
Specification of FlatZinc
Version 1.1

Ralph Becket

1

Contents

1 Introduction 3

2 Comments 3

3 Types 3

3.1 Parameter types . 3

3.2 Variable types . 4

3.3 The string type . 5

4 Values and expressions 5

5 FlatZinc models 6

5.1 Predicate declarations . 6

5.2 Parameter declarations . 7

5.3 Variable declarations . 7

5.4 Constraints . 8

5.5 Solve goal . 8

5.6 Annotations . 9

5.6.1 Search annotations . 9

5.6.2 Output annotations . 11

5.6.3 Variable definition annotations . 11

5.6.4 Intermediate variables . 11

5.6.5 Constraint annotations . 11

6 Output 12

A Standard FlatZinc Predicates 15

B FlatZinc Syntax in BNF 22

2

1 Introduction

This document is the specification of the FlatZinc modelling language.

FlatZinc is the target constraint modelling language into which MiniZinc models are translated. It
is a very simple solver independent problem specification language, requiring minimal implemen-
tation effort to support.

Throughout this document: r1, r2 denote float literals; x1, x2, . . .xk, xi, n, i, j, k denote int
literals; y1, y2, . . . yk, yi denote literal array elements.

2 Comments

Comments start with a percent sign, %, and extend to the end of the line. Comments can appear
anywhere in a model.

3 Types

There are three varieties of types in FlatZinc.

• Parameter types apply to fixed values that are specified directly in the model.

• Variable types apply to values computed by the solver during search. Every parameter type
has a corresponding variable type; the variable type being distinguished by a var keyword.

• Annotations and strings: annotations can appear on variable declarations, constraints, and
on the solve goal. They provide information about how a variable or constraint should be
treated by the solver (e.g., whether a variable should be output as part of the result or
whether a particular constraint should implemented using domain consistency). Strings may
appear as arguments to annotations, but nowhere else.

3.1 Parameter types

Parameters are fixed quantities explicitly specified in the model (see rule par type in Appendix B).

3

bool — true or false
float — unbounded float
r1..r2 — bounded float
int — unbounded int
x1..x2 — int in range
{x1, x2, ..., xk} — int in set
set of int — subset of int
set of x1..x2 — subset of int range
set of {x1, x2, ...xk} — subset of int set
array [1..n] of bool — array of bools
array [1..n] of float — array of unbounded floats
array [1..n] of r1..r2 — array of floats in range
array [1..n] of int — array of unbounded ints
array [1..n] of x1..x2 — array of ints in range
array [1..n] of set of int — array of sets of ints
array [1..n] of set of x1..x2 — array of sets of ints in range
array [1..n] of set of {x1, x2, ...xk} — array of subsets of set

A range x1..x2 denotes a closed interval {x|x1 ≤ x ≤ x2}.

A parameter may be used where a variable is expected, but not vice versa.

An array type appearing in a predicate declaration may use just int instead of 1..n for the array
index range in cases where the array argument can be of any length.

3.2 Variable types

Variables are quantities decided by the solver (see rule var type in Appendix B).

var bool
var float
var r1..r2

var int
var x1..x2

var {x1, x2, ..., xk}
var set of x1..x2

var set of {x1, x2, ..., xk}
array [1..n] of var bool
array [1..n] of var float
array [1..n] of var r1..r2

array [1..n] of var int
array [1..n] of var x1..x2

array [1..n] of var set of x1..x2

array [1..n] of var set of {x1, x2, ...xk}

An array type appearing in a predicate declaration may use just int instead of 1..n for the array
index range in cases where the array argument can be of any length.

4

3.3 The string type

String literals and literal arrays of string literals can appear as annotation arguments, but not
elsewhere. Strings have the same syntax as in C programs (namely, they are delimited by double
quotes and the backslash character is used for escape sequences).

Examples

"" % The empty string.
"Hello."
"Hello,\nWorld" % A string with an embedded newline.

4 Values and expressions

(See rule expr in Appendix B).

