZinc builtins, 348

float_plus
FlatZinc builtins, 348

float_pow
FlatZinc builtins, 348

float_search
Annotations, 271, 272

float_sin
FlatZinc builtins, 348

float_sinh
FlatZinc builtins, 349

float_sqrt
FlatZinc builtins, 349

float_tan
FlatZinc builtins, 349

float_tanh
FlatZinc builtins, 349

float_times
FlatZinc builtins, 349

floor
Builtins, 324

forall, 42, 43

Builtins, 299

Option type support, 276
format
  Builtins, 325, 326
format_justify_string
  Builtins, 326
function, 60, 74, 75
  definition, 70, 72

G
gamma
  Builtins, 335
gecode_array_set_element_intersect
  Additional declarations for Gecode, 384
gecode_array_set_element_intersect_in
  Additional declarations for Gecode, 384
gecode_array_set_element_partition
  Additional declarations for Gecode, 384
generator, 98
generator call, 43
geost
  Global constraints, 363
geost_bb
  Global constraints, 363
gest_nonoverlap_k
  Global constraints, 364
geost_smallest_bb
  Global constraints, 364
global constraint, 61
  alldifferent, 61
cumulative, 61
disjunctive, 73
  regular, 65
table, 63
Global constraints
  all_different, 352
  all_disjoint, 352
  all_equal, 352
  alldifferent_except_0, 352
  alternative, 365
among, 358
arg_max, 376
arg_min, 377
arg_sort, 356
at_least, 358
at_most, 358, 359
at_most1, 359
bin_packing, 361
bin_packing_capa, 361
bin_packing_load, 362
bounded_dpath, 367
bounded_path, 367, 368
circuit, 377
cost_mdd, 374
cost_regular, 374
count, 359
count_eq, 359
count_geq, 359
count_gt, 359
count_leq, 359
count_lt, 359
count_neq, 360
cumulative, 365
d_weighted_spanning_tree, 368
dag, 369
dconnected, 369
decreasing, 356, 357
diffn, 362
diffn_k, 362
diffn_nonstrict, 362
diffn_nonstrict_k, 363
disjoint, 377
disjunctive, 366
disjunctive_strict, 366
distribute, 360
dpath, 369
dreachtalbe, 370
dsteiner, 370
dtree, 370, 371
eactly, 360
gost, 363
gost_bb, 363
gest_nonoverlap_k, 364
gost_smallest_bb, 364
global_cardinality, 360
global_cardinality_closed, 360, 361
global_cardinality_low_up, 361
global_cardinality_low_up_closed, 361
increasing, 357
int_set_channel, 357
inverse, 357, 358
inverse_set, 358
knapsack, 365
lex2, 352
lex_greater, 353
lex_greaterreq, 353
lex_less, 354
lex_lesseq, 354, 355
link_set_to_booleans, 358
maximum, 377
maximum_arg, 377, 378
mdd, 375
member, 378
minimum, 378
minimum_arg, 379
network_flow, 379
network_flow_cost, 379
NEURON_TYPE, 376
nvalue, 352
partition_set, 380
path, 371
piecewise_linear, 380
range, 380
reachable, 372
regular, 375
regular_nfa, 375, 376
roots, 380
seq_precede_chain, 355
sliding_sum, 381
sort, 357
span, 366
steiner, 372
strict_lex2, 355
subcircuit, 381
subgraph, 372, 373
sum_pred, 381
sum_set, 381
symmetric_all_different, 352
table, 376
tree, 373
value_precede, 355
value_precede_chain, 355
weighted_spanning_tree, 374
global_cardinality
Global constraints, 360
global_cardinality_closed
Global constraints, 360, 361
global_cardinality_low_up
Global constraints, 361
global_cardinality_low_up_closed
Global constraints, 361

H
has_bounds
Builtins, 328
has_element
Builtins, 312
has_index
Builtins, 312
has_ub_set
Builtins, 329

