Visualizing MiniZinc models with CP-Viz
Version 1.6

Mark Brown

1 CP-Viz

CP-Viz is a platform-independent visualization toolkit for finite domain con-
straint programming, which provides a wide range of visualizations through a
post-mortem analysis of trace logs.! FlatZinc, and hence MiniZinc, is able to
produce CP-Viz compliant trace logs for some visualization types, namely search
trees and views of integer and Boolean arrays. This document explains how to
produce the trace logs for a model, and how to view the results.

The MiniZinc evaluation driver, minizinc, conveniently hooks up MiniZinc
with CP-Viz. To use this script you will need to download CP-Viz and locate
the viz. jar file, and set CPVIZ_HOME to the appropriate location or include it
in CLASSPATH. For example:

$ export CPVIZ_HOME="/cpviz/visual/lib/viz.jar

Note: CP-Viz is a Java program, so you will need a Java Runtime Environment
installed in order to use it.

2 The viz/1 annotation

Users request visualizations using the viz/1 annotation. A model can contain
one or more of these annotations, and in fact it will also work with no annota-
tions but only the search tree will be displayed.

The viz/1 annotation is supported on declarations of var bool and var int
arrays. It has the following form:

:: viz([<optionl>, <option2>, ...])
where each option is one of

e viztype(Type)

Type is a string such as "vector_waterfall". See section 5 for a dis-
cussion of supported types. The default type is "vector" on arrays of
var int, and "binary_vector" on arrays of var bool.

e vizdisplay(Display)

Display is a string such as "compact" or "expanded". Most types of
visualizer ignore this parameter. See CP-Viz documentation for details.

Thttp://sourceforge.net/projects/cpviz/

e vizpos(X,Y)

Position the output in the visualization window. This is useful if the
model has more than one viz annotation. X and Y must be integers.
The default position is (0, 0), which is at the top-left of the window.

o vizwidth(Width)

Set the width of the visualization grid in squares.

e vizheight (Height)

Set the height of the visualization grid in squares.

e vizrange(Min, Maz)

Advise of the minimum and maximum integer domain values expected.
For example, an array variable can be annotated as follows:

array[1..5] of var 0..10: x
ioviz([
vizwidth(5),
vizheight (11),
vizrange (0, 10)
1;

It is possible to put more than one viz annotation on the same array:

array[1..5] of var 0..10: x

10 oviz([
viztype("vector"),
vizpos(0, 2),
vizwidth(5),
vizheight (11),
vizrange (0, 10)

D

iroviz([
viztype("vector_waterfall"),
vizpos(8, 0),
vizwidth(5),
vizheight (15)

s

Note that the current version of MiniZinc does not choose sensible defaults for
some parameters, so they need to be specified even if the value is obvious from
the context.

3 Enabling visualization in minizinc

When invoked with the -z option the minizinc program will evaluate the model
as normal, except that it will also create trace logs, and when solving has com-
pleted it will run CP-Viz on the logs to produce the visualizations. (Note that
currently only the fd backend produces valid trace logs.)

For example, to solve eq20 with all solutions:

$ minizinc -z -a eq20.mzn

After the usual mzn output there is some output from CP-Viz, followed by the
line:

Visualization created in viz.out/aaa.html.

This signifies that all of the files for viewing have been created in the viz.out
directory. This directory can safely be moved after minizinc has finished.

The viz/1 annotation is ignored when the -z option is not specified. It can
be safely left in the model even when visualization is not required.

4 Viewing the visualization

CP-Viz comes with a program, Viztool, that can be used to view the visu-
alization. Point it at the aaa.idx file, which is also created in the viz.out
directory.

An alternative is to point a web browser at the viz.out/aaa.html file men-
tioned above. This requires a browser that can render SVG images (most can),
and has Javascript enabled. The aaa.html file is a short piece of Javascript
generated by minizinc that performs much the same function as Viztool. One
advantage of this method is that most browsers can render the images signifi-
cantly faster than the Batik library used by Viztool.

The data is arranged in a sequence of states, one for each search node, in
chronological order. The viewing window is divided into two main frames, each
synchronized to show the same state at any one time. On the left is the part of
the search tree up to and including the search node for the current state. On
the right is the set of visualizations for the current state, as determined by the
viz/1 annotations.

When viewing with a browser, the top frame contains a set of buttons with
the following functions:

Start. Show the first state in the sequence.

Back. Show the previous state.

Forward. Show the next state.

End. Show the last state in the sequence.

Animate. Start a timer that automatically steps forward at regular intervals.
Stop. Stop the animation timer.

Configure. Set the interval length for animation.

Most browsers provide a zoom function, as well as other ways to configure the
display.

5 Visualization types

The following values are supported for the viztype/1 option (see section 2):2

e "vector"

Shows a grid with one column per variable and one row per domain value.
The variable (column) selected at the current search node is enclosed in a
rectangle. Squares are color coded as follows:

red failed or assigned value

pale green | value in domain

dark cyan | value just removed from domain
white value earlier removed from domain

The annotation can be used with variable declarations where the type is
an array of var int. This is the default visualization type for this type
of variable. Assuming that the array index set is M..N and the element
domains are L. .U, the options must specify:

vizwidth(card(M..N)),
vizheight(car(L..U)),
vizrange(L, U)

This visualization type works best if M = 1, since then the x-axis labels
generated by CP-Viz are accurate.
e "vector_waterfall"

Shows a grid with one column per variable and one row per search level.
Squares are color coded as follows:

red assigned in this step

pink previously assigned

light grey | unchanged

blue removed domain min

green removed domain max

cyan removed domain min and max
dark cyan | removed interior domain value

The annotation can be used with variable declarations where the type
is an array of var int. Assuming that the array index set is M. .N, the
options must specify:

vizwidth(card(M..N)),
vizheight (MaxDepth),
vizrange (1, MaxDepth)

where MaxDepth is the maximum expected depth of the search tree.

e "vector_size"

Shows a graph of domain size versus depth for the current derivation.
The annotation can be used with variable declarations where the type is

?Based on the file cpviz.tgz dated 2010-07-12.

6

an array of var int. The width should be set to the maximum expected
depth of the search tree. The height effectively sets the aspect ratio. The
vizrange/2 option has no effect.

"binary_vector"

Shows a row with one square per variable, color coded as follows:

pale green | unassigned

white assigned false in this step
light grey | previously assigned false
black assigned true in this step

dark grey | previously assigned true

The annotation can be used with variable declarations where the type is
an array of var int or var bool. Assuming that the index set is M. .N,
the options must specify:

vizwidth(card(M. .N))

The vizheight/1 and vizrange/1 options are ignored.

"alldifferent"

This visualization type is used in the same way as "vector".

Known limitations

The following limitations of G12’s support for CP-Viz will be addressed in future
releases.

Only the £d backend is supported.
Not many visualization types are supported.
MiniZinc should choose sensible default values for the optional parameters.

Not much error checking is currently performed. Bad annotations may be
silently ignored, or may lead to bad input being given to CP-Viz. MiniZinc
does not try to validate the XML it generates.