Examples of literal values:

Type Literals
bool true, false
float 2.718, -1.0, 3.0e8
int -42, 0, 69
set of int {}, {2, 3, 5}, 1..10
arrays [], [y1, ..., yk]

where each array element yi is either: a non-array literal; the name of a non-array parameter or
variable, v; or a subscripted array parameter or variable, v[j], where j is an int literal. For example:

[1, 2, 3]
[x, y, z] % Where x, y, and z are variables or parameters.
[a[3], a[2], a[1]] % Where a is an array variable or parameter.
[x, a[1], 3]

Appendix B gives the regular expressions specifying the syntax for float and int literals.

5

5 FlatZinc models

A FlatZinc model consists of:

1. zero or more external predicate declarations (i.e., a non-standard predicate that is supported
directly by the target solver);

2. zero or more parameter declarations;

3. zero or more variable declarations;

4. zero or more constraints;

5. a solve goal

in that order.

FlatZinc uses the ASCII character set.

FlatZinc syntax is case sensitive (foo and Foo are different names). Identifiers start with a letter
([A-Za-z]) and are followed by any sequence of letters, digits, or underscores ([A-Za-z0-9]).

The following keywords are reserved and cannot be used as identifiers: annotation, any, array,
bool, case, constraint, diff, div, else, elseif, endif, enum, false, float, function, if,
in, include, int, intersect, let, list, maximize, minimize, mod, not, of, satisfy, subset,
superset, output, par, predicate, record, set, solve, string, symdiff, test, then, true,
tuple, union, type, var, where, xor.
Note that some of these keywords are not used in FlatZinc. They are reserved because they are
keywords in Zinc and MiniZinc.

FlatZinc syntax is insensitive to whitespace.

5.1 Predicate declarations

(See rule pred decl in Appendix B.)

Predicates used in the model that are not standard FlatZinc must be declared at the top of a
FlatZinc model, before any other lexical items. Predicate declarations take the form

predicate predname(type: argname, ...);

where predname and argname are identifiers.

Annotations are not permitted anywhere in predicate declarations.

It is illegal to supply more than one predicate declaration for a given predname.

Examples

% m is the median value of x, y, z.

6

%
predicate median_of_3(var int: x, var int: y, var int: z, var int: m);

% all_different([x1, .., xn]) iff
% for all i, j in 1..n: xi != xj.
%

predicate all_different(array [int] of var int: xs);

% exactly_one([x1, .., xn]) iff
% there exists an i in 1..n: xi = true
% and for all j in 1..n: j != i -> xj = false.
%

predicate exactly_one(array [int] of var bool: xs);

5.2 Parameter declarations

(See rule param decl in Appendix B.)

Parameters have fixed values and must be assigned values:

paramtype: paramname = literal;

where paramtype is a parameter type, paramname is an identifier, and literal is a literal value.

Examples

float: pi = 3.141;
array [1..7] of int: fib = [1, 1, 2, 3, 5, 8, 13];
bool: beer_is_good = true;

5.3 Variable declarations

(See rule var decl in Appendix B.)

Variables have variable types and can be declared with optional assignments (some variables are
aliases of other variables and, for arrays, it is often convenient to have fixed permutations of other
variables). Variables may be declared with zero or more annotations.

vartype: varname [:: annotation]∗ [= arrayliteral];

where vartype is a variable type, varname is an identifier, annotation is an annotation, and arrayliteral
is a literal array value.

Examples

var 0..9: digit;

7

var bool: b;
var set of 1..3: s;
var 0.0..1.0: x;
var int: y :: mip; % ’mip’ annotation: y should be a MIP variable.
array [1..3] of var 1..10: a;
array [1..3] of var 1..10: b = [a[3], a[2], a[1]];

5.4 Constraints

(See rule constraint in Appendix B.)

Constraints take the following form and may include zero or more annotations:

constraint predname(arg, ...) [:: annotation]∗;

where predname is a predicate name, annotation is an annotation, and each argument arg is either:
a literal value; the name of a parameter or variable, v; or a subscripted array parameter or variable,
v[j], where j is an int literal.

