
Specification of Zinc and MiniZinc

Nicholas Nethercote Kim Marriott Reza Rafeh
Mark Wallace Maŕıa Garćıa de la Banda

Version 0.9

1

Contents

1 Introduction 3

2 Overview of a Model 3
2.1 Specifying a Problem . 3
2.2 Evaluation of a Model Instance . 4

2.2.1 Evaluation Phases . 4
2.2.2 Evaluation Outcomes . 4

3 Syntax Overview 4
3.1 Character Set . 4
3.2 Comments . 5
3.3 Syntax Notation . 5
3.4 Identifiers . 5

4 High-level Model Structure 6
4.1 Items . 6
4.2 Model Instance Files . 6
4.3 Namespaces . 7
4.4 Scopes . 7

5 Types and Type-insts 8
5.1 Properties of Types . 8
5.2 Instantiations . 9
5.3 Type-insts . 9
5.4 Type-inst Expressions Overview . 9
5.5 Built-in Scalar Types and Type-insts 10

5.5.1 Booleans . 10
5.5.2 Integers . 11
5.5.3 Floats . 11
5.5.4 Strings . 11

5.6 Built-in Compound Types and Type-insts 12
5.6.1 Sets . 12
5.6.2 Arrays . 12
5.6.3 Tuples . 14
5.6.4 Records . 14

5.7 User-defined Types and Type-insts 15
5.7.1 Type-inst Synonyms . 15
5.7.2 Enumerated Types . 15
5.7.3 The Annotation Type ann . 16

5.8 Other Types and Type-insts . 17
5.8.1 Type-inst Variables . 17
5.8.2 Higher-order Types . 17

5.9 Constrained Type-insts . 18
5.9.1 Set Expression Type-insts . 18
5.9.2 Float Range Type-insts . 18
5.9.3 Arbitrarily Constrained Type-insts 18

6 Expressions 19
6.1 Expressions Overview . 19
6.2 Operators . 21
6.3 Expression Atoms . 22

6.3.1 Identifier Expressions . 22

2

6.3.2 Anonymous Decision Variables 23
6.3.3 Boolean Literals . 23
6.3.4 Integer and Float Literals . 23
6.3.5 String Literals . 23
6.3.6 Set Literals . 24
6.3.7 Set Comprehensions . 24
6.3.8 Simple Array Literals . 25
6.3.9 Simple 2d Array Literals . 25
6.3.10 Indexed Array Literals . 25
6.3.11 Simple Array Comprehensions 26
6.3.12 Indexed Array Comprehensions 26
6.3.13 Array Access Expressions . 26
6.3.14 Tuple Literals . 27
6.3.15 Tuple Access Expressions . 27
6.3.16 Record Literals . 27
6.3.17 Record Access Expressions 27
6.3.18 Enum Literals . 27
6.3.19 Non-flat Enum Access Expressions 28
6.3.20 Annotation Literals . 28
6.3.21 If-then-else Expressions . 28
6.3.22 Case Expressions . 28
6.3.23 Let Expressions . 29
6.3.24 Call Expressions . 30
6.3.25 Generator Call Expressions 30

7 Items 30
7.1 Type-inst Synonym Items . 31
7.2 Enum Items . 31
7.3 Include Items . 32
7.4 Variable Declaration Items . 32
7.5 Assignment Items . 33
7.6 Constraint Items . 33
7.7 Solve Items . 33
7.8 Output Items . 33
7.9 Annotation Items . 34
7.10 User-defined Operations . 34

7.10.1 Basic Properties . 35
7.10.2 Ad-hoc polymorphism . 35
7.10.3 Parametric Polymorphism . 36
7.10.4 Local Variables . 37

8 Annotations 37

9 Partiality 38
9.1 Partial Assignments . 39
9.2 Partial Predicate/Function and Annotation Arguments 40
9.3 Partial Array Accesses . 40

A Built-in Operations 41
A.1 Comparison Operations . 41
A.2 Arithmetic Operations . 41
A.3 Logical Operations . 43
A.4 Set Operations . 43
A.5 Array Operations . 44

3

A.6 Coercion Operations . 45
A.7 String Operations . 45
A.8 Bound and Domain Operations . 45
A.9 Other Operations . 46

B Libraries 48
B.1 globals.zinc . 48

C Standard Annotations 49
C.1 Annotations . 49

C.1.1 Solve Annotations . 49

D Zinc Grammar 50
D.1 Items . 50
D.2 Type-Inst Expressions . 50
D.3 Expressions . 51
D.4 Miscellaneous Elements . 53

E MiniZinc 54
E.1 Items . 54
E.2 Type-insts and Expressions . 54
E.3 Built-in Operations and Annotations 55
E.4 Other . 56

4

1 Introduction

This document defines Zinc, a language for modelling constraint satisfaction and
optimisation problems.

Zinc is a high-level, typed, mostly first-order, functional, modelling language. It
provides:

• mathematical notation-like syntax (automatic coercions, overloading, itera-
tion, sets, arrays);

• expressive constraints (finite domain, set, linear arithmetic, integer);

• support for different kinds of problems (satisfaction, explicit optimisation,
preference (soft constraints));

• separation of data from model;

• high-level data structures and data encapsulation (sets, arrays, tuples, records,
enumerated types, constrained type-insts);

• extensibility (user-defined functions and predicates);

• reliability (type checking, instantiation checking, assertions);

• solver-independent modelling;

• simple, declarative semantics.

Zinc extends OPL and moves closer to CLP languages such as ECLiPSe.
This document also defines MiniZinc, a smaller language that is a strict subset

of Zinc.
This document has the following structure. Section 2 provides a high-level

overview of Zinc models. Section 3 covers syntax basics. Section 4 covers high-
level structure: items, multi-file models, namespaces, and scopes. Section 5 intro-
duces types and type-insts. Section 6 covers expressions. Section 7 describes the
top-level items in detail. Section 8 describes annotations. Section 9 describes how
partiality is handled in various cases. Appendix A describes the language built-ins.
Appendix B describes some language libraries. Appendix C describes the standard
language annotations. Appendix D gives the Zinc grammar. Appendix E gives the
definition of MiniZinc.

2 Overview of a Model

2.1 Specifying a Problem

Conceptually, a Zinc problem specification has two parts.

1. The model : the main part of the problem specification, which describes the
structure of a particular class of problems.

2. The data: the input data for the model, which specifies one particular problem
within this class of problems.

The pairing of a model with a particular data set is an model instance (sometimes
abbreviated to instance).

The model and data may be separated, or the data may be “hard-wired” into
the model. Section 4.2 specifies how the model and data can be structured within
files in a model instance.

5

2.2 Evaluation of a Model Instance

2.2.1 Evaluation Phases

A Zinc model instance is evaluated in three distinct phases.

1. Model-time: data-independent static checking of the model.

2. Instance-time: static checking of the model instance.

3. Run-time: evaluation of the instance (i.e. constraint solving).

If the model and data are not separated (i.e. the data is “hard-wired” into the
model, see Section 4.2) the model-time and instance-time phases will effectively be
combined.

2.2.2 Evaluation Outcomes

There are four possible evaluation outcomes.

1. Static error: the model instance does not compile due to a problem with the
model and/or data, detected at model-time or instance-time. This could be
caused by a syntax error, a type-inst error, the use of an unsupported feature
or operation, etc.

2. Run-time error: the evaluation fails to complete due to a problem with the
model and/or data, detected at run-time. This could be caused by an assertion
failure, division by zero, an array bounds error, etc. Alternatively, it could be
due to an implementation shortcoming, such as a time-out due to excessive
evaluation time, failure to determine if any solutions are possible, an overflow
on an integer operation, etc.

3. Failure: no solutions are returned due to unsatisfiable constraints.

4. Success: one or more solutions are returned.

Static errors must be detected prior to run-time. The remaining outcomes—
which can only occur for instances without static errors—are determined at run-
time. However, an implementation is free to determine them earlier if it safely
can. For example, an implementation may be able to determine that unsatisfiable
constraints exist prior to run-time, and the resulting messages given to the user
may be more helpful than if the unsatisfiability is detected at run-time.

An implementation must produce output in all outcomes. The form of the
output in the error cases is implementation-dependent. The form of the output in
the failure and success cases described in Section 7.8.

An implementation may produce warnings during all evaluation phases.

3 Syntax Overview

3.1 Character Set

Zinc currently allows only ASCII characters. In the future we hope to support
Unicode.

Zinc is case sensitive. There are no places where upper-case or lower-case letters
must be used.

Zinc has no layout restrictions, i.e. any single piece of whitespace (containing
spaces, tabs and newlines) is equivalent to any other.

6

3.2 Comments

A % indicates that the rest of the line is a comment. Zinc has no begin/end comment
symbols (such as C’s /* and */ comments).

3.3 Syntax Notation

The basics of the EBNF used for the Zinc grammar are as follows.

• Non-terminals are written between angle brackets, e.g. 〈item〉.

• Terminals are written in fixed-width font and underlined, e.g. constraint.

• Optional items are written in square brackets, e.g. [var].

• Sequences of zero or more items are written with parentheses and a star, e.g.
(, 〈ident〉)*.

• Non-empty lists are written with an item, a separator/terminator terminal,
and “. . . ”. For example, this:

〈expr〉 , . . .

is short for this:

〈expr〉 (, 〈expr〉)* [,]

The final terminal is always optional in non-empty lists.

• Regular expressions, written in fixed-width font, are used in some productions,
e.g. [-+]?[0-9]+.

Zinc’s grammar is presented piece-by-piece throughout this document. It is also
available as a whole in Appendix D.

3.4 Identifiers

Identifiers have one of two forms: normal identifiers, and quoted operators. The
syntax is:

〈ident〉 ::= 〈alpha-num-ident〉
| ’〈builtin-op〉’

〈alpha-num-ident〉 ::= [A-Za-z][A-Za-z0-9_]* % excluding keywords

For example:

my_name_2
MyName2
’+’

A number of keywords are reserved and cannot be used as identifiers. The keywords
are: annotation, any, array, bool, case, constraint, else, elseif, endif,
enum, false, float, function, if, include, int, let, maximize, minimize, of,
satisfy, output, par, predicate, record, set, solve, string, test, then, true,
tuple, type, var, where.

In quoted operators, whitespace is not permitted between either quote and the
operator. Section 6.2 lists Zinc’s built-in operators.

A number of identifiers are used for built-ins; see Section A for details.

7

4 High-level Model Structure

4.1 Items

A Zinc model consists of multiple items:

〈model〉 ::= [〈item〉 ; . . .]

Items can occur in any order; identifiers need not be declared before they are
used.

Items have the following top-level syntax:

〈item〉 ::= 〈type-inst-syn-item〉
| 〈enum-item〉
| 〈include-item〉
| 〈var-decl-item〉
| 〈assign-item〉
| 〈constraint-item〉
| 〈solve-item〉
| 〈output-item〉
| 〈predicate-item〉
| 〈test-item〉
| 〈function-item〉
| 〈annotation-item〉

Type-inst synonym items and enumerated type items define new types.
Include items provide a way of combining multiple files into a single instance.

This allows a model to be split into multiple files (Section 7.3).
Variable declaration items introduce new global variables and possibly bind them

to a value (Section 7.4).
Assignment items bind values to global variables (Section 7.5).
Constraint items describe model constraints (Section 7.6).
Solve items are the “starting point” of a model, and specify exactly what kind of

solution is being looked for: plain satisfaction, or the minimization/maximization
of an expression. Each model must have exactly one solve item (Section 7.7).

Output items are used for nicely presenting the result of a model execution
(Section 7.8).

Predicate items, test items (which are just a special type of predicate) and (Zinc-
only) function items introduce new user-defined predicates and functions which can
be called in expressions (Section 7.10). Predicates, functions, and built-in operators
are described collectively as operations.

Annotation items augment the ann type, values of which can specify non-
declarative and/or solver-specific information in a model.

4.2 Model Instance Files

Zinc models can be constructed from multiple files using include items (see Sec-
tion 7.3). Zinc has no module system as such; all the included files are simply
concatenated and processed as a whole, exactly as if they had all been part of a
single file.

Each model may be paired with one or more data files. Data files are more
restricted than model files. They may only contain variable assignments (see Sec-
tion 7.5) and definitions of flat enums that were declared in a model file.

Data files may not include calls to user-defined operations.
Models do not contain the names of data files; doing so would fix the data file

used by the model and defeat the purpose of allowing separate data files. Instead,

8

an implementation must allow one or more data files to be combined with a model
for evaluation via a mechanism such as the command-line.

An implementation should allow a model to be checked with and without its
instance data. When checking a model without data, all global variables with fixed
type-insts need not be assigned. When checking a model with data, all global
variables with fixed type-insts must be assigned, unless they are not used (in which
case they can be removed from the model without effect).

A data file can only be checked for static errors in conjunction with a model,
since the model contains the declarations that include the types of the variables
assigned in the data file.

A single data file may be shared between multiple models, so long as the defini-
tions are compatible with all the models.

4.3 Namespaces

All names declared at the top-level belong to a single namespace. It includes the
following names.

1. All global variable names.

2. All function and predicate names, both built-in and user-defined.

3. All user-defined type and type-inst names (type-inst synonyms and enumer-
ated types).

4. All enum case names.

5. All annotation names.

Because multi-file Zinc models are composed via concatenation (Section 4.2), all
files share this top-level namespace. Therefore a variable v declared in one model
file could not be declared with a different type in a different file, for example.