I
if_then_else
Builtins, 303–305
if_then_else_partiality
Builtins, 305
ifall, 43
Builtins, 299
impact
Annotations, 268
implied_constraint
Builtins, 336
increasing
Global constraints, 357
index_set
Builtins, 312
index_set_1of2
Builtins, 313
index_set_1of3
Builtins, 313
index_set_1of4
Builtins, 313
index_set_1of5
Builtins, 313
index_set_1of6
Builtins, 313
index_set_2of2
Builtins, 313
index_set_2of3
Builtins, 313
index_set_2of4
Builtins, 313
index_set_2of5
Builtins, 313
index_set_2of6
Builtins, 313
index_set_3of3
Builtins, 314
index_set_3of4
Builtins, 314
index_set_3of5
Builtins, 314
index_set_3of6
Builtins, 314
index_set_4of4
Builtins, 314
index_set_4of5
Builtins, 314
index_set_4of6
Builtins, 314
index_set_5of5
Builtins, 314
index_set_5of6
Builtins, 314
index_set_6of6
Builtins, 314
Builtins, 315
index_sets_agree
   Builtins, 315
indomain
   Annotations, 269
indomain_interval
   Annotations, 269
indomain_max
   Annotations, 269
indomain_median, 90
   Annotations, 269
indomain_middle
   Annotations, 269
indomain_min, 90
   Annotations, 269
indomain_random, 90
   Annotations, 269
indomain_reverse_split
   Annotations, 269
indomain_split, 90
   Annotations, 269
indomain_split_random
   Annotations, 270
input_order, 90
   Annotations, 268
int2float
   Builtins, 324
   FlatZinc builtins, 349
int_abs
   FlatZinc builtins, 337
int_default_search
   Additional declarations for Gecode, 383
int_div
   FlatZinc builtins, 337
int_eq
   FlatZinc builtins, 337
   Option type support, 280
int_eq_reif
   FlatZinc builtins, 338
int_le
   FlatZinc builtins, 338
int_le_reif
   FlatZinc builtins, 338
int_lin_eq
   FlatZinc builtins, 338
int_lin_eq_reif
   FlatZinc builtins, 338
int_lin_le
   FlatZinc builtins, 338
int_lin_le_reif
   FlatZinc builtins, 338
int_lin_ne
   FlatZinc builtins, 338
int_lin_ne_reif
   FlatZinc builtins, 339
int_lt
   FlatZinc builtins, 339
int_lt_reif
   FlatZinc builtins, 339
int_max
   FlatZinc builtins, 339
int_min
   FlatZinc builtins, 339
int_mod
   FlatZinc builtins, 339
int_ne
   FlatZinc builtins, 339
   Option type support, 280
int_ne_reif
   FlatZinc builtins, 339
int_plus
   FlatZinc builtins, 339
int_pow
   FlatZinc builtins, 339
int_pow_fixed
   FlatZinc builtins, 340
int_search, 90
   Annotations, 272
   Option type support, 280
int_set_channel
   Global constraints, 357
int_times
   FlatZinc builtins, 340
integer, 22
inverse
   Global constraints, 357, 358
inverse_set
   Global constraints, 358
is_defined_var
   Annotations, 265
is_fixed
   Builtins, 329
is_reverse_map
   Annotations, 265
item, 31
   annotation, 33, 91
   assignment, 32
   constraint, 32
   enum, 33
   include, 31
   output, 33
   predicate, 33
solve, 32
variable declaration, 32
J
join
Builtins, 326
K
knapsack
Global constraints, 365
L
largest
Annotations, 268
largest_smallest
Additional declarations for Chuffed, 385
lb
Builtins, 329
lb_array
Builtins, 329, 330
length
Builtins, 315
let, 73
lex2
Global constraints, 352
lex_greater
Global constraints, 353
lex_greatereq
Global constraints, 353
lex_less
Global constraints, 354
lex_less_eq
Global constraints, 354, 355
link_set_to_booleans
Global constraints, 358
list, 40
ln
Builtins, 294
log
Builtins, 294
log10
Builtins, 294
log2
Builtins, 294, 295
lognormal
Builtins, 335
M
max, 43
Builtins, 291, 292, 303
FlatZinc builtins, 351
Option type support, 280
max_regret
Annotations, 268
maximize, 26
maximum
Global constraints, 377
maximum_arg
Global constraints, 377, 378
maybe_partial
Annotations, 265
mdd
Global constraints, 375
member
Global constraints, 378
min, 43
Builtins, 292, 303
FlatZinc builtins, 351
Option type support, 280
minimize, 26
minimum
Global constraints, 378
minimum_arg
Global constraints, 379
minizinc -c, 119
mod, 26
most_constrained
Annotations, 268
mzn_break_here
Annotations, 266
mzn_check_enum_var
Annotations, 267
mzn_check_only_range_domains
Compiler options, 282
mzn_check_var
Annotations, 266
mzn_compiler_version
Builtins, 336
mzn_constraint_name
Annotations, 267
mzn_expression_name
Annotations, 267
mzn_min_version_required
Compiler options, 282
mzn_opt_only_range_domains
Compiler options, 282
mzn_path
Annotations, 267
mzn_rhs_from_assignment
Annotations, 266
mzn_version_to_string
Builtins, 337
MiniZinc Handbook, Release 2.3.1