Examples

constraint int_le(0, x); % 0 <= x
constraint int_lt(x, y); % x < y
constraint int_le(y, 10); % y <= 10

% ’domain’: use domain consistency for this constraint:
% 2x + 3y = 10

constraint int_lin_eq([2, 3], [x, y], 10) :: domain;

5.5 Solve goal

(See rule solve goal in Appendix B.)

A model should finish with a solve goal, taking one of the following forms:

solve [:: annotation]∗ satisfy;

(search for any satisfying assignment) or

solve [:: annotation]∗ minimize objfn;

(search for an assignment minimizing objfn) or

solve [:: annotation]∗ maximize objfn;

(search for an assignment maximizing objfn) where objfn is either the name of a variable, v, or a
subscripted array variable, v[j], where j is an int literal.

A solution consists of a complete assignment where all variables in the model have been given a

8

fixed value.

Examples

solve satisfy; % Find any solution using the default strategy.

solve minimize w; % Find a solution minimizing w, using the default strategy.

% First label the variables in xs in the order x[1], x[2], ...
% trying values in ascending order.

solve :: int_search(xs, input_order, indomain_min, complete)
satisfy; % Find any solution.

% First use first-fail on these variables, splitting domains
% at each choice point.

solve :: int_search([x, y, z], first_fail, indomain_split, complete)
maximize x; % Find a solution maximizing x.

5.6 Annotations

Annotations are optional suggestions to the solver concerning how individual variables and con-
straints should be handled (e.g., a particular solver may have multiple representations for int
variables) and how search should proceed. An implementation is free to ignore any annotations it
does not recognise, although it should print a warning on the standard error stream if it does so.
Annotations are unordered and idempotent: annotations can be reordered and duplicates can be
removed without changing the meaning of the annotations.

An annotation is either

annotationname

or

annotationname(annotationarg, ...)

where annotationname is an identifier and annotationarg is any expression (which may also be
another annotation — that is, annotations may be nested inside other annotations).

5.6.1 Search annotations

While an implementation is free to ignore any or all annotations in a model, it is recommended
that implementations at least recognise the following standard annotations for solve goals.

seq search([searchannotation, ...])

9

allows more than one search annotation to be specified in a particular order (otherwise annotations
can be handled in any order).

A searchannotation is one of the following:

int search(vars, varchoiceannotation, assignmentannotation, strategyannotation)
bool search(vars, varchoiceannotation, assignmentannotation, strategyannotation)
set search(vars, varchoiceannotation, assignmentannotation, strategyannotation)

where vars is an array variable name or an array literal specifying the variables to be assigned (ints,
bools, or sets respectively).

varchoiceannotation specifies how the next variable to be assigned is chosen at each choice point.
Possible choices are as follows (it is recommended that implementations support the starred op-
tions):

input order ? Choose variables in the order they appear in vars.
first fail ? Choose the variable with the smallest domain.
anti first fail Choose the variable with the largest domain.
smallest Choose the variable with the smallest value in its domain.
largest Choose the variable with the largest value in its domain.
occurrence Choose the variable with the largest number of attached

constraints.
most constrained Choose the variable with the smallest domain, breaking ties

using the number of constraints.
max regret Choose the variable with the largest difference between the

two smallest values in its domain.

assignmentannotation specifies how the chosen variable should be constrained. Possible choices are
as follows (it is recommended that implementations support the starred options):

indomain min ? Assign the smallest value in the variable’s domain.
indomain max ? Assign the largest value in the variable’s domain.
indomain middle Assign the value in the variable’s domain closest to the

mean of its current bounds.
indomain median Assign the middle value in the variable’s domain.
indomain Nondeterministically assign values to the variable in as-

cending order.
indomain random Assign a random value from the variable’s domain.
indomain split Bisect the variable’s domain, excluding the upper half first.
indomain reverse split Bisect the variable’s domain, excluding the lower half first.
indomain interval If the variable’s domain consists of several contiguous in-

tervals, reduce the domain to the first interval. Otherwise
just split the variable’s domain.

Of course, not all assignment strategies make sense for all search annotations (e.g., bool search
and indomain split).