Zinc supports overloading of built-in and user-defined operations.
Zinc has two kinds of local namespace: each record and (non-flat) enum has its

own local namespace for field names. This means distinct records and (non-flat)
enums can use the same field names. All names in these local namespaces co-exist
without conflict with identical names in the top-level namespace—in any situation,
which namespace applies can always be determined from context.

4.4 Scopes

Within the top-level namespace, there are several kinds of local scope that introduce
local names:

• Comprehension expressions (Section 6.3.7).

• Let expressions (Section 6.3.23).

• Function and predicate argument lists and bodies (Section 7.10).

• Type-inst constraints (Section 5.9.3).

The listed sections specify these scopes in more detail. In each case, any names
declared in the local scope overshadow identical global names.

9

5 Types and Type-insts

Zinc provides four scalar built-in types: Booleans, integers, floats, and strings;
several compound built-in types: sets, multi-dimensional arrays with arbitrary in-
dex types, tuples, and records; and three kinds of user-defined types: type-inst
synonyms, enumerated types, and ann, a user-extensible type that represents an-
notations. Zinc also allows type-inst variables in certain places, and has some very
limited higher-order types.

Each type has one or more possible instantiations. The instantiation of a variable
or value indicates if it is fixed to a known value or not. A pairing of a type and
instantiation is called a type-inst.

Zinc also supports constrained type-insts, which are type-insts with an additional
expression that constrains their possible values.

We begin by discussing some properties that apply to every type. We then
introduce instantiations in more detail. We then cover each type individually, giving:
an overview of the type and its possible instantiations, the syntax for its type-insts,
whether it is a finite type (and if so, its domain), whether it is varifiable, the ordering
and equality operations, whether its variables must be initialised at instance-time,
and whether it can be involved in automatic coercions. We conclude by describing
Zinc’s constrained type-insts.

5.1 Properties of Types

The following list introduces some general properties of Zinc types.

• Currently all types are monotypes. Recursive types are not allowed.

In the future we may allow types which are polymorphic in other types and
also the associated constraints.

• We distinguish types which are finite types.

In Zinc, finite types include Booleans, flat enums, types defined via set ex-
pression type-insts such as range types (see Section 5.9.1), as well as sets,
arrays, tuples, records and non-flat enums composed of finite types. Types
that are not finite types are unconstrained integers, unconstrained floats, un-
constrained strings, and ann. Finite types are relevant to sets (Section 5.6.1)
and array indices (Section 5.6.2).

Every finite type has a domain, which is a set value that holds all the possible
values represented by the type.

• Every first-order type (this excludes ann) has a built-in total order and a built-
in equality; >, <, ==/=, !=, <= and >= comparison operators can be applied
to any pair of values of the same type. The ordering for user-defined types is
the standard lexicographic ordering. Note that, as in most languages, using
equality on floats or types that contain floats is generally not reliable due to
their inexact representation. An implementation may choose to warn about
the use of equality with floats or types that contain floats.

• Higher-order types are used in very limited ways. They can only be used with
the built-in functions foldl and foldr, which both take a function as their
first argument.

10

5.2 Instantiations

When a Zinc model is evaluated, the value of each variable may initially be unknown.
As it runs, each variable’s domain (the set of values it may take) may be reduced,
possibly to a single value.

An instantiation (sometimes abbreviated to inst) describes how fixed or unfixed
a variable is at instance-time. At the most basic level, the instantiation system
distinguishes between two kinds of variables:

1. Parameters, whose values are fixed at instance-time (usually written just as
“fixed”).

2. Decision variables (often abbreviated to variables), whose values may be com-
pletely unfixed at instance-time, but may become fixed at run-time (indeed,
the fixing of decision variables is the whole aim of constraint solving).

There are also intermediate instantiations for some compound types—they can have
a fixed size but may contain unfixed elements.

In Zinc decision variables can have the following types: Booleans, integers, floats,
sets, and flat enums. Tuples, arrays, records, non-flat enums and ann can contain
decision variables.

5.3 Type-insts

Because each variable has both a type and an inst, they are often combined into a
single type-inst. Type-insts are primarily what we deal with when writing models,
rather than types.

A variable’s type-inst never changes. This means a decision variable whose value
becomes fixed during model evaluation still has its original type-inst (e.g. var int),
because that was its type-inst at instance-time.

Some type-insts can be automatically coerced to another type-inst. For exam-
ple, if a par int value is used in a context where a var int is expected, it is
automatically coerced to a var int. We write this par int

c→ var int. Also, any
type-inst can be considered coercible to itself. Zinc allows coercions between some
types as well.

Some type-insts can be varified, i.e. made unfixed at the top-level. For example,
par int is varified to var int. We write this par int

v→ var int.
Type-insts that are varifiable include the type-insts of the types that can be de-

cision variables (Booleans, integers, floats, sets, enumerated types), and also tuples
and records, if their constituent elements can be varified. Varification is relevant to
type-inst synonyms and array accesses.

5.4 Type-inst Expressions Overview

This section partly describes how to write type-insts in Zinc models. Further details
are given for each type as they are described in the following sections.

A type-inst expression specifies a type-inst.
Type-inst expressions may include type-inst constraints.
Type-inst expressions appear in variable declarations (Section 7.4), user-defined

operation items (Section 7.10), and type-inst synonyms (Section 7.1).
Type-inst expressions have this syntax:

〈ti-expr〉 ::= (〈ti-expr〉 : 〈ident〉 where 〈expr〉)
| 〈base-ti-expr〉

11

The first alternative is for arbitrarily constrained type-insts, which are described in
Section 5.9.3.

The second alternative is for base type-inst expressions, which have the following
syntax:

〈base-ti-expr〉 ::= 〈var-par〉 〈base-ti-expr-tail〉
〈var-par〉 ::= var | par | ε

〈base-ti-expr-tail〉 ::= 〈ident〉
| bool
| int
| float
| string
| 〈set-ti-expr-tail〉
| 〈array-ti-expr-tail〉
| 〈tuple-ti-expr-tail〉
| 〈record-ti-expr-tail〉
| 〈ti-variable-expr-tail〉
| ann
| 〈op-ti-expr-tail〉
| { 〈expr〉 , . . . }
| 〈num-expr〉 .. 〈num-expr〉

(The final alternative, for range types, uses the integer-specific 〈int-expr〉 non-
terminal, defined in Section 6.1, rather than the 〈expr〉 non-terminal. If this were
not the case, the rule would never match because the ‘..’ operator would always
be matched by the first 〈expr〉.)

This fully covers the type-inst expressions for scalar types. The compound type-
inst expression syntax is covered in more detail in Section 5.6. Type-inst variable
syntax is described in more detail in Section 5.8.1.

The constrained type-inst expressions are covered in more detail in Section 5.9.
The par and var keywords (or lack of them) determine the instantiation. The

par annotation can be omitted; the following two type-inst expressions are equiva-
lent:

par int
int

A type-inst is fixed if it does not contain var or any, with the exception of ann.
Note that several type-inst expressions that are syntactically expressible repre-

sent illegal type-insts. For example, although the grammar allows var in front of
all these base type-inst expression tails, it is a type-inst error to have var in the
front of a string, array, tuple, record, or type-inst variable type-inst expression.

5.5 Built-in Scalar Types and Type-insts

5.5.1 Booleans

Overview. Booleans represent truthhood or falsity.

Allowed Insts. Booleans can be fixed or unfixed.

Syntax. Fixed Booleans are written bool or par bool. Unfixed Booleans are writ-
ten as var bool.

Finite? Yes. The domain of a Boolean is {false, true}.
Varifiable? par bool

v→ var bool, var bool
v→ var bool.

Ordering. The value false is considered smaller than true.

12

Initialisation. A fixed Boolean variable must be initialised at instance-time; an
unfixed Boolean variable need not be.

Coercions. par bool
c→ var bool.

5.5.2 Integers

Overview. Integers represent integral numbers. Integer representations are implementation-
defined. This means that the representable range of integers is implementation-
defined. However, an implementation should abort at run-time if an integer opera-
tion overflows.

Allowed Insts. Integers can be fixed or unfixed.

Syntax. Fixed integers are written int or par int. Unfixed integers are written as
var int.

Finite? Not unless constrained by a set expression (see Section 5.9.1).

Varifiable? par int
v→ var int, var int

v→ var int.

Ordering. The ordering on integers is the standard one.

Initialisation. A fixed integer variable must be initialised at instance-time; an un-
fixed integer variable need not be.

Coercions. par int
c→ var int.

Also, integers can be automatically coerced to floats; see Section 5.5.3.

5.5.3 Floats

Overview. Floats represent real numbers. Float representations are implementation-
defined. This means that the representable range and precision of floats is implementation-
defined. However, an implementation should abort at run-time on exceptional float
operations (e.g. those that produce NaNs, if using IEEE754 floats).

Allowed Insts. Floats can be fixed or unfixed.

Syntax. Fixed floats are written float or par float. Unfixed floats are written as
var float.

Finite? Not unless constrained by a set expression (see Section 5.9.1).

Varifiable? par float
v→ var float, var float

v→ var float.

Ordering. The orderings on floats are the standard ones.

Initialisation. A fixed float variable must be initialised at instance-time; an unfixed
float variable need not be.

Coercions. par int
c→ par float, par int

c→ var float, par float
c→ var

float.

5.5.4 Strings

Overview. Strings are primitive, i.e. they are not lists of characters.
String expressions are used in assertions, output items and annotations, and

string literals are used in include items.

Allowed Insts. Strings must be fixed.

Syntax. Fixed strings are written string or par string.

Finite? Not unless constrained by a set expression (see Section 5.9.1).

Varifiable? No.

13

Ordering. Strings are ordered lexicographically using the underlying character
codes.

Initialisation. A string variable (which can only be fixed) must be initialised at
instance-time.

Coercions. None automatic. However, any non-string value can be manually con-
verted to a string using the built-in show function.

5.6 Built-in Compound Types and Type-insts

5.6.1 Sets

Overview. A set is a collection with no duplicates.

Allowed Insts. The type-inst of a set’s elements must be fixed. Rationale. This is
because current solvers are not powerful enough to handle sets containing decision
variables. Sets may contain any type, and may be fixed or unfixed. If a set is unfixed,
its elements must be finite, unless it appears in an argument of a predicate, function
or annotation.

Syntax. A set base type-inst expression tail has this syntax:

〈set-ti-expr-tail〉 ::= set of 〈ti-expr〉

Some example set type-inst expressions:

set of int
var set of bool

Finite? Yes, if the set elements are finite types. Otherwise, no.
The domain of a set type that is a finite type is the powerset of the domain of its

element type. For example, the domain of set of 1..2 is powerset(1..2), which
is {{}, {1}, {1,2}, {2}}.

Varifiable? par set of TI
v→ var set of TI, var set of TI

v→ var set of
TI,

Ordering. The pre-defined ordering on sets is a lexicographic ordering of the sorted
set form, where {1,2} is in sorted set form, for example, but {2,1} is not.

Initialisation. A fixed set variable must be initialised at instance-time; an unfixed
set variable need not be.

Coercions. par set of TI
c→ par set of UI and par set of TI

c→ var set of
UI and var set of TI

c→ var set of UI, if TI c→ UI.
Fixed sets can be automatically coerced to arrays; see section 5.6.2. This means

that array accesses can be used on fixed sets; S[1] is the smallest element in a fixed
set S while S[card(S)] is the largest.

5.6.2 Arrays

Overview. Zinc arrays are maps from fixed keys (a.k.a. indices) to values. Keys
and values can be of any type. When used with integer keys, Zinc arrays can be
used like arrays in languages like Java, but with other types of key they act like
associative arrays. Using floats or types containing floats as keys can be dangerous
because of their imprecise equality comparison, and an implementation may give
a warning in this case. The values can have any type-inst. Arrays-of-arrays are
allowed.

All arrays are one-dimensional. However, multi-dimensional arrays can be sim-
ulated using a tuple as the index, and there is some syntactic sugar to make this
easier (see below and in Section 6.3.13).

14

Zinc arrays can be declared in two different ways.

1. Explicitly-indexed arrays have index types in the declaration that are finite
types. For example:

array[0..3] of int: a1;

For such arrays, the index type specifies exactly the indices that will be in
the array—the array’s index set is the domain of the index type—and if the
indices of the value assigned do not match then it is a run-time error.

For example, the following assignments cause run-time errors:

a1 = [0:0, 1:1, 2:2, 3:3, 4:4]; % too many elements
array[1..5, 1..10] of var float: a5 = []; % too few elements

2. Implicitly-indexed arrays have index types in the declaration that are not finite
types. For example:

array[int] of int: a6;

No checking of indices occurs when these variables are assigned.

The initialisation of an array can be done in a separate assignment statement,
which may be present in the model or a separate data file.

Arrays can be accessed. See Section 6.3.13 for details.

Allowed Insts. An array’s size must be fixed. Its indices must also have fixed
type-insts. Its elements may be fixed or unfixed.

Syntax. An array base type-inst expression tail has this syntax:

〈array-ti-expr-tail〉 ::= array [〈ti-expr〉 , . . .] of 〈ti-expr〉

An example array type-inst expressions:

array[1..10] of int

Because arrays must be fixed-size it is a type-inst error to precede an array type-inst
expressions with var.

Syntactic sugar exists for declaring tuple-indexed arrays. For example, the sec-
ond of the following two declarations is syntactic sugar for the first.

array[tuple(1..5, 1..4)] of int: a5;
array[1..5, 1..4] of int: a5;

Finite? Yes, if the index types and element type are all finite types. Otherwise, no.
The domain of an array type that is a finite array is the set of all distinct arrays

of the appropriate length. For example, the domain of array[5..6] of 1..2 is
{[5:1,6:1], [5:1,6:2], [5:2,6:1], [5:2,6:2]}.