N

network_flow
  Global constraints, 379
network_flow_cost
  Global constraints, 379
NEURON_TYPE
  Global constraints, 376
NFA, 68
normal
  Builtins, 335
nvalue
  Global constraints, 352

O

objective, 26, 74
occurrence
  Annotations, 268
occurs
  Option type support, 276, 280–282
operator
  Boolean, 50
  integer, 26
  relational, 24
  set, 38
optimization, 26
option type, 42
Option type support
  '*', 276
  '+', 277
  '-', 277
  '>', 278
  '=>', 278
  '<', 277
  '<=', 277, 278
  'div', 278
  'mod', 278, 279
  'not', 274
  '~*', 281
  '~+', 281
  '~-', 281
  '~=', 281
absent, 274, 281
bool2int, 279
bool_eq, 274, 275
bool_search, 275
deopt, 275, 281
element, 275, 276, 279
exists, 276
forall, 276
int_eq, 280
int_ne, 280

int_search, 280
max, 280
min, 280
occurs, 276, 280–282
product, 280
sum, 280, 281
option types, 81
outdomain_max
  Annotations, 270
outdomain_median
  Annotations, 270
outdomain_min
  Annotations, 270
outdomain_random
  Annotations, 270
output, 24, 48
output_array
  Annotations, 267
output_only, 103
  Annotations, 266
output_var
  Annotations, 266
outputJSON
  Builtins, 326
outputJSONParameters
  Builtins, 327

P

parameter, 22, 73, 91
partition_set
  Global constraints, 380
path
  Global constraints, 371
piecewise_linear
  Global constraints, 380
poisson
  Builtins, 335
pow
  Builtins, 292, 293
predicate, 60, 74, 75
  definition, 68, 70, 73
priority_search
  Additional declarations for Chuffed, 385
product, 43
  Builtins, 293
  Option type support, 280
promise_total
  Annotations, 266