Finally, strategyannotation specifies a search strategy; implementations should at least support
complete (i.e., exhaustive search).

10

5.6.2 Output annotations

Model output is specified through variable annotations. Non-array output variables should be anno-
tated with output var. Array output variables should be annotated with output array([x1..x2,
...]) where x1..x2, ... are the index set ranges of the original array (it is assumed that the
FlatZinc model was derived from a higher level model written in, say, MiniZinc, where the original
array may have had multiple dimensions and/or index sets that do not start at 1).

5.6.3 Variable definition annotations

To support solvers capable of exploiting functional relationships, a variable defined as a function
of other variables may be annotated thus:

var int: x :: is_defined_var;
...
constraint int_plus(y, z, x) :: defines_var(x);

(The defines var annotation should appear on exactly one constraint.) This allows a solver to
represent x internally as a representation of y+z rather than as a separate constrained variable.
The is defined var annotation on the declaration of x provides “early warning” to the solver
that such an option is available.

5.6.4 Intermediate variables

Intermediate variables introduced during conversion of a higher-level model to FlatZinc may be
annotated thus:

var int: TMP :: var_is_introduced;

This information is potentially useful to the solver’s search strategy.

5.6.5 Constraint annotations

Annotations can be placed on constraints advising the solver how the constraint should be imple-
mented. Here are some constraint annotations supported by some solvers:

bounds or boundsZ Use integer bounds propagation.
boundsR Use real bounds propagation.
boundsD A tighter version of boundsZ where support for the bounds

must exist.
domain Use domain propagation.
priority(k) where k is an integer constant indicating propagator prior-

ity.

11

6 Output

An implementation should output values for all and only the variables annotated with output var
or output array (output annotations must not appear on parameters).

For example:

var 1..10: x :: output_var;
var 1..10: y; % y is not output.

% Output zs as a "flat" representation of a 2D array:
array [1..4] of var int: zs :: output_array([1..2, 1..2]);

All non-error output should be sent to the standard output stream.

Output should be in alphabetical order and take the following form:

varname = literal;

or, for array variables,

varname = arrayNd(x1..x2, ..., [y1, y2, ...yk]);

where N is the number of index sets specified in the corresponding output array annotation,
x1..x2, . . . are the index set ranges, and y1, y2, . . . yk are literals of the element type.

The intention is that the output of a FlatZinc model solution should be suitable for input to a
MiniZinc model as a data file (this is why parameters should not be included in the output).

Implementations should ensure that all model variables (not just the output variables) have sat-
isfying assignments before printing a solution.

The output for a solution must be terminated with ten consecutive minus signs on a separate line:
----------.

Multiple solutions may be output, one after the other, as search proceeds.

If at least one solution has been found and search then terminates having explored the whole search
space, then ten consecutive equals signs should be printed on a separate line: ==========.

If no solutions have been found and search terminates having explored the whole search space,
then =====UNSATISFIABLE===== should be printed on a separate line.

If the objective of an optimization problem is unbounded, then =====UNBOUNDED===== should be
printed on a separate line.

If no solutions have been found and search terminates having not explored the whole search space,
then =====UNKNOWN===== should be printed on a separate line.

Implementations may output further information about the solution(s), or lack thereof, in the form
of FlatZinc comments.

12

Examples

Asking for a single solution to this model:

var 1..3: x :: output_var;
solve satisfy

might produce this output:

x = 1;

Asking for all solutions to this model:

array [1..2] of var 1..3: xs :: output_array([1..2]);
constraint int_lt(xs[1], xs[2]); % x[1] < x[2].
solve satisfy

might produce this output:

xs = array1d(1..2, [1, 2]);

xs = array1d(1..2, [1, 3]);

xs = array1d(1..2, [2, 3]);

==========

Asking for a single solution to this model:

var 1..10: x :: output_var;
solve maximize x;

should produce this output:

x = 10;

==========

The row of equals signs indicates that a complete search was performed and that the last result
printed is the optimal solution.