Varifiable? No.

Ordering. Arrays are ordered lexicographically, taking into consideration first keys
and then values. For example, [1:1, 2:2, 3:3] is less than [2:0, 3:0, 4:0].

Initialisation. An explicitly-indexed array variable must be initialised at instance-
time only if its elements must be initialised at instance time. An implicitly-indexed
array variable must be initialised at instance-time so that its length and index set
is known.

Coercions. set of TI
c→ array[1..n] of UI if TI c→ UI, where n is the number

of elements in the set. The elements of the resulting array will be in sorted order.
This means that elements of fixed sets can be accessed like array elements, using
square brackets.

15

5.6.3 Tuples

Overview. Tuples are fixed-size, heterogeneous collections. They must contain at
least two elements; unary tuples are not allowed.

Allowed Insts. Tuples may contain unfixed elements.

Syntax. A tuple base type-inst expression tail has this syntax:

〈tuple-ti-expr-tail〉 ::= tuple (〈ti-expr〉 , . . .)

An example tuple type-inst expression:

tuple(int, var float)

It is a type-inst error to precede a tuple type-inst expression with var.

Finite? Yes, if all its constituent elements are finite types. Otherwise, no.
The domain of a tuple type that is a finite type is the cartesian product of the

domains of the element types. For example, the domain of tuple(1..2, {3,5}) is
{(1,3), (1,5), (2,3), (2,5)}.

Varifiable? Yes, if all its constituent elements are varifiable. A tuple is varified by
varifying its constituent elements.

Ordering. Tuples are ordered lexicographically.

Initialisation. A tuple variable must be initialised at instance-time if any of its
constituent elements must be initialised at instance-time.

Coercions. tuple(TI1,...,TIn) c→ tuple(UI1,...UIn), if TI1 c→ UI1,. . . ,TIn c→
UIn. Also, tuples can be automatically coerced to records; see Section 5.6.4 for
details.

5.6.4 Records

Overview. Records are fixed-size, heterogeneous collections. They are similar to
tuples, but have named fields.

Field names in different records can be identical, because each record’s field
names belong to a different namespace (Section 4.3).

Note that record field order is significant; the following two record type-insts are
distinct and do not match:

record(var int: x, var int: y)
record(var int: y, var int: x)

Allowed Insts. Records may contain unfixed elements.

Syntax. A record base type-inst expression tail has this syntax:

〈record-ti-expr-tail〉 ::= record (〈ti-expr-and-id〉 , . . .)
〈ti-expr-and-id〉 ::= 〈ti-expr〉 : 〈ident〉

An example record type-inst expression:

record(int: x, int: y)

It is a type-inst error to precede a record type-inst expression with var.

Finite? Yes, if all its constituent elements are finite types. Otherwise, no.
The domain of a record type that is a finite type is the same as that of a tuple

type, but with the fields included. For example, the domain of record(1..2:x,
{3,5}:y) is {(x:1,y:3), (x:1,y:5), (x:2,y:3), (x:2,y:5)}.

16

Varifiable? Yes, if all its constituent elements are varifiable. A record is varified by
varifying its constituent elements.

Ordering. Records are ordered lexicographically according to the values of the fields.
The field names are irrelevant for comparisons because in order for two records to
be compared they must have the same type-inst, in which case the field names and
order must be the same.

Initialisation. A record variable must be initialised at instance-time if any of its
constituent elements must be initialised at instance-time.

Coercions. tuple(TI1,...,TIn) c→ record(UI1:x1,...UIn:xn), if TI1 c→ UI1,. . . ,TIn
c→ UIn. This is useful for record initialisation. For example, we can initialise a record
of type Task (defined in Section 5.9.3) using:

Task: T = (10,_,_);

which initialises duration field with 10 and the variable fields start and finish
with ‘_’.

Also, record(TI1:x1,...,TIn:xn) c→ record(UI1:x1,...UIn:xn), if TI1
c→

UI1,. . . ,TIn c→ UIn.

5.7 User-defined Types and Type-insts

This section introduces the properties of the user-defined types and type-insts. The
syntax and details of the items that are used to declare these new types are in
Section 7.

Because these user-defined types have names, their type-inst expressions are
simple identifiers. Syntactically, any identifier may be used as a base type-inst ex-
pression. However, in a valid model any identifier within a base type-inst expression
must be one of:

• the name of a user-defined type or type-inst (type-inst synonym or enumerated
type);

• the name of a fixed set value (Section 5.9.1).

5.7.1 Type-inst Synonyms

Overview. A type-inst synonym is an alternative name for a pre-existing type-inst
which can be used interchangeably with the pre-existing type-inst. For example, if
MyFixedInt is a synonym for par int then MyFixedInt can be used anywhere par
int can, and vice versa.

Allowed Insts. Preceding a type-inst synonym with var varifies it, unless the type-
inst is not varifiable, in which case it is a type-inst error. Preceding a type-inst
synonym with par has no effect—the par is ignored.

Syntax. A type-inst synonym named “X” is represented by the term X.

Finite? As for the pre-existing type-inst.

Varifiable? Yes, if the pre-existing type-inst is varifiable.

Ordering. As for the pre-existing type-inst.

Initialisation. As for the pre-existing type-inst.

Coercions. As for the pre-existing type-inst.

17

5.7.2 Enumerated Types

Overview. Enumerated types (or enums for short) provide a set of named alterna-
tives. Unlike many languages, Zinc’s enumerated types can have arguments, and
each argument has a field name, so they are more like discriminated unions.

We distinguish between flat enums, in which all the alternatives have no argu-
ments, and non-flat enums, in which some or all alternatives have arguments. Each
alternative is identified by its case name.

Allowed Insts. Flat enums can be fixed or unfixed. Non-flat enums cannot be
preceded by var, but they may contain unfixed elements.

Syntax. Variables of an enumerated type named “X” are represented by the term
X or par X if fixed, and (flat enums only) var X if unfixed.

Finite? If flat, yes. If non-flat, only if all its constituent elements (in all alternatives)
are finite types; otherwise, no.

The domain of a flat enum is the set containing all of its case names. The domain
of a non-flat enum is the set containing all the possible values of that enum. For
example, these two enums:

enum C = { R, G, B };
enum X = { a(1..3:x), b(bool:y), c };

have these domains:

{ R, G, B }
{ a(x:1), a(x:2), a(x:3), b(y:false), b(y:true), c }

Varifiable? For flat enums: par X
v→ var X, var X

v→ var X.
For non-flat enums: no.

Ordering. When two enum values with different case names are compared, the value
with the case name that is declared first is considered smaller than the value with
the case name that is declared second. If the case names are the same, the ordering
is lexicographic on the case arguments (if there are any).

Initialisation. A fixed flat enum variable must be initialised at instance-time; an
unfixed flat enum variable need not be.

A non-flat enum variable must be initialised at instance-time if any of its con-
stituent elements (in any of the alternatives) must be initialised at instance-time.

Coercions. For flat enums: par X
c→ var X. For non-flat enums: none.

5.7.3 The Annotation Type ann

Overview. The annotation type, ann, can be used to represent arbitrary term
structures. It is augmented by annotation items (7.9).

Allowed Insts. ann is always considered unfixed, because it may contain unfixed
elements. It cannot be preceded by var.

Syntax. The annotation type is written ann.

Finite? No.

Varifiable? No.

Ordering. When two enum values with different case names are compared, the value
with the case name that is lexicographically smaller is considered smaller than the
value with the case name that is declared second. If the case names are the same,
the ordering is lexicographic on the arguments (if there are any).

Initialisation. An ann variable must be initialised at instance-time.

18

Coercions. None.

5.8 Other Types and Type-insts

5.8.1 Type-inst Variables

Overview. Type-inst variables allow parametric polymorphism. They can appear
in Zinc predicate and function arguments and return type-insts, in let expressions
within predicate and function bodies, and in annotation declarations; if one is used
outside a function or predicate or annotation declaration it is a type-inst error.

Allowed Insts. A type-inst variable expression consists of a type-inst variable and
an optional prefix. Type-inst variables can be prefixed by par, in which case they
match any fixed type-inst; the same is true if they lack a prefix. Type-inst variables
can also be prefixed by any, in which case they match any first-order type-inst.

The meanings of the prefixes are discussed in further detail in Section 7.10.3.

Syntax. A type-inst variable expression tail has this syntax:

〈ti-variable-expr-tail〉 ::= [any] $[A-Za-z][A-Za-z0-9_]*

Some example type-inst variable expressions:

$T
par $U3
any $xyz

Finite? No. This is because they can be bound to any type-inst, and not all
type-insts are finite.

Varifiable? No. This is because they can be bound to any type-inst, and not all
type-insts can be varified.

Ordering. Values of equal type-inst variables can be compared. The comparison
used will be the comparison of the underlying type-insts. This is possible because
all type-insts have a built-in ordering.

Initialisation. A variable with a type-inst variable as its type-inst (which can only
appear in let expressions) must be initialised if its prefix is par, otherwise it need
not be.

Coercions. par $T
c→ any $T.

5.8.2 Higher-order Types

Overview. Operations (e.g. predicates) have higher-order types. Operations can be
used as values when passed as the first argument to foldl or foldr. They can also
be used as arguments to annotations; annotation declarations are the only place
where operation type-inst expressions are permitted.

Allowed Insts. The type-inst of a higher-order type is determined by the type-insts
it can take as its arguments, and its return type-inst. A higher-order type value is
never considered fixed, and so cannot be used as the element of a set, for example.

Syntax. An operation type-inst expression tail has this syntax:

〈op-ti-expr-tail〉 ::= op (〈ti-expr〉 : (〈ti-expr〉 , . . .))

Some example type-inst variable expressions:

op(int:(int));
op(var bool:(float, any $T));

19

Note that operation type-inst expressions cannot be written for nullary operations
(i.e. those lacking arguments). Rationale. This is because it is difficult to dis-
tinguish the name of a nullary operation from a call to it, and so passing nullary
operations is difficult. Furthermore, they are little to no use, so they are unlikely to
be missed.

Finite? No.

Varifiable? +No.

Ordering. N/A. Higher-order types cannot be used in comparisons; it is a run-time
error if they are.

Initialisation. N/A. Variables cannot have higher-order types.

Coercions. None.

5.9 Constrained Type-insts

One powerful feature of Zinc is constrained type-insts. A constrained type-inst is a
restricted version of a base type-inst, i.e. a type-inst with fewer values in its domain.

5.9.1 Set Expression Type-insts

Three kinds of expressions can be used in type-insts.

1. Integer ranges: e.g. 1..3.

2. Set literals: e.g. var {1,3,5}.

3. Identifiers: the name of a set parameter (which can be global, let-local, the
argument of a predicate or function, or a generator value) can serve as a
type-inst.

In each case the base type is that of the set’s elements, and the values within the
set serve as the domain. For example, whereas a variable with type-inst var int
can take any integer value, a variable with type-inst var 1..3 can only take the
value 1, 2 or 3.

All set expression type-insts are finite types. Their domain is equal to the set
itself.

5.9.2 Float Range Type-insts

Float ranges can be used as type-insts, e.g. 1.0 .. 3.0. These are treated similarly
to integer range type-insts, although 1.0 .. 3.0 is not a valid expression whereas
1 .. 3 is.

Float ranges are not finite types.

5.9.3 Arbitrarily Constrained Type-insts

A more general form of constrained type-inst allows an arbitrary Boolean type-inst
constraint expression to be applied to a base type-inst.

Here are two examples of arbitrarily constrained type-inst expressions. The first
is a fixed integer in the range 1–3, and the second is an unfixed non-negative float.

(par int: i where i in 1..3): dom;
(var float: f where f >= 0) : fplus;

20

The base type-inst appears before the ‘:’. The identifiers i and f are local identifiers
used in the Boolean expression after the where keyword. The scope of the local
identifiers i and f extends to the end of the Boolean expression after the where.

An arbitrarily constrained type-inst is finite only if its base type-inst is finite.
Its domain is that of its base type-inst, minus those elements that do not satisfy its
constraint.

Finiteness is thus the main difference between set expression type-insts (Sec-
tion 5.9.1) and arbitrarily constrained type-insts. For example, in the following
three lines, the first type-inst is equivalent to the second, with one exception.

par 1..3 (par int: i where i in 1..3)
var {1,2,3} (var int: i where i in {1,2,3})
MySet (int: i where i in MySet)

The exception is that the type-insts on the left-hand side are finite, whereas those
on the right are non-finite.

Every float range type-inst has an equivalent arbitrarily constrained type-inst.
For example, the following two type-insts are equivalent:

1.0 .. 3.0 (float: f where 1.0 <= f /\ f <= 3.0)

An unconstrained type-inst can be viewed as an arbitrarily constrained type-inst
with a true constraint. For example, the following two type-insts are equivalent:

par int
(par int: i where true)

The Boolean expression associated with a variable declared to have an arbitrarily
constrained type-inst is either tested at instance-time if the variable is a parameter
or else generates a constraint if it is a decision variable.

An arbitrarily constrained type-inst is varified by varifying its base type-inst.
Records can use type-inst constraints like other type-insts, for example:

type Task = (record(int: duration,
var int: start,
var int: finish
): t where t.finish == t.start + t.duration);

Non-flat enums can also involve type-inst constraints; see Section 7.2 for details.