R
random
  Additional declarations for Gecode, 382
random_order
  Additional declarations for Chuffed, 385
range, 32, 38, 65
  float, 32
  Global constraints, 380
  integer, 32
reachable
  Global constraints, 372
redundant_constraint
  Builtins, 336
regular, 65
  Global constraints, 375
regular_nfa
  Global constraints, 375, 376
reification, 126
relax_and_reconstruct
  Additional declarations for Gecode, 383
restart_constant, 93
  Annotations, 271
restart_geometric, 93
  Annotations, 271
restart_linear, 93
  Annotations, 271
restart_luby, 93
  Annotations, 271
restart_none, 93
  Annotations, 271
reverse
  Builtins, 315
roots
  Global constraints, 380
round
  Builtins, 324
row
  Builtins, 315, 316
runtime flag
  --all-solutions, 48
  -a, 48
S
satisfaction, 24
scope, 79
search, 85
  annotation, 89
  constrain choice, 90
  depth first, 85
  finite domain, 85
  restart, 92
  sequential, 90
  variable choice, 90
seq_precede_chain
  Global constraints, 355
seq_search, 90
  Annotations, 272
set, 38
set2array
  Builtins, 324
set_card
  FlatZinc builtins, 342
set_default_search
  Additional declarations for Gecode, 383
set_diff
  FlatZinc builtins, 342
set_eq
  FlatZinc builtins, 342
set_eq_reif
  FlatZinc builtins, 342
set_in
  FlatZinc builtins, 343
set_in_reif
  FlatZinc builtins, 343
set_intersect
  FlatZinc builtins, 343
set_le
  FlatZinc builtins, 343
set_lt
  FlatZinc builtins, 343
set_ne
  FlatZinc builtins, 343
set_ne_reif
  FlatZinc builtins, 343
set_search, 90
  Annotations, 272
set_subset
  FlatZinc builtins, 344
set_subset_reif
  FlatZinc builtins, 344
set_superset
  FlatZinc builtins, 344
set_symdiff
  FlatZinc builtins, 344
set_union
  FlatZinc builtins, 344
show, 24
  Builtins, 327
show2d
  Builtins, 327
show3d
  Builtins, 327
show_float
  Builtins, 327
show_int
MiniZinc Handbook, Release 2.3.1

Index

Builtins, 327
showJSON
  Builtins, 327
sin
  Builtins, 296
single enum, 40
sinn
  Builtins, 296
slice_1d
  Builtins, 316
slice_2d
  Builtins, 316, 317
slice_3d
  Builtins, 317, 318
slice_4d
  Builtins, 318, 319
slice_5d
  Builtins, 319, 320
slice_6d
  Builtins, 320, 321
sliding_sum
  Global constraints, 381
smallest, 90
  Annotations, 269
smallest_largest
  Additional declarations for Chuffed, 385
solution, 24
  all, 48
  end '==========', 26
  separator ————, 25
solve, 89
sort
  Builtins, 321, 322
  Global constraints, 357
sort_by
  Builtins, 322
span
  Global constraints, 366
sqrt
  Builtins, 293
steiner
  Global constraints, 372
strict_lex2
  Global constraints, 355
string, 22, 24
  literal, 24
  interpolated, 24
string_length
  Builtins, 328
subcircuit
  Global constraints, 381
subgraph
  Global constraints, 372, 373
sum, 43
  Builtins, 293, 294
  Option type support, 280, 281
sum_pred
  Global constraints, 381
sum_set
  Global constraints, 381
symmetric_all_different
  Global constraints, 352
symmetry
  breaking, 58
symmetry_breaking_constraint
  Builtins, 336
T
table, 63
  Global constraints, 376
tan
  Builtins, 297
tanh
  Builtins, 297
tdistribution
  Builtins, 335
to_enum
  Builtins, 333
trace, 99
  Builtins, 332
trace_stdout
  Builtins, 332
tree
  Global constraints, 373
ttrue, 50
type, 22, 23, 70
  enumerated, 39, 48
  anonymous, 55
  non-finite, 78
  parameter, 22
type-inst, 23
U
ub
  Builtins, 330
ub_array
  Builtins, 330, 331
unfixed, 32
uniform
  Builtins, 336
V
value_precede
Global constraints, 355
value_precede_chain
  Global constraints, 355
var_is_introduced
  Annotations, 266
variable, 22, 73
  bound, 77, 97, 98
  declaration, 23, 91
  enum, 49
  integer, 23
  iterator, 79
  local, 73, 77
  option type, 81

W
  warm_start, 94
    Annotations, 273, 274
warm_start_array
  Annotations, 274
weibull
  Builtins, 336
weighted_spanning_tree
  Global constraints, 374

X
xorall, 43
  Builtins, 300