Asking for the first three solutions to this model:

var 1..10: x :: output_var;
solve maximize x;

13

might produce this output:

x = 1;

x = 2;

x = 3;

Because the output does not finish with ==========, search did not finish, hence these results
must be interpreted as approximate solutions to the optimization problem.

Asking for a solution to this model:

var 1..3: x :: output_var;
var 4..6: y :: output_var;
constraint int_gt(x, y); % x > y.
solve satisfy;

should produce this output:

==========

indicating that a complete search was performed and no solutions were found (i.e., the problem is
unsatisfiable).

14

A Standard FlatZinc Predicates

The type signature of each required predicate is preceded by its specification (n denotes the length
of any array arguments).

A target solver is not required to implement the complete set of standard FlatZinc predicates.
Solvers are, however, required to support bool eq for all fixed argument values (e.g., model in-
consistency detected during flattening may be handled by including a constraint bool eq(true,
false) in the FlatZinc model).

(∀ i ∈ 1..n : as[i]) ↔ r where n is the length of as
array_bool_and(array [int] of var bool: as, var bool: r)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_bool_element(var int: b, array [int] of bool: as, var bool: c)

(∃ i ∈ 1..n : as[i]) ↔ r where n is the length of as
array_bool_or(array [int] of var bool: as, var bool: r)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_float_element(var int: b, array [int] of float: as, var float: c)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_int_element(var int: b, array [int] of int: as, var int: c)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_set_element(var int: b, array [int] of set of int: as, set of int: c)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_var_bool_element(var int: b, array [int] of var bool: as, var bool: c)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_var_float_element(var int: b, array [int] of var float: as, var float: c)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_var_int_element(var int: b, array [int] of var int: as, var int: c)

b ∈ 1..n ∧ as[b] = c where n is the length of as
array_var_set_element(var int: b, array [int] of var set of int: as, var set of int: c)

(a ↔ b = 1) ∧ (¬a ↔ b = 0)
bool2int(var bool: a, var int: b)

(a ∧ b) ↔ r
bool_and(var bool: a, var bool: b, var bool: r)

(∃ i ∈ 1..nas : as[i]) ∨ (∃ i ∈ 1..nbs : ¬bs[i]) where n is the length of as
bool_clause(array [int] of var bool: as, array [int] of var bool: bs)

((∃ i ∈ 1..nas : as[i]) ∨ (∃ i ∈ 1..nbs : ¬bs[i])) ↔ r where n is the length of as
bool_clause_reif(array [int] of var bool: as, array [int] of var bool: bs, var bool: r)

15

a = b
bool_eq(var bool: a, var bool: b)

(a = b) ↔ r
bool_eq_reif(var bool: a, var bool: b, var bool: r)

a ∨ ¬b
bool_ge(var bool: a, var bool: b)

(a ∨ ¬b) ↔ r
bool_ge_reif(var bool: a, var bool: b, var bool: r)

a ∧ ¬b
bool_gt(var bool: a, var bool: b)

(a ∧ ¬b) ↔ r
bool_gt_reif(var bool: a, var bool: b, var bool: r)

¬a ∨ b
bool_le(var bool: a, var bool: b)

(¬a ∨ b) ↔ r
bool_le_reif(var bool: a, var bool: b, var bool: r)

(a ← b) ↔ r
bool_left_imp(var bool: a, var bool: b, var bool: r)

¬a ∧ b
bool_lt(var bool: a, var bool: b)

(¬a ∧ b) ↔ r
bool_lt_reif(var bool: a, var bool: b, var bool: r)

a 6= b
bool_ne(var bool: a, var bool: b)

(a 6= b) ↔ r
bool_ne_reif(var bool: a, var bool: b, var bool: r)

¬a = b
bool_not(var bool: a, var bool: b)

(a ∨ b) ↔ r
bool_or(var bool: a, var bool: b, var bool: r)

(a → b) ↔ r
bool_right_imp(var bool: a, var bool: b, var bool: r)

(a 6= b) ↔ r
bool_xor(var bool: a, var bool: b, var bool: r)

|a| = b
float_abs(var float: a, var float: b)