6 Expressions

6.1 Expressions Overview

Expressions represent values. They occur in various kinds of items. They have the
following syntax:

〈expr〉 ::= 〈expr-atom〉 〈expr-binop-tail〉
〈expr-atom〉 ::= 〈expr-atom-head〉 〈expr-atom-tail〉 〈annotations〉
〈expr-binop-tail〉 ::= [〈bin-op〉 〈expr〉]
〈expr-atom-head〉 ::= 〈builtin-un-op〉 〈expr-atom〉

| (〈expr〉)
| 〈ident〉
| _
| 〈bool-literal〉
| 〈int-literal〉
| 〈float-literal〉

21

| 〈string-literal〉
| 〈set-literal〉
| 〈set-comp〉
| 〈simple-array-literal〉
| 〈simple-array-literal-2d〉
| 〈indexed-array-literal〉
| 〈simple-array-comp〉
| 〈indexed-array-comp〉
| 〈tuple-literal〉
| 〈record-literal〉
| 〈enum-literal〉
| 〈ann-literal〉
| 〈if-then-else-expr〉
| 〈case-expr〉
| 〈let-expr〉
| 〈call-expr〉
| 〈gen-call-expr〉

〈expr-atom-tail〉 ::= ε
| 〈array-access-tail〉 〈expr-atom-tail〉
| 〈tuple-access-tail〉 〈expr-atom-tail〉
| 〈record-access-tail〉 〈expr-atom-tail〉

Expressions can be composed from sub-expressions combined with operators. All
operators (binary and unary) are described in Section 6.2, including the precedences
of the binary operators. All unary operators bind more tightly than all binary
operators.

Expressions can have one or more annotations. Annotations bind more tightly
than unary and binary operator applications, but less tightly than access operations
and non-operator applications. In some cases this binding is non-intuitive. For
example, in the first three of the following lines, the annotation a binds to the
identifier expression x rather than the operator application. However, the fourth
line features a non-operator application (due to the single quotes around the not)
and so the annotation binds to the whole application.

not x::a;
not (x)::a;
not(x)::a;
’not’(x)::a;

Section 8 has more on annotations.
Expressions can be contained within parentheses.
The array, tuple and (Zinc-only) record and non-flat enum access operations all

bind more tightly than unary and binary operators and annotations. The access
operations can be chained and they associate to the left. For example, these two
access operations are equivalent:

x = a[1].field.1;
x = ((a[1]).field).1;

They are described in more detail in Sections 6.3.13, 6.3.15, 6.3.17 and 6.3.19.
The remaining kinds of expression atoms (from 〈ident〉 to 〈gen-call-expr〉) are

described in Sections 6.3.1–6.3.25.
We also distinguish syntactically valid integer expressions. This allows range

types to be parsed correctly.

〈num-expr〉 ::= 〈num-expr-atom〉 〈num-expr-binop-tail〉

22

〈num-expr-atom〉 ::= 〈num-expr-atom-head〉 〈expr-atom-tail〉 〈annotations〉
〈num-expr-binop-tail〉 ::= [〈num-bin-op〉 〈num-expr〉]
〈num-expr-atom-head〉 ::= 〈builtin-num-un-op〉 〈num-expr-atom〉

| (〈num-expr〉)
| 〈ident〉
| 〈int-literal〉
| 〈float-literal〉
| 〈if-then-else-expr〉
| 〈case-expr〉
| 〈let-expr〉
| 〈call-expr〉
| 〈gen-call-expr〉

6.2 Operators

Operators are functions that are distinguished by their syntax in one or two ways.
First, some of them contain non-alphanumeric characters that normal functions do
not (e.g. ‘+’). Second, their application is written in a manner different to normal
functions.

We distinguish between binary operators, which can be applied in an infix man-
ner (e.g. 3 + 4), and unary operators, which can be applied in a prefix manner
without parentheses (e.g. not x). We also distinguish between built-in operators
and user-defined operators. The syntax is the following:

〈builtin-op〉 ::= 〈builtin-bin-op〉
| 〈builtin-un-op〉

〈bin-op〉 ::= 〈builtin-bin-op〉
| ‘〈alpha-num-ident〉‘

〈builtin-bin-op〉 ::= <-> | -> | <- | \/ | xor | /\
| < | > | <= | >= | == | = | !=
| in | subset | superset | union | diff | symdiff
| .. | intersect| ++ | 〈builtin-num-bin-op〉

〈builtin-un-op〉 ::= not | 〈builtin-num-un-op〉

Again, we syntactically distinguish integer operators.

〈num-bin-op〉 ::= 〈builtin-num-bin-op〉
| ‘〈alpha-num-ident〉‘

〈builtin-num-bin-op〉 ::= + | - | * | / | div | mod
〈builtin-num-un-op〉 ::= + | -

The binary operators are listed in Table 1.
A user-defined binary operator is created by backquoting a normal identifier, for

example:

A ‘min2‘ B

This is a static error if the identifier is not the name of a binary function or predicate.
The unary operators are: +, - and not. User-defined unary operators are not

possible.
As Section 3.4 explains, any built-in operator can be used as a normal function

identifier by quoting it, e.g: ’+’(3, 4) is equivalent to 3 + 4.
The meaning of each operator is given in Section A.

23

Symbol(s) Assoc. Prec.
<-> left 1200
-> left 1100
<- left 1100
\/ left 1000
xor left 1000
/\ left 900
< none 800
> none 800
<= none 800
>= none 800
==, = none 800
!= none 800
in none 700
subset none 700
superset none 700
union left 600
diff left 600
symdiff left 600
.. none 500
+ left 400
- left 400
* left 300
div left 300
mod left 300
/ left 300
intersect left 300
++ right 200
‘〈ident〉‘ left 100

Table 1: Binary infix operators. A lower precedence number means tighter binding;
for example, 1+2*3 is parsed as 1+(2*3) because ‘*’ binds tighter than ‘+’. As-
sociativity indicates how chains of operators with equal precedences are handled;
for example, 1+2+3 is parsed as (1+2)+3 because ‘+’ is left-associative, a++b++c is
parsed as a++(b++c) because ‘++’ is right-associative, and 1<x<2 is a syntax error
because ‘<’ is non-associative.

6.3 Expression Atoms

6.3.1 Identifier Expressions

Syntactically, any normal identifier can serve as an expression. However, in a valid
model any identifier serving as an expression must be one of:

• the name of a variable;

• an enum case name (if it has no arguments);

• the name of a predicate, function or (quoted) operator (but only as the first
argument to foldl or foldr, or as an argument in an annotation literal; see
Section 5.8.2);

• the name of (or a synonym of) a flat enum;

• a synonym of a fixed set type defined using a range expression or a literal set
expression.

24

Thus some types can serve as set values: enums, synonyms of enums, and synonyms
of fixed set types defined using a range expression or a literal set expression.

6.3.2 Anonymous Decision Variables

There is a special identifier, ‘_’, that represents an unfixed, anonymous decision
variable. It can take on any type that can be a decision variable. It is particularly
useful for initialising decision variables within compound types. For example, in
the following array the first and third elements are fixed to 1 and 3 respectively and
the second and fourth elements are unfixed:

array[1..4] of var int: xs = [1, _, 3, _];

Any expression that does not contain ‘_’ and does not involve decision variables
is fixed.

6.3.3 Boolean Literals

Boolean literals have this syntax:

〈bool-literal〉 ::= false | true

6.3.4 Integer and Float Literals

There are three forms of integer literals—decimal, hexadecimal, and octal—with
these respective forms:

〈int-literal〉 ::= [0-9]+
| 0x[0-9A-Fa-f]+
| 0o[0-7]+

For example: 0, 005, 123, 0x1b7, 0o777; but not -1.
Float literals have the following form:

〈float-literal〉 ::= [0-9]+_[0-9]+
| [0-9]+_[0-9]+[Ee][-+]?[0-9]+
| [0-9]+[Ee][-+]?[0-9]+

For example: 1.05, 1.3e-5, 1.3+e5; but not 1., .5, 1.e5, .1e5, -1.0, -1E05. A ‘-’
symbol preceding an integer or float literal is parsed as a unary minus (regardless of
intervening whitespace), not as part of the literal. This is because it is not possible
in general to distinguish a ‘-’ for a negative integer or float literal from a binary
minus when lexing.

6.3.5 String Literals

String literals are written as in C:

〈string-literal〉 ::= "[^"\n]*"

This includes C-style escape sequences, such as ‘\"’ for double quotes, ‘\\’ for
backslash, and ‘\n’ for newline.

For example: "Hello, world!\n".
String literals must fit on a single line. Long string literals can be split across

multiple lines using string concatenation. For example:

string: s = "This is a string literal "
++ "split across two lines.";

25

6.3.6 Set Literals

Set literals have this syntax:

〈set-literal〉 ::= { [〈expr〉 , . . .] }

For example:

{ 1, 3, 5 }
{ }
{ 1, _ }

The type-insts of all elements in a literal set must be the same, or coercible to
the same type-inst (as in the last example above, where the fixed integer 1 will be
coerced to a var int).

6.3.7 Set Comprehensions

Set comprehensions have this syntax:

〈set-comp〉 ::= { 〈expr〉 | 〈comp-tail〉 }
〈comp-tail〉 ::= 〈generator〉 , . . . [where 〈expr〉]
〈generator〉 ::= 〈ident〉 , . . . in 〈expr〉

For example (with the literal equivalent on the right):

{ 2*i | i in 1..5 } % { 2, 4, 6, 8, 10 }
{ 1 | i in 1..5 } % { 1 } (no duplicates in sets)

The expression before the ‘|’ is the head expression. The expression after the in
is a generator expression. Generators can be restricted by a where-expression. For
example:

{ i | i in 1..10 where (i mod 2 == 0) } % { 2, 4, 6, 8, 10 }

When multiple generators are present, the right-most generator acts as the inner-
most one. For example:

{ 3*i+j | i in 0..2, j in {0, 1} } % { 0, 1, 3, 4, 6, 7 }

The scope of local generator variables is given by the following rules:

• They are visible within the head expression (before the ‘|’).

• They are visible within the where-expression.

• They are visible within generator expressions in any subsequent generators.

The last of these rules means that the following set comprehension is allowed:

{ i+j | i in 1..3, j in 1..i } % { 1+1, 2+1, 2+2, 3+1, 3+2, 3+3 }

A generator expression must be an array; a fixed set can also be used, as it
will be implicitly coerced to an array. Rationale. For set comprehensions, set
generators would suffice, but for array comprehensions, array generators are required
for full expressivity (e.g. to provide control over the order of the elements in the
resulting array). Set comprehensions have array generators for consistency with
array comprehensions, which makes implementations simpler.

The where-expression (if present) must be Boolean. Currently it must also be
fixed; this restriction may be removed in the future.

26

6.3.8 Simple Array Literals

Simple array literals have this syntax:

〈simple-array-literal〉 ::= [[〈expr〉 , . . .]]

For example:

[1, 2, 3, 4]
[]
[1, _]

In a simple array literal all elements must have the same type-inst, or be coercible
to the same type-inst (as in the last example above, where the fixed integer 1 will
be coerced to a var int).

The indices of a simple array literal are implicitly 1..n, where n is the length of
the literal.

6.3.9 Simple 2d Array Literals

Simple 2d array literals have this syntax:

〈simple-array-literal-2d〉 ::= [| [(〈expr〉 , . . .) | . . .] |]

For example:

[| 1, 2, 3
| 4, 5, 6
| 7, 8, 9 |] % array[1..3, 1..3]
[| x, y, z |] % array[1..1, 1..3]
[| 1 | _ | _ |] % array[3..1, 1..1]

In a simple 2d array literal, every sub-array must have the same length.
In a simple 2d array literal all elements must have the same type-inst, or be

coercible to the same type-inst (as in the last example above, where the fixed integer
1 will be coerced to a var int).

The indices of a simple 2d array literal are implicitly (1, 1)..(m,n), where m and
n are determined by the shape of the literal.

6.3.10 Indexed Array Literals

Indexed array literals have this syntax:

〈indexed-array-literal〉 ::= [[〈index-expr〉 , . . .]]
〈index-expr〉 ::= 〈expr〉 : 〈expr〉

For example:

[1:1, 2:4, 3:3, 4:10, 5:5]

The expressions before the colon are keys, those after are values.
In an indexed array literal all keys must have the same type-inst or be coercible

to the same type-inst, and all values must have the same type-inst or be coercible
to the same type-inst.

The keys need not be specified in order.

27

6.3.11 Simple Array Comprehensions

Simple array comprehensions have this syntax:

〈simple-array-comp〉 ::= [〈expr〉 | 〈comp-tail〉]

For example (with the literal equivalents on the right):

[2*i | i in 1..5] % [2, 4, 6, 8, 10]

Simple array comprehensions have the same type and inst requirements as set
comprehensions (see Section 6.3.7).

The indices of an evaluated simple array comprehension are implicitly 1..n, where
n is the length of the evaluated comprehension.

6.3.12 Indexed Array Comprehensions

Indexed array comprehensions have this syntax:

〈indexed-array-comp〉 ::= [〈index-expr〉 | 〈comp-tail〉]

For example (with the literal equivalent on the right):

[i:2*i | i in 1..4] % [1:2, 2:4, 3:6, 4:8]

Simple array comprehensions have the same type and inst requirements as set
comprehensions (see Section 6.3.7).

The keys need not be computed in order.

6.3.13 Array Access Expressions

Array elements are accessed using square brackets after an expression:

〈array-access-tail〉 ::= [〈expr〉 , . . .]