16

a = b
float_eq(var float: a, var float: b)

(a = b) ↔ r
float_eq_reif(var float: a, var float: b, var bool: r)

a ≥ b
float_ge(var float: a, var float: b)

(a ≥ b) ↔ r
float_ge_reif(var float: a, var float: b, var bool: r)

a > b
float_gt(var float: a, var float: b)

a ≤ b
float_le(var float: a, var float: b)

(a ≤ b) ↔ r
float_le_reif(var float: a, var float: b, var bool: r)∑

i ∈ 1..n : as[i].bs[i] = c where n is the common length of as and bs
float_lin_eq(array [int] of float: as, array [int] of var float: bs, float: c)

(
∑

i ∈ 1..n : as[i].bs[i] = c) ↔ r where n is the common length of as and bs
float_lin_eq_reif(array [int] of float: as, array [int] of var float: bs,

float: c, var bool: r)∑
i ∈ 1..n : as[i].bs[i] ≥ c where n is the common length of as and bs

float_lin_ge(array [int] of float: as, array [int] of var float: bs, float: c)

(
∑

i ∈ 1..n : as[i].bs[i] ≥ c) ↔ r where n is the common length of as and bs
float_lin_ge_reif(array [int] of float: as, array [int] of var float: bs,

float: c, var bool: r)∑
i ∈ 1..n : as[i].bs[i] > c where n is the common length of as and bs

float_lin_gt(array [int] of float: as, array [int] of var float: bs, float: c)

(
∑

i ∈ 1..n : as[i].bs[i] > c) ↔ r where n is the common length of as and bs
float_lin_gt_reif(array [int] of float: as, array [int] of var float: bs,

float: c, var bool: r)∑
i ∈ 1..n : as[i].bs[i] ≤ c where n is the common length of as and bs

float_lin_le(array [int] of float: as, array [int] of var float: bs, float: c)

(
∑

i ∈ 1..n : as[i].bs[i] ≤ c) ↔ r where n is the common length of as and bs
float_lin_le_reif(array [int] of float: as, array [int] of var float: bs,

float: c, var bool: r)∑
i ∈ 1..n : as[i].bs[i] < c where n is the common length of as and bs

float_lin_lt(array [int] of float: as, array [int] of var float: bs, float: c)

17

(
∑

i ∈ 1..n : as[i].bs[i] < c) ↔ r where n is the common length of as and bs
float_lin_lt_reif(array [int] of float: as, array [int] of var float: bs,

float: c, var bool: r)∑
i ∈ 1..n : as[i].bs[i] 6= c where n is the common length of as and bs

float_lin_ne(array [int] of float: as, array [int] of var float: bs, float: c)

(
∑

i ∈ 1..n : as[i].bs[i] 6= c) ↔ r where n is the common length of as and bs
float_lin_ne_reif(array [int] of float: as, array [int] of var float: bs,

float: c, var bool: r)

a < b
float_lt(var float: a, var float: b)

(a < b) ↔ r
float_lt_reif(var float: a, var float: b, var bool: r)

max(a, b) = c
float_max(var float: a, var float: b, var float: c)

min(a, b) = c
float_min(var float: a, var float: b, var float: c)

a− b = c
float_minus(var float: a, var float: b, var float: c)

a 6= b
float_ne(var float: a, var float: b)

(a 6= b) ↔ r
float_ne_reif(var float: a, var float: b, var bool: r)

−a = b
float_negate(var float: a, var float: b)

a + b = c
float_plus(var float: a, var float: b, var float: c)

|a| = b
int_abs(var int: a, var int: b)

a/b = c rounding towards zero.
int_div(var int: a, var int: b, var int: c)

a = b
int_eq(var int: a, var int: b)

(a = b) ↔ r
int_eq_reif(var int: a, var int: b, var bool: r)

a ≥ b
int_ge(var int: a, var int: b)

18

(a ≥ b) ↔ r
int_ge_reif(var int: a, var int: b, var bool: r)

a > b
int_gt(var int: a, var int: b)

(a > b) ↔ r
int_gt_reif(var int: a, var int: b, var bool: r)

a ≤ b
int_le(var int: a, var int: b)

(a ≤ b) ↔ r
int_le_reif(var int: a, var int: b, var bool: r)∑

i ∈ 1..n : as[i].bs[i] = c where n is the common length of as and bs
int_lin_eq(array [int] of int: as, array [int] of var int: bs, int: c)

(
∑

i ∈ 1..n : as[i].bs[i] = c) ↔ r where n is the common length of as and bs
int_lin_eq_reif(array [int] of int: as, array [int] of var int: bs, int: c, var bool: r)∑

i ∈ 1..n : as[i].bs[i] ≥ c where n is the common length of as and bs
int_lin_ge(array [int] of int: as, array [int] of var int: bs, int: c)

(
∑

i ∈ 1..n : as[i].bs[i] ≥ c) ↔ r where n is the common length of as and bs
int_lin_ge_reif(array [int] of int: as, array [int] of var int: bs, int: c, var bool: r)∑

i ∈ 1..n : as[i].bs[i] > c where n is the common length of as and bs
int_lin_gt(array [int] of int: as, array [int] of var int: bs, int: c)

(
∑

i ∈ 1..n : as[i].bs[i] > c) ↔ r where n is the common length of as and bs
int_lin_gt_reif(array [int] of int: as, array [int] of var int: bs, int: c, var bool: r)∑

i ∈ 1..n : as[i].bs[i] ≤ c where n is the common length of as and bs
int_lin_le(array [int] of int: as, array [int] of var int: bs, int: c)

(
∑

i ∈ 1..n : as[i].bs[i] ≤ c) ↔ r where n is the common length of as and bs
int_lin_le_reif(array [int] of int: as, array [int] of var int: bs, int: c, var bool: r)∑

i ∈ 1..n : as[i].bs[i] < c where n is the common length of as and bs
int_lin_lt(array [int] of int: as, array [int] of var int: bs, int: c)

(
∑

i ∈ 1..n : as[i].bs[i] < c) ↔ r where n is the common length of as and bs
int_lin_lt_reif(array [int] of int: as, array [int] of var int: bs, int: c, var bool: r)∑

i ∈ 1..n : as[i].bs[i] 6= c where n is the common length of as and bs
int_lin_ne(array [int] of int: as, array [int] of var int: bs, int: c)

(
∑

i ∈ 1..n : as[i].bs[i] 6= c) ↔ r where n is the common length of as and bs
int_lin_ne_reif(array [int] of int: as, array [int] of var int: bs, int: c, var bool: r)

a < b
int_lt(var int: a, var int: b)

19

(a < b) ↔ r
int_lt_reif(var int: a, var int: b, var bool: r)

max(a, b) = c
int_max(var int: a, var int: b, var int: c)

min(a, b) = c
int_min(var int: a, var int: b, var int: c)

a− b = c
int_minus(var int: a, var int: b, var int: c)

a− x.b = c where x = a/b rounding towards zero.
int_mod(var int: a, var int: b, var int: c)

a 6= b
int_ne(var int: a, var int: b)

(a 6= b) ↔ r
int_ne_reif(var int: a, var int: b, var bool: r)

−a = b
int_negate(var int: a, var int: b)

a + b = c
int_plus(var int: a, var int: b, var int: c)

a× b = c
int_times(var int: a, var int: b, var int: c)

a = b
int2float(var int: a, var float: b)

|a| = b
set_card(var set of int: a, var int: b)

a− b = c
set_diff(var set of int: a, var set of int: b, var set of int: c)

a = b
set_eq(var set of int: a, var set of int: b)

(a = b) ↔ r
set_eq_reif(var set of int: a, var set of int: b, var bool: r)

a ⊇ b ∨ min(a4 b) ∈ b where 4 is symmetric difference
set_ge(var set of int: a, var set of int: b)

a ⊃ b ∨ min(a4 b) ∈ b where 4 is symmetric difference
set_gt(var set of int: a, var set of int: b)

a ∈ b

20

set_in(var int: a, var set of int: b)