For example:

int: x = a1[1];

If all the indices used in an array access are fixed, the type-inst of the result
is the same as the element type-inst. However, if any indices are not fixed, the
type-inst of the result is the varified element type-inst. For example, if we have:

array[1..2] of int: a13 = [1, 2];
var int: i;

then the type-inst of a13[i] is var int. If the element type-inst is not varifiable,
such an access causes a static error.

Syntactic sugar exists for accessing tuple-indexed arrays. For example, the sec-
ond of the following two accesses is syntactic sugar for the first.

int: y = a13[(1, 2)];
int: y = a13[1, 2];

Array accesses can be chained to access arrays-of-arrays, and sub-arrays can be
extracted from arrays-of-arrays, as the following two examples show.

array[1..2] of array[1..3] of int: a14;
int: y = a14[1][2];
array[1..2] of int: a12 = a14[1];

28

6.3.14 Tuple Literals

A tuple expression has this syntax:

〈tuple-literal〉 ::= (〈expr〉 , . . .)

For example:

(1, 2.0)

Tuple expressions must have at least two elements. A tuple expression with a single
element is not actually a tuple expression, but rather just a normal expression with
parentheses around it.

6.3.15 Tuple Access Expressions

Tuple fields are accessed by using a ‘.’ and the field number after a tuple expression:

〈tuple-access-tail〉 ::= . 〈int-literal〉

For example, this expression:

(3, 4.0).1

has the value 3. Access of a non-existent field number results in a static error.

6.3.16 Record Literals

A record expression has this syntax:

〈record-literal〉 ::= (〈named-expr〉 , . . .)
〈named-expr〉 ::= 〈ident〉 : 〈expr〉

For example:

Task: t = (duration:10, start:_, finish:_);

6.3.17 Record Access Expressions

Record fields are accessed by using a ‘.’ and the field name after a record expression:

〈record-access-tail〉 ::= . 〈ident〉

For example:

int: d = t.duration;

Access of a non-existent field name results in a static error.

6.3.18 Enum Literals

An enum expression has one of the following forms:

〈enum-literal〉 ::= 〈ident〉 (〈named-expr〉 , . . .)
| 〈ident〉 (〈expr〉 , . . .)
| 〈ident〉

Flat enum expressions obviously overlap completely with identifier expressions (see
Section 6.3.1).

Here is an example of initialising parameters of non-flat enum types:

multi_point: P1 = int_point(ix:2, iy:3);
multi_point: P2 = float_point(2.3, 5.6);

29

6.3.19 Non-flat Enum Access Expressions

Enum fields are accessed like record fields, with a ‘.’. However, enum field access
expressions are only allowed within case expressions (described in Section 6.3.22).
This makes it harder to access a field that does not exist in a particular non-flat
enum value. If such an access does occur, it is a run-time error.

6.3.20 Annotation Literals

Literals of the ann type have this syntax:

〈ann-literal〉 ::= 〈ident〉 [(〈expr〉 , . . .)]

For example:

foo
cons(1, cons(2, cons(3, nil)))

There is no way to inspect or deconstruct annotation literals in a Zinc model;
they are intended to be inspected only by an implementation, e.g. to direct compi-
lation.

6.3.21 If-then-else Expressions

Zinc provides if-then-else expressions, which provide selection from two alternatives
based on a condition. They have this syntax:

〈if-then-else-expr〉 ::= if 〈expr〉 then 〈expr〉
(elseif 〈expr〉 then 〈expr〉)*
else 〈expr〉 endif

For example:

if x <= y then x else y endif
if x < 0 then -1 elseif x > 0 then 1 else 0 endif

The presence of the endif avoids possible ambiguity when an if-then-else expression
is part of a larger expression.

The type-inst of the “if” expression must be par bool. In the future we may
allow it to also be var bool. The “then” and “else” expressions must have the
same type-inst, or be coercible to the same type-inst, which is also the type-inst of
the whole expression.

Evaluation of if-then-else expressions is lazy—the condition is evaluated, and
then only one of the “then” and “else” branches are evaluated, depending on whether
the condition succeeded or failed.

6.3.22 Case Expressions

Zinc provides case expressions for handling the different cases in an enum.
Case expressions have this syntax:

〈case-expr〉 ::= case 〈expr〉 { 〈case-expr-case〉 , . . . }
〈case-expr-case〉 ::= 〈ident〉 --> 〈expr〉

For example, we can use the multi_point record in Section 7.2 with the following
code:

30

multi_point: r;
int: M = case r {

int_point --> r.ix,
float_point --> 0,

};

The comma after the final case is optional.
The type-inst of the case selection expression must be a fixed enum.
The type-inst of every result expression must be the same, or be coercible to the

same type-inst, which is also the type-inst of the whole expression.
It is a static error if any case name is not covered by the case statement.
Currently Zinc does not support pattern matching. This may be supported in

the future.

6.3.23 Let Expressions

Let expressions provide a way of introducing local names for one or more expressions
that can be used within another expression. They are particularly useful in user-
defined operations.

Let expressions have this syntax:

〈let-expr〉 ::= let { [〈var-decl-item〉 , . . .] } in 〈expr〉

For example:

let {int: x = 3, int: y = 4} in x + y;

The scope of a let local variable covers:

• The initialisation expressions of any subsequent variables within the let ex-
pression (but not the variable’s own initialisation expression).

• The expression after the in, which is parsed as greedily as possible.

A variable can only be declared once in a let expression.
Thus in the following examples the first is acceptable but the rest are not:

let {int: x = 3, int: y = x} in x + y; % ok
let {int: y = x, int: x = 3} in x + y; % x not visible in y’s defn.
let {int: x = x} in x; % x not visible in x’s defn.
let {int: x = 3, int: x = 4} in x; % x declared twice

The type-inst expressions can include type-inst variables if the let is within a
function or predicate body in which the same type-inst variables were present in
the function or predicate signature.

The initialiser for a let local variable can be omitted only if the variable is a
decision variable. For example:

let {var int: x} in ...; % ok
let { int: x} in ...; % illegal

The type-inst of the entire let expression is the type-inst of the expression after
the in keyword.

There is a complication involving let expressions in negative contexts. A let
expression occurs in a negative context if it is occurs in an expression of the form
not X, X <-> Y, or in the sub-expression X in X -> Y or Y <- X.

If a let expression is used in a negative context, then any let-local decision vari-
ables must be defined only in terms of non-local variables and parameters. This
is because local variables are implicitly existentially quantified, and if the let ex-
pression occurred in a negative context then the local variables would be effectively
universally quantified which is not supported by Zinc.

31

6.3.24 Call Expressions

Call expressions are used to call predicates and functions.
Call expressions have this syntax:

〈call-expr〉 ::= 〈ident〉 [(〈expr〉 , . . .)]

For example (using an example function defined in Section 7.10.3):

x = min_of_two(3, 5);

The type-insts of the expressions passed as arguments must match the argument
types of the called predicate/function. The return type of the predicate/function
must also be appropriate for the calling context.

Note that a call to a function or predicate with no arguments is syntactically
indistinguishable from the use of a variable, and so must be determined during
type-inst checking.

Evaluation of the arguments in call expressions is strict—all arguments are eval-
uated before the call itself is evaluated. Note that this includes Boolean operations
such as /\, \/, -> and <- which could be lazy in one argument. The one exception
is assert, which is lazy in its third argument (Section A.9).

Rationale. Boolean operations are strict because: (a) this minimises excep-
tional cases; (b) in an expression like A -> B, where A is not fixed and B causes an
abort, the appropriate behaviour is unclear if laziness is present; and (c) if a user
needs laziness, an if-then-else can be used.

The order of argument evaluation is not specified. Rationale. Because Zinc is
declarative, there is no obvious need to specify an evaluation order, and leaving it
unspecified gives implementors some freedom.

6.3.25 Generator Call Expressions

Zinc has special syntax for certain kinds of call expressions which makes models
much more readable.

Generator call expressions have this syntax:

〈gen-call-expr〉 ::= 〈ident〉 (〈comp-tail〉) (〈expr〉)

A generator call expression P(Gs)(E) is equivalent to the call expression P([E |
Gs]). For example, the expression:

forall(i,j in Domain where i<j)
(noattack(i, j, queens[i], queens[j]));

(in a model specifying the N-queens problem) is equivalent to:

forall([noattack(i, j, queens[i], queens[j])
| i,j in Domain where i<j]);

The parentheses around the latter expression are mandatory; this avoids possible
confusion when the generator call expression is part of a larger expression.

The identifier must be the name of a unary predicate or function that takes an
array argument.

The generators and where-expression (if present) have the same requirements as
those in array comprehensions (Section 6.3.11).

7 Items

This section describes the top-level program items.

32

7.1 Type-inst Synonym Items

Type-inst synonym items have this syntax:

〈type-inst-syn-item〉 ::= type 〈ident〉 [= 〈ti-expr〉]

For example:

type MyInt = int;
type FloatPlus = (float: x where x >= 0);
type Domain = 1..n;

It is a type-inst error if a type-inst synonym is declared and/or defined more
than once in a model.

All type-inst synonyms must be defined at instance-time.

7.2 Enum Items

Enumerated type items have this syntax:

〈enum-item〉 ::= enum 〈ident〉 [= 〈enum-cases〉]
〈enum-cases〉 ::= { 〈enum-case〉 , . . . }
〈enum-case〉 ::= 〈ident〉 [(〈ti-expr-and-id〉 , . . .)]

An example of a flat enum:

enum country = {Australia, Canada, China, England, USA};

An example of a non-flat enum:

enum multi_point = {
int_point(int: ix, int: iy),
float_point(float: fx, float: fy)

};

Each alternative is called an enum case. The identifier used to name each case
(e.g. Australia and float_point) is called the enum case name.

Enums can be constrained by using a type-inst synonym (Section 7.1) and a
case expression (Section 6.3.22). For example:

type multi_point2 =
(multi_point: p where case p { int_point --> p.ix > p.iy,

float_point --> p.fx > p.fy });

Because enum case names all reside in the top-level namespace (Section 4.3), case
names in different enums must be distinct. As for field names in non-flat enums, all
field names in a single enum must be distinct to avoid possible ambiguities.

An enum can be declared but not defined, in which case it must be defined
elsewhere. For non-flat enums, “elsewhere” must be within the model. For flat
enums, “elsewhere” must be within the model, or in a data file. For example, a
model file could contain this:

enum Workers;
enum Shifts;

and the data file could contain this:

enum Workers = { welder, driller, stamper };
enum Shifts = { idle, day, night };

33

Sometimes it is useful to be able to refer to one of the enum case names within the
model. This can be achieved by using a variable. The model would read:

enum Shifts;
Shifts idle; % Variable representing the idle constant.

and the data file:

enum Shifts = { idle_const, day, night };
idle = idle_const; % Assignment to the variable.

Although the constant idle_const cannot be mentioned in the model, the variable
idle can be.

All enums must be defined at instance-time.

7.3 Include Items

Include items allow a model to be split across multiple files. They have this syntax:

〈include-item〉 ::= include 〈string-literal〉

For example:

include "foo.zinc";

includes the file foo.zinc.
Include items are particularly useful for accessing libraries or breaking up large

models into small pieces. They are not, as Section 4.2 explains, used for specifying
data files.

If the given name is not a complete path then the file is searched for in an
implementation-defined set of directories. The search directories must be able to
be altered with a command line option.

7.4 Variable Declaration Items

Variable declarations have this syntax:

〈var-decl-item〉 ::= 〈ti-expr-and-id〉 〈annotations〉 [= 〈expr〉]

For example:

int: A = 10;

It is a type-inst error if a variable is declared and/or defined more than once in
a model.

A variable whose declaration does not include an assignment can be initialised
by a separate assignment item (Section 7.5). For example, the above item can be
separated into the following two items:

int: A;
...
A = 10;

All variables that contain a parameter component must be defined at instance-
time.

Variables can have one or more annotations. Section 8 has more on annotations.

34

7.5 Assignment Items

Assignments have this syntax:

〈assign-item〉 ::= 〈ident〉 = 〈expr〉

For example:

A = 10;

7.6 Constraint Items

Constraint items form the heart of a model. Any solutions found for a model will
satisfy all of its constraints.

Constraint items have this syntax:

〈constraint-item〉 ::= constraint 〈expr〉

For example:

constraint a*x < b;

The expression in a constraint item must have type-inst par bool or var bool;
note however that constraints with fixed expressions are not very useful.

7.7 Solve Items

Every model must have exactly one solve item. Solve items have the following
syntax:

〈solve-item〉 ::= solve 〈annotations〉 satisfy
| solve 〈annotations〉 minimize 〈expr〉
| solve 〈annotations〉 maximize 〈expr〉

Example solve items:

solve satisfy;
solve maximize a*x + y - 3*z;

The solve item determines whether the model represents a constraint satisfaction
problem or an optimisation problem. In the latter case the given expression is the
one to be minimized/maximized.

The expression in a minimize/maximize solve item must have type-inst par int,
par float, var int or var float. The first two of these are not very useful as
they mean that the model requires no constraint solving.

Solve items can be annotated. Section 8 has more details on annotations.

7.8 Output Items

Output items are used to present the results of a model execution. They have the
following syntax:

〈output-item〉 ::= output 〈expr〉

For example:

output ["The value of x is ", show(x), "!\n"];

35

The expression must have type-inst array[int] of par string. It can be
composed using the built-in operator ++, the built-in function show, and the built-
in function show cond (Section A).

The output is determined by concatenating the individual elements of the array.
Each model can have at most one output item. If a solution is found and an

output item is present, it is used to determine the string to be printed. If a solution
is found and no output item is present, the implementation should print all the
decision variables and their values in a readable format. If no solution is found,
the implementation should print “No solution found”; it may also print some extra
information about the cause of the failure, such as which constraints were violated.

7.9 Annotation Items

Annotation items are used to augment the ann type. They have the following
syntax:

〈annotation-item〉 ::= annotation 〈ident〉 〈params〉

For example:

annotation solver(SolverKind: kind);

It is a type-inst error if an annotation is declared and/or defined more than once
in a model.

The use of annotations is described in Section 8.

7.10 User-defined Operations

Zinc models can contain user-defined operations. They have this syntax:

〈predicate-item〉 ::= predicate 〈operation-item-tail〉
〈test-item〉 ::= test 〈operation-item-tail〉
〈function-item〉 ::= function 〈ti-expr〉 : 〈operation-item-tail〉
〈operation-item-tail〉 ::= 〈ident〉 〈params〉 [= 〈expr〉]
〈params〉 ::= [(〈ti-expr-and-id〉 , . . .)]

The type-inst expressions can include type-inst variables in the function and
predicate declaration.

For example, predicate even checks that its argument is an even number.

predicate even(int: x) =
x mod 2 == 0;

Predicate serial constrains the resistor z to be equivalent to connecting the
two resistors x and y in series (the fields r and i represent resistance and current
respectively).

type Resistor = record(int: r, int: i);
predicate serial(Resistor: x, Resistor: y, Resistor: z) =

z.r == x.r + y.r /\
z.i == x.i /\
z.i == y.i;

36

7.10.1 Basic Properties

The term “predicate” is generally used to refer to both test items and predicate
items. When the two kinds must be distinguished, the terms “test item” and
“predicate item” can be used.

The return type-inst of a test item is implicitly par bool. The return type-inst
of a predicate item is implicitly var bool.

Predicates and functions are not allowed to be recursive.
Predicates and functions introduce their own local names, being those of the

formal arguments. The scope of these names covers the predicate/function body.
Argument names cannot be repeated within a predicate/function declaration.

Zinc is mostly a first-order language, so operations cannot, in general, be used
as values. The only exception to this is that they may be given as the first argument
to foldl or foldr, and as arguments in annotation literals (see Section 5.8.2).

7.10.2 Ad-hoc polymorphism

Zinc supports ad-hoc polymorphism via overloading. Functions and predicates
(both built-in and user-defined) can be overloaded. A name can be overloaded
as both a function and a predicate.

It is a type-inst error if a single version of an overloaded operation with a par-
ticular type-inst signature is declared and/or defined more than once in a model.
For example:

predicate p(1..5: x);
predicate p(1..5: x) = true; % error: repeated declaration

The combination of overloading and coercions can cause problems. Two over-
loadings of an operation are said to “overlap” if they could match the same argu-
ments. For example, the following overloadings of p overlap, as they both match
the call p(3).

predicate p(par int: x);
predicate p(var int: x);

However, the following two predicates do not overlap because they cannot match
the same argument:

predicate q(int: x);
predicate q(set of int: x);

We avoid two potential overloading problems by placing some restrictions on over-
lapping overloadings of operations.

1. The first problem is ambiguity. Different placement of coercions in opera-
tion arguments may allow different choices for the overloaded function. For
instance, if a Zinc function f is overloaded like this:

function int: f(int: x, float: y) = 0;
function int: f(float: x, int: y) = 1;

then f(3,3) could be either 0 or 1 depending on coercion/overloading choices.

To avoid this problem, any overlapping overloadings of an operation must
be semantically equivalent with respect to coercion. For example, the two
overloadings of the predicate p above must have bodies that are semantically
equivalent with respect to overloading.

37

Currently, this requirement is not checked and the modeller must satisfy it
manually. In the future, we may require the sharing of bodies among different
versions of overloaded operations, which would provide automatic satisfaction
of this requirement.

2. The second problem is that certain combinations of overloadings could require
a Zinc implementation to perform combinatorial search in order to explore
different choices of coercions and overloading. For example, if function g is
overloaded like this:

function tuple(float,int): g(tuple(int,float): t) = (t.2, t.1);
function tuple(int,float): g(tuple(float,int): t) = (t.2, t.1);

then how the overloading of g((3,3)) is resolved depends upon its context:

tuple(float,int): s = g((3,3));
tuple(float,int): t = g(g((3,3)));

In the definition of s the first overloaded definition must be used while in the
definition of t the second must be used.

To avoid this problem, all overlapping overloadings of an operation must be
closed under intersection of their input type-insts. That is, if overloaded
versions have input type-inst (S1,, Sn) and (T1, ..., Tn) then there must be
another overloaded version with input type-inst (R1, ..., Rn) where each Ri is
the greatest lower bound (glb) of Si and Ti.

Also, all overlapping overloadings of an operation must be monotonic. That
is, if there are overloaded versions with input type-insts (S1,, Sn) and
(T1, ..., Tn) and output type-inst S and T , respectively, then Si � Ti for all i,
implies S � T . At call sites, the matching overloading that is lowest on the
type-inst lattice is always used.

For g above, the type-inst intersection (or glb) of tuple(float,int) and
tuple(float,int) is tuple(int,int). Thus, the overloaded versions are not
closed under intersection and the user needs to provide another overloading
for g with input type-inst tuple(int,int). The natural definition is:

function tuple(int,int): g(tuple(int,int): t) = (t.2, t.1);

Once g has been augmented with the third overloading, it satisfies the mono-
tonicity requirement because the output type-inst of the third overloading is
tuple(int,int) which is less than the output type-inst of the original over-
loadings.

Monotonicity and closure under type-inst conjunction ensure that whenever
an overloaded function or predicate is reached during type-inst checking, there
is always a unique and safe “minimal” version to choose, and so the complexity
of type-inst checking remains linear. Thus in our example g((3,3)) is always
resolved by choosing the new overloaded definition.

7.10.3 Parametric Polymorphism

Zinc supports parametric polymorphic of functions and predicates via type-inst
variables.

For example, function min_of_two takes two parameters and gives their mini-
mum.

38

function $T:min_of_two($T: x, $T: y) =
if x <= y then x else y endif;

This function is possible because every type has a built-in ordering.
Section 5.8.1 explained that type-inst variables can have no prefix (or, equiva-

lently, a par prefix) or an any prefix. The prefixes are necessary for precise type-inst
signatures of some user-defined operations. For example, consider the following two
definitions of a function between:

par bool: function between(par $T: x, par $T: y, par $T: z) =
(x <= y /\ y <= z) \/ (z <= y /\ y <= x);

var bool: function between(any $T: x, any $T: y, any $T: z) =
(x <= y /\ y <= z) \/ (z <= y /\ y <= x);

The first version has a more precise return type-inst. The par and any prefixes are
needed to express the difference between these two versions.

Note that although par $T (and also $T) only matches fixed type-insts, it does
not mean that the type-inst variable $T must be bound to a fixed type-inst. For
example, with these variables and predicate:

par int: pi;
var int: vi;
predicate p(par $T: x, any $T: y);

the first two of the following are acceptable, but the last two are errors:

constraint p(pi, pi); % ok: $T bound to ’par int’
constraint p(pi, vi); % ok: $T bound to ’var int’
constraint p(vi, pi); % error
constraint p(vi, vi); % error

7.10.4 Local Variables

Local variables in operation bodies are introduced using let expressions. For ex-
ample, the predicate have_common_divisor takes two integer values and checks
whether they have a common divisor greater than one:

predicate have_common_divisor(int: A, int: B) =
let {

var 2..min2(A,B): C
} in

A mod C == 0 /\
B mod C == 0;

However, as Section 6.3.23 explained, because C is not defined, this predicate
cannot be called in a negative context. The following is a version that could be
called in a negative context:

predicate have_common_divisor(int: A, int: B) =
exists(C in 2..min2(A,B))

(A mod C == 0 /\ B mod C == 0);

8 Annotations

Annotations—values of the ann type—allow a modeller to specify non-declarative
and solver-specific information that is beyond the core language. Annotations do
not change the meaning of a model, however, only how it is solved.

Annotations can be attached to variables (on their declarations), expressions,
and solve items, as Sections 6.1, 7.4 and 7.7 showed. They have the following syntax:

39

〈annotations〉 ::= (:: 〈annotation〉)*
〈annotation〉 ::= 〈expr-atom-head〉 〈expr-atom-tail〉

For example:

int: x::foo;
x = (3 + 4)::bar("a", 9)::baz("b");
solve :: blah(4)

minimize x;

The types of the argument expressions must match the argument types of the
declared annotation. Unlike user-defined predicates and functions, annotations can-
not be overloaded. Rationale. There is no particular strong reason for this, it just
seemed to make things simpler.

Annotation signatures can contain type-inst variables.
The order and nesting of annotations do not matter. For the expression case it

can be helpful to view the annotation connector ’::’ as an overloaded operator:

ann: ’::’(any $T: e, ann: a); % associative
ann: ’::’(ann: a, ann: b); % associative + commutative

Both operators are associative, the second is commutative. This means that the
following expressions are all equivalent:

e :: a :: b
e :: b :: a
(e :: a) :: b
(e :: b) :: a
e :: (a :: b)
e :: (b :: a)

This property also applies to annotations on solve items and variable declaration
items. Rationale. This property make things simple, as it allows all nested com-
binations of annotations to be treated as if they are flat, thus avoiding the need to
determine what is the meaning of an annotated annotation. It also makes the Zinc
abstract syntax tree simpler by avoiding the need to represent nesting.

Zinc’s built-in annotations are listed in Appendix C. Moreover, an implementa-
tion is likely to define a number of its own annotations for a variety of purposes.

9 Partiality

The presence of constrained type-insts in Zinc means that various operations are
potentially partial, i.e. not clearly defined for all possible inputs. For example,
what happens if a function expecting a positive argument is passed a negative
argument? What happens if a variable is assigned a value that doesn’t satisfy its
type-inst constraints? What happens if an array index is out of bounds? This
section describes what happens in all these cases.

In general, cases involving fixed values that do not satisfy constraints lead to
run-time aborts. Rationale. Our experience shows that if a fixed value fails a
constraint, it is almost certainly due to a programming error. Furthermore, these
cases are easy for an implementation to check.

But cases involving unfixed values vary, as we will see. Rationale. The best
thing to do for unfixed values varies from case to case. Also, it is difficult to check
constraints on unfixed values, particularly because during search a decision variable
might become fixed and then backtracking will cause this value to be reverted, in
which case aborting is a bad idea.

40

9.1 Partial Assignments

The first operation involving partiality is assignment. There are four distinct cases
for assignments.

• A value assigned to a fixed, constrained global variable is checked at run-time;
if the assigned value does not satisfy its constraints, it is a run-time error. In
other words, this:

1..5: x = 3;

is equivalent to this:

int: x = 3;
constraint assert(x in 1..5,

"assignment to global parameter ’x’ failed")

• A value assigned to an unfixed, constrained global variable makes the assign-
ment act like a constraint; if the assigned value does not satisfy the variable’s
constraints, it causes a run-time model failure. In other words, this:

var 1..5: x = 3;

is equivalent to this:

var int: x = 3;
constraint x in 1..5;

Rationale. This behaviour is easy to understand and easy to implement.

• A value assigned to a fixed, constrained let-local variable is checked at run-
time; if the assigned value does not satisfy its constraints, it is a run-time
error. In other words, this:

let { 1..5: x = 3 } in x+1

is equivalent to this:

let { int: x = 3 } in
assert(x in 1..5,

"assignment to let parameter ’x’ failed", x+1)

• A value assigned to an unfixed, constrained let-local variable makes the as-
signment act like a constraint; if the assigned value does not statically match
the variable’s constraint at run-time it fails, and the failure “bubbles up” to
the nearest enclosing Boolean scope, where it is interpreted as false.

Rationale. This behaviour is consistent with assignments to global variables.

Note that in cases where a value is partly fixed and partly unfixed, e.g. some
tuples, the different elements are checked according to the different cases, and fixed
elements are checked before unfixed elements. For example:

tuple(var 1..5, par 1..5): t = (6, 6);

This causes a run-time abort, because the second, fixed element is checked before
the first, unfixed element. This ordering is true for the cases in the following sections
as well. Rationale. This ensures that failures cannot mask aborts, which seems
desirable.

41

9.2 Partial Predicate/Function and Annotation Arguments

The second kind of operation involving partiality is calls and annotations. The
behaviour for these operations is simple: constraints on arguments are ignored.

Rationale. This is easy to implement and easy to understand. It is also justifi-
able in the sense that predicate/function/annotation arguments are values that are
passed in from elsewhere; if those values are to be constrained, that could be done
earlier. (In comparison, when a variable with a constrained type-inst is declared,
any assigned value must clearly respect that constraint.)

It is possible in the future that this behaviour may be changed to be more
restrictive, like assignments: fixed arguments that fail their constraints will cause
aborts, and unfixed arguments that fail their constaints will cause failure, which
bubbles up to the nearest enclosing Boolean scope.

9.3 Partial Array Accesses

The third kind of operation involving partiality is array access. There are two
distinct cases.

• A fixed value used as an array index is checked at run-time; if the index value
is not in the index set of the array, it is a run-time error.