(a ∈ b) ↔ r
set_in_reif(var int: a, var set of int: b, var bool: r)

a ∩ b = c
set_intersect(var set of int: a, var set of int: b, var set of int: c)

a ⊆ b ∨ min(a4 b) ∈ a
set_le(var set of int: a, var set of int: b)

a ⊂ b ∨ min(a4 b) ∈ a
set_lt(var set of int: a, var set of int: b)

a 6= b
set_ne(var set of int: a, var set of int: b)

(a 6= b) ↔ r
set_ne_reif(var set of int: a, var set of int: b, var bool: r)

a ⊆ b
set_subset(var set of int: a, var set of int: b)

(a ⊆ b) ↔ r
set_subset_reif(var set of int: a, var set of int: b, var bool: r)

a ⊇ b
set_superset(var set of int: a, var set of int: b)

(a ⊇ b) ↔ r
set_superset_reif(var set of int: a, var set of int: b, var bool: r)

a4 b = c
set_symdiff(var set of int: a, var set of int: b, var set of int: c)

a ∪ b = c
set_union(var set of int: a, var set of int: b, var set of int: c)

21

B FlatZinc Syntax in BNF

We present the syntax of FlatZinc in standard BNF, adopting the following conventions: sans serif
xyz indicates a non-terminal; brackets [e] indicate e optional; double brackets [[a − z]] indicate a
character from the given range; the Kleene star e? indicates a sequence of zero or more repetitions
of e (? binds tighter than other BNF operators); ellipsis e, . . . indicates a non-empty comma-
separated sequence of e; alternation e1|e2 indicates alternatives. Comments appear in italics after
a dash. Note that FlatZinc uses the ASCII character set.

flatzinc model ::= [pred decl?] [param decl?] [var decl?] [constraint?] solve goal

pred decl ::= predicate identifier(pred param,...);

pred param ::= type: identifier

type ::= par type | var type

par type ::= bool
| float
| float const..float const
| int
| int const..int const
| {int const,...}
| set of int
| set of int const..int const
| set of {int const,...}
| array [index set] of bool
| array [index set] of float
| array [index set] of float const..float const
| array [index set] of int
| array [index set] of int const..int const
| array [index set] of {int const,...}
| array [index set] of set of int
| array [index set] of set of int const..int const
| array [index set] of set of {int const,...}

var type ::= var bool
| var float
| var float const..float const
| var int
| var int const..int const
| var {int const,...}
| var set of int const..int const
| var set of {int const,...}
| array [index set] of var bool
| array [index set] of var float
| array [index set] of var float const..float const
| array [index set] of var int
| array [index set] of var int const..int const
| array [index set] of var {int const,...}
| array [index set] of var set of int const..int const
| array [index set] of var set of {int const,...}

22

index set ::= 1..int const | int
--- int is only allowed in predicate declarations.

expr ::= bool const | float const | int const | set const
| identifier | identifier[int const] | array expr
| annotation | "...string constant..."
--- Annotation and string expressions are only permitted in annotation arguments.

identifier ::= [[A− Za− z]][[A− Za− z0− 9]]?

bool const ::= true | false

float const ::= int const[.[[0− 9]][[0− 9]]?][[[eE]]int const]

int const ::= [+−][[0− 9]][[0− 9]]?

set const ::= int const..int const | {int const,...}

array expr ::= [] | [expr,...]

param decl ::= type: identifier = expr;
--- Assignments expressions must be constant.
--- Any parameters in assignments must be declared earlier.

var decl ::= type: identifier annotations [= expr];
--- Any vars in assignments must be declared earlier.

constraint ::= constraint identifier(expr,...) annotations;

solve goal ::= solve annotations satisfy;
| solve annotations minimize expr;
| solve annotations maximize expr;
--- expr must be a var name or var array element.

annotations ::= [:: annotation]?
annotation ::= identifier | identifier(expr,...)

--- Whether an identifier is an annotation or a variable name can be identified from its type.
--- FlatZinc does not permit overloading of names.

23