• An unfixed value used as an array index makes the access act like a constraint;
if the access fails at run-time, the failure “bubbles up” to the nearest enclosing
Boolean scope, where it is interpreted as false. For example:

array[1..3] of int: a = [1,2,3];
var int: i;
constraint (a[i] + 3) > 10 \/ i == 99;

Here the array access fails, so the failure bubbles up to the disjunction, and i is
constrained to be 99. Rationale. Unlike predicate/function calls, modellers
in practice sometimes do use array accesses that can fail. In such cases, the
“bubbling up” behaviour is a reasonable one.

42

A Built-in Operations

This appendix lists built-in operators, functions and predicates. They may be
implemented as true built-ins, or in libraries that are automatically imported for
all models. Many of them are overloaded.

Operator names are written within single quotes when used in type signatures,
e.g. bool: ’\/’(bool, bool).

We use the syntax TI: f(TI1,...,TIn) to represent an operation named f that
takes arguments with type-insts TI,...,TIn and returns a value with type-inst TI.
This is slightly more compact than the usual Zinc syntax, in that it omits argument
names.

A.1 Comparison Operations

Less than. Other comparisons are similar: greater than (>), less than or equal (<=),
greater than or equal (>=), equality (==, =), and disequality (!=).

bool: ’<’($T, $T)
var bool: ’<’(any $T, any $T)

A.2 Arithmetic Operations

Addition. Other numeric operations are similar: subtraction (-), and multiplication
(*).

int: ’+’(int, int)
var int: ’+’(var int, var int)

float: ’+’(float, float)
var float: ’+’(var float, var float)

Unary minus. Unary plus (+) is similar.

int: ’-’(int)
var int: ’-’(var int)

float: ’-’(float)
var float: ’-’(var float)

Integer and floating-point division and modulo.

int: ’div’(int, int)
var int: ’div’(var int, var int)

int: ’mod’(int, int)
var int: ’mod’(var int, var int)

float: ’/’ (float, float)
var float: ’/’ (var float, var float)

The result of the modulo operation, if non-zero, always has the same sign as its
second operand. The integer division and modulo operations are connected by the
following identity:

x == (x div y) * y + (x mod y)

Some illustrative examples:

7 div 4 = 1 7 mod 4 = 3
-7 div 4 = -2 -7 mod 4 = 1
7 div -4 = -2 7 mod -4 = -1
-7 div -4 = 1 -7 mod -4 = -3

43

Sum multiple numbers. Product (product) is similar. Note that the sum of an
empty array is 0, and the product of an empty array is 1.

int: sum(array[$T] of int)
var int: sum(array[$T] of var int)

float: sum(array[$T] of float)
var float: sum(array[$T] of var float)

Minimum of two values; maximum (max) is similar.

any $T: min(any $T, any $T)

Minimum of an array of fixed values; maximum (max) is similar.

any $U: min(array[$T] of any $U)

Minimum of a fixed set; maximum (max) is similar.

$T: min(set of $T)

Absolute value of a number.

int: abs(int)
var int: abs(var int)

float: abs(float)
var float: abs(var float)

Square root of a float. Aborts if argument is negative.

float: sqrt(float)

Power operator. E.g. pow(2, 5) gives 32.

int: pow(int, int)
float: pow(float, float)

Natural exponent.

float: exp(float)

Natural logarithm. Logarithm to base 10 (log10) and logarithm to base 2 (log2)
are similar.

float: ln(float)

General logarithm; the first argument is the base.

float: log(float, float)

Sine. Cosine (cos), tangent (tan), inverse sine (asin), inverse cosine (acos), inverse
tangent (atan), hyberpolic sine (sinh), hyberpolic cosine (cosh) and hyperbolic
tangent (tanh) are similar.

float: sin(float)

44

A.3 Logical Operations

Conjunction. Other logical operations are similar: disjunction (\/) reverse im-
plication (<-), forward implication (->), bi-implication (<->), exclusive disjunction
(xor), logical negation (not).

Note that the implication operators are not written using =>, <= and <=> as is
the case in some languages. This allows <= to instead represent “less than or equal”.

bool: ’/\’(bool, bool)
var bool: ’/\’(var bool, var bool)

Universal quantification. Existential quantification (exists) is similar. Note that,
when applied to an empty list, forall returns true, and exists returns false.

bool: forall(array[$T] of bool)
var bool: forall(array[$T] of var bool)

A.4 Set Operations

Set membership.

bool: ’in’($T, set of $T)
var bool: ’in’(any $T, var set of $T)

Non-strict subset. Non-strict superset (superset) is similar.

bool: ’subset’(set of $T, set of $T)
var bool: ’subset’(var set of $T, var set of $T)

Set union. Other set operations are similar: intersection (intersect), difference
(diff), symmetric difference (symdiff).

set of $T: ’union’(set of $T, set of $T)
var set of $T: ’union’(var set of $T, var set of $T)

Set range. If the first argument is larger than the second (e.g. 1..0), it returns the
empty set.

set of int: ’..’(int, int)

Cardinality of a set.

int: card(set of $T)
var int: card(var set of $T)

Union of an array of sets. Intersection of multiple sets (array_intersect) is
similar.

set of $U: array_union(array[$T] of set of $U)
var set of $U: array_union(array[$T] of var set of $U)

Power set.

set of set of $T: powerset(set of $T)

Cartesian product of sets. This list is only partial, it extends in the obvious way,
for greater numbers of sets.

set of tuple($T1, $T2): cartesian_product(set of $T1, set of $T2)
set of tuple($T1, $T2, $T3): cartesian_product(set of $T1, set of $T2,

set of $T3)
...

45

A.5 Array Operations

Length of an array.

int: length(array[$T] of any $U)

Array concatenation with integer indices. This operation is slightly unusual: the
indices of the second argument are changed so that they begin at one more than
the maximum index of the first argument and are numbered contiguously, before
being concatenated to the result. Rationale. This allows list-like arrays to be
concatenated naturally and avoids problems with overlapping indices. Note that
’++’ also performs string concatenation.

array[int] of any $T: ’++’(array[int] of any $T, array[int] of any $T)

Array concatenation. Does not change any indices. If any index is repeated in
the result, it is a run-time error. Note that it may result in an interleaving of
the elements, e.g. the concatenation of [1:1, 3:3] and [2:2, 4:4] is [1:1, 2:2,
3:3, 4:4].

array[$T] of any $U: concat(array[$T] of any $U, array[$T] of any $U)

Index sets of arrays. If the argument is a literal, returns 1..n where n is the
(sub-)array length. Otherwise, returns the declared or inferred index set. This list
is only partial, it extends in the obvious way, for arrays of higher dimensions.

set of $T: index_set (array[$T] of any $V)
set of $T: index_set_1of2(array[$T, $U] of any $V)
set of $U: index_set_2of2(array[$T, $U] of any $V)
...

Get the first and last elements of an array, and the tail of an array (i.e. all elements
except the first). All of them abort if the array is empty.

any $U: head(array[$T] of any $U)
any $U: last(array[$T] of any $U)
array[$T] of any $U: tail(array[$T] of any $U)

Replace the indices of the array given by the last argument with the cartesian
product of the sets given by the previous arguments. Similar versions exist for
arrays up to 6 dimensions.

array[$T1] of any $V: array1d(set of $T1, array[$U] of any $V)
array[$T1,$T2] of any $V:

array2d(set of $T1, set of $T2, array[$U] of any $V)
array[$T1,$T2,$T3] of any $V:

array3d(set of $T1, set of $T2, set of $T3, array[$U] of any $V)

For the MiniZinc versions, the index sets must be contiguous integers, otherwise it
is a run-time error.
Condenses an array-of-arrays into an array, by folding concat over the array-of-

arrays. It is a run-time error if any of the indices are repeated in the result.

array[$U] of $V: condense(array[$T] of array[$U] of $V)

Condenses an array-of-arrays into an array, by folding ++ over the array-of-arrays.
This means the array indices are ordered contiguously after the final element of the
first array in the array-of-arrays.

array[int] of $T: condense_int_index(array[$U] of array[int] of $T)

46

A.6 Coercion Operations

Round a float towards +∞, −∞, and the nearest integer, respectively.

int: ceil (float)
int: floor(float)
int: round(float)

Explicit casts from one type-inst to another.

int: bool2int(bool)
var int: bool2int(var bool)

float: int2float(int)
var float: int2float(var int)
array[int] of $T: set2array(set of $T)

A.7 String Operations

To-string conversion. Converts any value to a string for output purposes. The
exact form of the resulting string is implementation-dependent.

string: show(any $T)

Conditional to-string conversion. If the first argument is not fixed, it aborts; if it
is fixed to true, the second argument is converted to a string; if it is fixed to false
the third argument is converted to a string. The exact form of the resulting string
is implementation-dependent, but same as that produced by show.

string: show_cond(var bool, any $T, any $U)

To-string conversion, for floats. The exact form of the resulting string is implementation-
dependent, like show, but the integer argument should preferably be used to dictate
the upper limit on the number of decimal places that are shown.

string: show_float(var float, int)

String concatenation. Note that ’++’ also performs array concatenation.

string: ’++’(string, string)

A.8 Bound and Domain Operations

Note that these operations can produce different results depending on when they are
evaluated, and what form the argument takes. For example, consider the numeric
lower bound operation.

• If the argument is a fixed expression, the result is the argument’s value.

• If the argument is a decision variable name, then the result depends on the
circumstance.

– If the variable has a current lower bound, the result is that lower bound.
The current lower bound may be from the variable’s declaration (e.g. if
evaluated at instance-time), or higher than that due to constraint solving
(e.g. if evaluated at run-time), or from an implementation-defined lower
bound (e.g. if it was declared with no lower bound, but the implementa-
tion imposes a lowest possible bound).

– If the variable has no current lower bound (e.g. because the variable was
declared with no lower bound and the implementation is able to represent
−∞), the operation aborts.

47

• If the argument is any other kind of unfixed expression, the operation aborts.

All of the following operations operate in this basic manner.

Numeric current lower/upper bound, i.e. the lowest/highest value the number can
currently take.

int: lb(var int)
float: lb(var float)
int: ub(var int)
float: ub(var float)

Set lower/upper bound, i.e. the intersection/union of all current possible values of
the set.

set of int: lb(var set of int)
set of int: ub(var set of int)

For example, the lower bound of a set variable that could equal {1,3,5} or {1,2,4}
is {1}, and the upper bound is {1,2,3,4,5}.
Array lower/upper bound, i.e. the lowest/highest of all the current lower/upper

bounds of all the elements in the array (like finding the lower/upper bound of every
element in the list and then folding min/max over them; or for the set version, like
folding intersection/union over them).

int: lb(array[$T] of var int)
float: lb(array[$T] of var float)
int: ub(array[$T] of var int)
float: ub(array[$T] of var float)
set of int: ub(array[$T] of var set of int)

Integer domain, i.e. the set of current possible values for the integer.

set of int: dom(var int)

Integer array domain, i.e. the union of the current domains of all elements in the
array.

set of int: dom(array[$T] of var int)

Domain size, for integers and arrays; dom_size(x) is equivalent to card(dom(x)),
but is likely to be much faster.

int: dom_size(var int)
int: dom_size(array[$T] of var int)

A.9 Other Operations

Check a Boolean expression is true, and abort if not, printing the second argument
as the error message. The first one returns the third argument, and is particularly
useful for sanity-checking arguments to predicates and functions; importantly, its
third argument is lazy, i.e. it is only evaluated if the condition succeeds. The second
one returns true and is useful for global sanity-checks (e.g. of instance data) in
constraint items.

any $T: assert(bool: c, string: s, any $T: val)
par bool: assert(bool: c, string: s)

Abort evaluation, printing the given string.

48

any $T: abort(string: s)

Check if the argument’s value is fixed at this point in evaluation. If not, abort;
if so, return its value. This is most useful in output items when decision variables
should be fixed—it allows them to be used in places where a fixed value is needed,
such as if-then-else conditions.

$T: fix(any $T)

Extract the first or second element from a two-element tuple. fst and snd are
synonyms.

any $T: first (tuple(any $T, any $U))
any $U: second(tuple(any $T, any $U))

Fold a binary function over an array in a left-associative manner. For example,
foldl(’+’, 0, xs) is sum, and foldl(’and’, true, xs) is forall.

any $T: foldl(any $T:(any $T,any $U), any $T, array[$V] of any $U)

Fold a binary function over an array in a right-associative manner.

any $T: foldr(any $T:(any $U,any $T), any $T, array[$V] of any $U)

49

B Libraries

This section describes some of the Zinc. For full details, please see the comments
in the library files themselves.

B.1 globals.zinc

The Zinc global constraints library contains a number of global constraints: all_different,
disjoint, less_leq, etc.

50

C Standard Annotations

C.1 Annotations

In addition to the annotations listed in this section, Zinc also supports the FlatZinc
annotations (see the FlatZinc specification for details).

C.1.1 Solve Annotations

Specifies that the model should be solved using a backtracking tree search. a is
the list of variables to search over, selector is the name of a function that takes a
list of non-ground variables and decides which one should be considered next, and
brancher is the name of a function that returns an array of constraints that define
the branches of the subsequent search tree.

tree_search(array[$K1] of any $V: a,
op(any $V:(array[$K1] of any $V)): selector,
op(array[$K2] of var bool:(any $V)): brancher)

51

D Zinc Grammar

Section 3.3 describes the notation used in the following Zinc grammar.

D.1 Items

〈model〉 ::= [〈item〉 ; . . .]

〈item〉 ::= 〈type-inst-syn-item〉
| 〈enum-item〉
| 〈include-item〉
| 〈var-decl-item〉
| 〈assign-item〉
| 〈constraint-item〉
| 〈solve-item〉
| 〈output-item〉
| 〈predicate-item〉
| 〈test-item〉
| 〈function-item〉
| 〈annotation-item〉

〈type-inst-syn-item〉 ::= type 〈ident〉 [= 〈ti-expr〉]

〈enum-item〉 ::= enum 〈ident〉 [= 〈enum-cases〉]
〈enum-cases〉 ::= { 〈enum-case〉 , . . . }
〈enum-case〉 ::= 〈ident〉 [(〈ti-expr-and-id〉 , . . .)]
〈ti-expr-and-id〉 ::= 〈ti-expr〉 : 〈ident〉

〈include-item〉 ::= include 〈string-literal〉

〈var-decl-item〉 ::= 〈ti-expr-and-id〉 〈annotations〉 [= 〈expr〉]

〈assign-item〉 ::= 〈ident〉 = 〈expr〉

〈constraint-item〉 ::= constraint 〈expr〉

〈solve-item〉 ::= solve 〈annotations〉 satisfy
| solve 〈annotations〉 minimize 〈expr〉
| solve 〈annotations〉 maximize 〈expr〉

〈output-item〉 ::= output 〈expr〉

〈annotation-item〉 ::= annotation 〈ident〉 〈params〉

〈predicate-item〉 ::= predicate 〈operation-item-tail〉
〈test-item〉 ::= test 〈operation-item-tail〉
〈function-item〉 ::= function 〈ti-expr〉 : 〈operation-item-tail〉
〈operation-item-tail〉 ::= 〈ident〉 〈params〉 [= 〈expr〉]
〈params〉 ::= [(〈ti-expr-and-id〉 , . . .)]

D.2 Type-Inst Expressions

〈ti-expr〉 ::= (〈ti-expr〉 : 〈ident〉 where 〈expr〉)
| 〈base-ti-expr〉

52

〈base-ti-expr〉 ::= 〈var-par〉 〈base-ti-expr-tail〉
〈var-par〉 ::= var | par | ε

〈base-ti-expr-tail〉 ::= 〈ident〉
| bool
| int
| float
| string
| 〈set-ti-expr-tail〉
| 〈array-ti-expr-tail〉
| 〈tuple-ti-expr-tail〉
| 〈record-ti-expr-tail〉
| 〈ti-variable-expr-tail〉
| ann
| 〈op-ti-expr-tail〉
| { 〈expr〉 , . . . }
| 〈num-expr〉 .. 〈num-expr〉

〈set-ti-expr-tail〉 ::= set of 〈ti-expr〉

〈array-ti-expr-tail〉 ::= array [〈ti-expr〉 , . . .] of 〈ti-expr〉

〈tuple-ti-expr-tail〉 ::= tuple (〈ti-expr〉 , . . .)

〈record-ti-expr-tail〉 ::= record (〈ti-expr-and-id〉 , . . .)

〈ti-variable-expr-tail〉 ::= [any] $[A-Za-z][A-Za-z0-9_]*

〈op-ti-expr-tail〉 ::= op (〈ti-expr〉 : (〈ti-expr〉 , . . .))

D.3 Expressions

〈expr〉 ::= 〈expr-atom〉 〈expr-binop-tail〉
〈expr-atom〉 ::= 〈expr-atom-head〉 〈expr-atom-tail〉 〈annotations〉
〈expr-binop-tail〉 ::= [〈bin-op〉 〈expr〉]
〈expr-atom-head〉 ::= 〈builtin-un-op〉 〈expr-atom〉

| (〈expr〉)
| 〈ident〉
| _
| 〈bool-literal〉
| 〈int-literal〉
| 〈float-literal〉
| 〈string-literal〉
| 〈set-literal〉
| 〈set-comp〉
| 〈simple-array-literal〉
| 〈simple-array-literal-2d〉
| 〈indexed-array-literal〉
| 〈simple-array-comp〉
| 〈indexed-array-comp〉
| 〈tuple-literal〉
| 〈record-literal〉
| 〈enum-literal〉
| 〈ann-literal〉

53

| 〈if-then-else-expr〉
| 〈case-expr〉
| 〈let-expr〉
| 〈call-expr〉
| 〈gen-call-expr〉

〈expr-atom-tail〉 ::= ε
| 〈array-access-tail〉 〈expr-atom-tail〉
| 〈tuple-access-tail〉 〈expr-atom-tail〉
| 〈record-access-tail〉 〈expr-atom-tail〉

〈num-expr〉 ::= 〈num-expr-atom〉 〈num-expr-binop-tail〉
〈num-expr-atom〉 ::= 〈num-expr-atom-head〉 〈expr-atom-tail〉 〈annotations〉
〈num-expr-binop-tail〉 ::= [〈num-bin-op〉 〈num-expr〉]
〈num-expr-atom-head〉 ::= 〈builtin-num-un-op〉 〈num-expr-atom〉

| (〈num-expr〉)
| 〈ident〉
| 〈int-literal〉
| 〈float-literal〉
| 〈if-then-else-expr〉
| 〈case-expr〉
| 〈let-expr〉
| 〈call-expr〉
| 〈gen-call-expr〉

〈builtin-op〉 ::= 〈builtin-bin-op〉
| 〈builtin-un-op〉

〈bin-op〉 ::= 〈builtin-bin-op〉
| ‘〈alpha-num-ident〉‘

〈builtin-bin-op〉 ::= <-> | -> | <- | \/ | xor | /\
| < | > | <= | >= | == | = | !=
| in | subset | superset | union | diff | symdiff
| .. | intersect| ++ | 〈builtin-num-bin-op〉

〈builtin-un-op〉 ::= not | 〈builtin-num-un-op〉

〈num-bin-op〉 ::= 〈builtin-num-bin-op〉
| ‘〈alpha-num-ident〉‘

〈builtin-num-bin-op〉 ::= + | - | * | / | div | mod
〈builtin-num-un-op〉 ::= + | -

〈bool-literal〉 ::= false | true

〈int-literal〉 ::= [0-9]+
| 0x[0-9A-Fa-f]+
| 0o[0-7]+

〈float-literal〉 ::= [0-9]+_[0-9]+
| [0-9]+_[0-9]+[Ee][-+]?[0-9]+
| [0-9]+[Ee][-+]?[0-9]+

〈string-literal〉 ::= "[^"\n]*"

〈set-literal〉 ::= { [〈expr〉 , . . .] }

54

〈set-comp〉 ::= { 〈expr〉 | 〈comp-tail〉 }
〈comp-tail〉 ::= 〈generator〉 , . . . [where 〈expr〉]
〈generator〉 ::= 〈ident〉 , . . . in 〈expr〉

〈simple-array-literal〉 ::= [[〈expr〉 , . . .]]

〈simple-array-literal-2d〉 ::= [| [(〈expr〉 , . . .) | . . .] |]

〈simple-array-comp〉 ::= [〈expr〉 | 〈comp-tail〉]

〈indexed-array-literal〉 ::= [[〈index-expr〉 , . . .]]
〈index-expr〉 ::= 〈expr〉 : 〈expr〉

〈indexed-array-comp〉 ::= [〈index-expr〉 | 〈comp-tail〉]

〈array-access-tail〉 ::= [〈expr〉 , . . .]

〈tuple-literal〉 ::= (〈expr〉 , . . .)

〈tuple-access-tail〉 ::= . 〈int-literal〉

〈record-literal〉 ::= (〈named-expr〉 , . . .)
〈named-expr〉 ::= 〈ident〉 : 〈expr〉

〈record-access-tail〉 ::= . 〈ident〉

〈enum-literal〉 ::= 〈ident〉 (〈named-expr〉 , . . .)
| 〈ident〉 (〈expr〉 , . . .)
| 〈ident〉

〈ann-literal〉 ::= 〈ident〉 [(〈expr〉 , . . .)]

〈if-then-else-expr〉 ::= if 〈expr〉 then 〈expr〉
(elseif 〈expr〉 then 〈expr〉)*
else 〈expr〉 endif

〈case-expr〉 ::= case 〈expr〉 { 〈case-expr-case〉 , . . . }
〈case-expr-case〉 ::= 〈ident〉 --> 〈expr〉

〈call-expr〉 ::= 〈ident〉 [(〈expr〉 , . . .)]

〈let-expr〉 ::= let { [〈var-decl-item〉 , . . .] } in 〈expr〉

〈gen-call-expr〉 ::= 〈ident〉 (〈comp-tail〉) (〈expr〉)

D.4 Miscellaneous Elements

〈ident〉 ::= 〈alpha-num-ident〉
| ’〈builtin-op〉’

〈alpha-num-ident〉 ::= [A-Za-z][A-Za-z0-9_]* % excluding keywords

〈annotations〉 ::= (:: 〈annotation〉)*
〈annotation〉 ::= 〈expr-atom-head〉 〈expr-atom-tail〉

55

E MiniZinc

MiniZinc is modelling language that is a subset of Zinc. It is easier to implement,
and it can be flattened into FlatZinc in a straightforward manner. For more details
on the goals of MiniZinc and FlatZinc, please read MiniZinc: Towards a Standard
CP Modelling Language, by Nethercote, Stuckey, Becket, Brand, Duck and Tack.

This section defines MiniZinc by describing the features from Zinc that it does
not support. The two languages have identical grammars, although various syntactically-
correct constructs are not valid in MiniZinc programs, and should be rejected by
post-parsing checks.

Rationale. In the past, the two languages did have distinct grammars, but com-
bining them makes this document much simpler. It also makes the implementation
of MiniZinc a little simpler. It can also allow for better error messages if a Zinc-
only feature is used in a MiniZinc program; for example, if an enum item appears in
a MiniZinc program, instead of a syntax error such as “syntax error at enum”, an
more helpful error such as “MiniZinc does not allow enum items” can be emitted.
And it allows Zinc features to be added to MiniZinc more easily later on, should we
desire.

E.1 Items

MiniZinc has the following restrictions on items.

• Type-inst synonym items are not supported.

• Enum items are not supported.

• User-defined function items are not supported.

E.2 Type-insts and Expressions

MiniZinc has the following restrictions on type-insts and expressions.

• Sets can only contain Booleans, integers, and floats. Sets of integers may be
fixed or unfixed; other sets must be fixed.

• Arrays must have indices that are contiguous integer ranges (e.g. 0..3, 10..12,
or the name of a set variable assigned in the model with a range value), or a
tuple of contiguous integer ranges.

Furthermore, MiniZinc arrays must be declared with index types that are
explicit ranges, or variables that are assigned a range value. Because these
types are finite, only explicitly-indexed array variables can be declared in
MiniZinc. The one exception is that implicitly-indexed arrays are allowed as
arguments to predicates and annotations.

• Arrays can only contain Booleans, integers, floats or sets of integers (all fixed
or unfixed), or fixed sets of Booleans or floats, or fixed strings. Arrays-of-
arrays are not supported.

• Indexed array literals and comprehensions are not supported.

• Tuples can only be used as array indices, and must contain integers, and must
be fixed. Furthermore, neither tuple literals nor tuple accesses are supported.

• Records are not supported. Therefore, neither record literals nor record ac-
cesses are supported. Furthermore, there are no local namespaces for record
field names.

56

• Enums are not supported, including in data files. Therefore, case expressions
are not supported. Furthermore, there are no local namespaces for (non-flat)
enum field names.

• The language is entirely first-order; no higher-order types are supported, oper-
ation type-inst expressions are not supported, and operations cannot be used
as values.

• Arbitrarily constrained type-insts are not supported.

• Implicit type coercions (e.g. int-to-float, set-to-array) are not supported, with
one exception: set-to-array coercions are allowed in comprehension generators.
This allows sets to be used as generator expressions, which is very convenient.

However, explicit type coercions are supported (e.g. int2float), as are im-
plicit inst coercions (e.g. par-int-to-var-int).

• Type-inst variables are not supported in user-defined predicates and functions.
However, many of the built-in operations, e.g. show, have signatures that
feature type-inst variables, and they work with all valid matching MiniZinc
types.

E.3 Built-in Operations and Annotations

MiniZinc has the following restrictions on built-in operations and annotations.

• The built-in comparison operators (’<’, ’==’, etc.) are not supported for
arrays, i.e. only the following signatures of ’<’ are supported (and likewise
for the other comparison operators):

bool: ’<’(int, int)
var bool: ’<’(var int, var int)

bool: ’<’(float, float)
var bool: ’<’(var float, var float)

bool: ’<’(bool, bool)
var bool: ’<’(var bool, var bool)

bool: ’<’(set of int, set of int)
bool: ’<’(set of bool, set of bool)
bool: ’<’(set of float, set of float)

var bool: ’<’(var set of int, var set of int)

• Only the following signatures of min are supported (and likewise for max):

int: min(int, int)
var int: min(var int, var int)

float: min(float, float)
var float: min(var float, var float)

int: min(array[int] of int)
var int: min(array[int] of var int)

float: min(array[int] of float)
var float: min(array[int] of var float)

int: min(set of int)
float: min(set of float)

• Only the following signatures of ’in’ are supported:

57

bool: ’in’(int, set of int)
bool: ’in’(bool, set of bool)
bool: ’in’(float, set of float)

var bool: ’in’(var int, var set of int)

• The following built-in operations are not supported: powerset, cartesian_product,
concat, head, last, tail, condense, condense_int_index, show_float,
first, second, fst, snd, foldl, foldr.

• The following built-in annotations are not supported: tree_search.

E.4 Other

MiniZinc has the following other restrictions.

• globals.mzn is the equivalent to the Zinc globals.zinc library.

58

